首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 905 毫秒
1.
The uptake of several species of bacteria by the common mussel Mytilus edulis (L.) and the subsequent fate of some polymers of the bacteria have been investigated in a study carried out during 1981. Bacteria (Escherichia coli, Micrococcus luteus, M. roseus, Bacillus cereus, Staphylococcus aureus and a marine pseudomonad, 1-1-1) were radiolabelled by growth in medium containing 3H-thymidine and the uptake of bacteria by Mytilus edulis was monitored. Labelled and unlabelled bacteria, at initial concentrations of 0.5 to 1x107 bacteria ml-1, were cleared at similar, exponential rates with no significant difference in the rates for different bacteria: 90% of bacteria were cleared in a mean time of 1.93±0.12 h (SEM, n=63). Those bacteria with cell walls which were sensitive to M. edulis lysozyme were rapidly degraded by the mussel and 3H-labelled DNA was released in a form not precipitable by 10% trichloroacetic acid. Lysozyme-resistant bacteria (Micrococcus roseus and S. aureus) were cleared from suspension by Mytilus edulis but most were rejected intact. By measuring the rate of release of 3H-thymidine-labelled material from the mussel the rate of degradation of lysozyme-sensitive bacteria by M. edulis was found. For different bacteria the degradation rate varied from approx 2x108 to 27x108 bacteria h-1 with an overall mean of 10x108 bacteria h-1. A thymidine- and diaminopimelicacid-requiring auxotroph of E. coli was radiolabelled with 3H-thymidine, 3H-diaminopimelic acid or 14C-glucose and fed to M. edulis. Bacteria were cleared and degraded by the mussel; 3H-diaminopimelic acid-labelled or 14C-glucose-labelled polymers were retained, whereas 3H-thymidine-labelled polymers were released into the surrounding water. Extracts of the digestive gland of M. edulis degraded lysozyme-sensitive bacteria to release 3H-thymidine-labelled material, but did not release 3H-thymidine-labelled material from lysozyme-resistant bacteria. It is concluded that M. edulis can select lysozymesensitive bacteria for subsequent processing and discriminate between bacterial polymers to reject DNA. Also, bacteria could provide a substantial fraction of the carbon requirement of the mussel.  相似文献   

2.
Undescribed hydrocarbon-seep mussels were collected from the Louisiana Slope, Gulf of Mexico, during March 1986, and the ultrastructure of their gills was examined and compared to Bathymodiolus thermophilus, a mussel collected from the deep-sea hydrothermal vents on the Galápagos Rift in March 1985. These closely related mytilids both contain abundant symbiotic bacteria in their gills. However, the bacteria from the two species are distinctly different in both morphology and biochemistry, and are housed differently within the gills of the two mussels. The symbionts from the seep mussel are larger than the symbionts from B. thermophilus and, unlike the latter, contain stacked intracytoplasmic membranes. In the seep mussel three or fewer symbionts appear to be contained in each host-cell vacuole, while in B. thermophilus there are often more than twenty bacteria visible in a single section through a vacuole. The methanotrophic nature of the seep-mussel symbionts was confirmed in 14C-methane uptake experiments by the appearance of label in both CO2 and acid-stable, non-volatile, organic compounds after a 3 h incubation of isolated gill tissue. Furthermore, methane consumption was correlated with methanol dehydrogenase activity in isolated gill tissue. Activity of ribulose-1,5-biphosphate (RuBP) carboxylase and 14CO2 assimilation studies indicate the presence of either a second type of symbiont or contaminating bacteria on the gills of freshly captured seep mussels. A reevaluation of the nutrition of the symbionts in B. thermophilus indicates that while the major symbiont is not a methanotroph, its status as a sulfur-oxidizing chemoautotroph, as has been suggested previously, is far from proven.  相似文献   

3.
The filtration rates of Mytilus edilis (=galloprovincialis; 40 mm) were determined in relation to food concentration and temperature, using pure suspensions of the unicellular alga Platymonas suecica in concentrations ranging from 3x105 cells/l to 1.5x108 cells/l. The rate of filtration (ml/h/mussel) generally decreased as cell concentrations increased, and dropped to low values when concentrations above 5x107 cells/l were supplied. The amount of water swept clear varied continuously, and noticeable differences in the filtration activity of M. edulis were observed over short time intervals (5 min). Fluctuations of filtered volumes per unit time were greater with lower than with higher concentrations of algae. The influence of temperature on filtration activity was highest between 5°–15°C and 25°–30°C. A temperature increase from 15° to 25°C resulted in only a slight increase in filtration rate. At 5° and 30°C, filtration dropped to very low values, namely 350 and 100 ml/h, respectively. The temperature coefficients for the filtration rates of M. edulis were determined as: Q10 (5° to 15°C)=4.96; Q10 (10° to 20°C)=1.22. The amount of algae cells ingested per mussel per hour is directly related to food concentration. The maximum number of cells filtered/mussel/h in an algal suspension of 70x106 cells/l was 21.5x105 cells/h. Cell concentrations of up to 40x106 cells/l were swept clear without producing pseudofaeces. The critical cell density for M. edulis was reached at algal concentrations of 70 to 80x106 cells/l. Above these concentrations no normal filtration activity was observed.  相似文献   

4.
Distribution, abundance, and resistance adaptations to higher temperature and desiccation of three species of intertidal mussels (Mytilus edulis aoteanus, Perna canaliculus and Aulacomya maoriana) were studied in New Zealand. M. edulis aoteanus generally was more abundant upshore, with P. canaliculus dominating downshore. M. edulis aoteanus was more common than P. canaliculus on the outside of mixed-species clumps. Abundance of A. maoriana was variable, with individuals favouring damp habitats such as inside mussel clumps. In moving air at 75% relative humidity and at 20°C or 30°C, median lethal levels of water loss were similar for P. canaliculus and M. edulis aoteanus but lower for A. maoriana. Rates of desiccation varied inversely with size and were higher for P. canaliculus, due mainly to valve gaping with resultant loss of water from the mantle cavity. M. edulis aoteanus was more tolerant of higher water temperatures than were the other species. Success in colonizing upshore or more aerially exposed habitats seems to be related to ability of small mussels to tolerate desiccation, especially during hot, windy weather.  相似文献   

5.
Mussels have been widely used as bioindicators of coastal contamination, and recent reports have demonstrated that metals are accumulated from both the dissolved phase and from ingested food. In the winter and spring of 1995, we examined the influence of the chemical composition of food (protein content, trace element concentrations and ratios in the diatom Thalassiosira pseudomana) on the assimilation of six trace elements (Ag, Am, Cd, Co, Se and Zn) in the mussel Mytilus edulis (L.). Differences of up to 38% in diatom protein content had no major influence on the assimilation of any trace element or carbon. Protein assimilation in M. edulis examined with a 35S radiotracer was also independent of protein content in the diatoms. Similarly, Se assimilation in mussels was not affected by the different Se concentrations in the diatoms. Cd assimilation increased with increasing Cd concentration, presumably due to higher desorption of Cd under acidic conditions typical of the mussel gut. Zn assimilation was inversely related to Zn concentration in the food particles, implying a partial regulation of this metal in the mussels. There was no evidence of any interaction of Cd and Zn in their assimilation by the mussels. These results suggest that mussels are highly responsive, in an element-specific way, to some components of ingested food (e.g., metal concentration), but other food components (such as the biochemical composition of the algae) have little effect on assimilation.  相似文献   

6.
Until recently, the only major hydrothermal vent biogeographic province not known to include bathymodioline mussels was the spreading centers of the northeast Pacific, but deep-sea dives using DSV Alvin on the Endeavor segment of the Juan de Fuca Ridge (47°56N 129°06W; ∼2,200 m depth) in August 1999 yielded the only recorded bathymodioline mytilids from these northeastern Pacific vents. One specimen in good condition was evaluated for its relatedness to other deep-sea bathymodioline mussels and for the occurrence of chemoautotrophic and/or methanotrophic symbionts in the gills. Phylogenetic analyses of the host cytochrome oxidase I gene show this mussel shares evolutionary alliances with hydrothermal vent and cold seep mussels from the genus Bathymodiolus, and is distinct from other known species of deep-sea bathymodiolines, suggesting this mussel is a newly discovered species. Ultrastructural analyses of gill tissue revealed the presence of coccoid bacteria that lacked the intracellular membranes observed in methanotrophic symbionts. The bacteria may be extracellular but poor condition of the fixed tissue complicated conclusions regarding symbiont location. A single gamma-proteobacterial 16S rRNA sequence was amplified from gill tissue and directly sequenced from gill tissue. This sequence clusters with other mussel chemoautotrophic symbiont 16S rRNA sequences, which suggests a chemoautotrophic, rather than methanotrophic, symbiosis in this mussel. Stable carbon (δ13C = −26.6%) and nitrogen (δ15N = +5.19%) isotope ratios were also consistent with those reported for other chemoautotroph-mussel symbioses. Despite the apparent rarity of these mussels at the Juan de Fuca vent sites, this finding extends the range of the bathymodioline mussels to all hydrothermal vent biogeographic provinces studied to date.  相似文献   

7.
Comparisons between invertebrate communities hosted by similar foundation species under different environmental conditions permit identification of patterns of species distributions that might be characteristic of the different ecosystems. Similarities and differences in community structure between two major types of chemosynthetic ecosystems were assessed by analyzing samples of invertebrates associated with Bathymodiolus heckerae Gustafson et al. mussel beds at the Florida Escarpment seep (Gulf of Mexico, 26°01.8N; 84°54.9W; October 2000) and B. puteoserpentis von Cosel et al. mussel beds at the Snake Pit vent (Mid-Atlantic Ridge, 23°22.1N; 44°56.9W; July 2001). Macrofaunal species richness was nearly twice as high in the seep mussel bed compared to the vent mussel bed, and only a single morphospecies, the ophiuroid Ophioctenella acies Tyler et al., was shared between the sites. Similarities between the two faunas at higher taxonomic levels (genus and family) were evident for only a small percentage of the total number of taxa, suggesting that evolutionary histories of many of these seep and vent macrofaunal taxa are not shared. The taxonomic distinctiveness of the seep and vent mussel-bed macrofaunal communities supports the hypothesis that environmental and oceanographic barriers prevent most taxa from occupying both types of habitats. Macrofaunal community heterogeneity among samples was similar in seep and vent mussel beds, indicating that spatial scales of processes regulating community variability may be similar in the two types of ecosystems. Suspension feeders were not represented in the macrofauna of seep or vent mussel beds. Primary consumers (deposit feeders and grazers) contributed more to the total abundance of macrofauna of seep mussel beds than vent mussel beds; secondary consumers (polychaetes and shrimp) were more abundant in the vent mussel beds.Electronic Supplementary Material Supplementary material is available in the online version of this article at http://dx.doi.org/10.1007/s00227-004-1304-z.Communicated by J.P. Grassle, New Brunswick  相似文献   

8.
A genetic study carried out on nine natural mussel populations on the French Atlantic coast from 1989–1990 revealed interdigitation between typicallyMytilus edulis and typicallyM. galloprovincialis populations and intermediate populations. The allele components of the populations followed aM. edulis/M. galloprovincialis gradient which does not correspond to a geographical gradient. Strong hybridization was evident in samples with intermediate allele frequencies. The respective importance of gene flow and selection is discussed in the light of the results and the evironmental features of the sampling zone.  相似文献   

9.
There are many reported associations between mussels and other invertebrates, such as pea crabs, polychaetes, turbellarians and copepods, which live in their mantle cavities. The boundary between commensalism and parasitism is often indistinguishable because of insufficient knowledge or because the interaction is variable. Preliminary evidence led to a closer examination of the relationship between the mussel, Mytilus edulis platensis, and an isopod, Edotia doellojuradoi, previously described as commensalism. Monthly intertidal samples of mussels were taken from September 2004 to August 2005 at Caleta Cordova Norte (45°43′S, 67°22′W) in southern Argentina and assessed for the prevalence and abundance levels of isopods. Mussels with and without isopods were measured, examined for evidence of gill damage and their condition (soft tissue dry weight) was determined. The overall isopod prevalence in mussels was 57.9% and infestation varied with mussel length, with maximum occurence at 30.2 mm (medium-sized mussels). Experimental evidence indicated that the position of the isopod inside the mussel depended on the feeding activity of the mussel. Female isopods were observed grasping the ventral food groove of the gill demibranchs and feeding on the mucous food strand produced by the mussel. Juveniles and males were observed clustered together on the dorsal side of the single female in each occupied mussel, suggesting extended maternal care. Gill damage was observed in 58.2% of mussels at the Argentine site and was significantly associated with isopod occurrence. Categorical regression analysis showed that the most important factor associated with the degree of gill lesions was the number of male and juvenile isopods per mussel, followed by the length of female isopods and the developmental stage of juveniles. Conversely, the degree of gill damage decreased with increasing mussel length. Overall, E. doellojuradoi had a significant effect on mussel condition throughout the year, with low flesh weight in mussels with isopods, except during the austral summer and early autumn. In contrast to previous studies, which concluded that the isopod was a commensal, the present study clearly demonstrates that E. doellojuradoi is a parasite of M. edulis platensis. Other symbiotic interactions formerly classified as commensal might not be innocuous on further investigation, especially if samples are taken at multiple sites and at different times of the year.  相似文献   

10.
Filtration rates and the extent of phagocytosed food particles were determined in the offshore lamellibranchs Artica islandica and Modiolus modiolus in relation to particle concentration, body size and temperature. Pure cultures of the algae Chlamydomonas sp. and Dunaliella sp. were used as food. A new method for determining filtration rates was developed by modifying the classical indirect method. The concentration of the experimental medium (100%) was kept constant to ±1%. Whenever the bivalves removed algae from the medium, additional algae were added and the filtration rate of the bivalves expressed in terms of percentage amount of algae added per unit time. The concentration of the experimental medium was measured continuously by a flow colorimeter. By keeping the concentration constant, filtration rates could be determined even in relation to different definite concentrations and over long periods of time. The amount of phagocytosed food was measured by employing the biuret-method (algae cells ingested minus algae cells in faeces). Filtration rates vary continuously. As a rule, however, during a period of 24 h, two phases of high food consumption alternate with two phases of low food consumption during which the mussels' activities are almost exclusively occupied by food digestion. Filtration rate and amount of phagocytosed algae increase with increasing body size. Specimens of A. islandica with a body length of 33 to 83 mm filter between 0.7 to 71/h (30–280 mg dry weight of algae/24 h) and phagocytose 21 to 122 mg dry weight of algae during a period of 24 h. The extent of food utilization declines from 75 to 43% with increasing body size. In M. modiolus of 40 to 88 mm body length, the corresponding values of filtration rate and amount of phagocytosed algae range between 0.5 and 2.5 l/h (20–100 mg dry weight of algae) and 17 to 90 mg dry weight of algae, respectively; the percentage of food utilization does not vary much and lies near 87%. Filtration rate and amount of phagocytosed algae follow the allometric equation y=a·x b. In this equation, y represents the filtration rate (or the amount of phagocytosed algae), a the specific capacity of a mussel of 1 g soft parts (wet weight), x the wet weight of the bivalves' soft parts, and b the specific form of relationship between body size and filtration rate (or the amount of phagocytosed algae). The values obtained for b lie within a range which indicates that the filtration rate (or the amount of phagocytosed algae) is sometimes more or less proportional to body surface area, sometimes to body weight. Temperature coefficients for the filtration rate are in Arctica islandica Q10 (4°–14°C)=2.05 and Q10 (10°–20°C)=1.23, in Modiolus modiolus Q10 (4°–14°C)=2.33 and Q10 (10°–20°C)=1.63. In A. islandica, temperature coefficients for the amount of phagocytosed algae amount to Q10 (4°–14°C)=2.15 and Q10 (10°–20°C)=1.55, in M. modiolus to Q10 (4°–14°C)=2.54 and Q10 (10°–20°C)=1.92. Upon a temperature decrease from 12° to 4°C, filtration rate and amount of phagocytosed algae are reduced to 50%. At the increasing concentrations of 10×106, 20×106 and 40×106 cells of Chlamydomonas/l offered, filtration rates of both mollusc species decrease at the ratios 3:2:1. At 12°C, pseudofaeces production occurs in both species in a suspension of 40×106, at 20°C in 60×106 cells of Chlamydomonas/l. At 12°C and 10–20×106 cells of Chlamydomonas/l, the maximum amount of algae is phagocytosed. At 40×106 cells/l, the amount of phagocytosed cells is reduced by 26% as a consequence of low filtration rates and intensive production of pseudofaeces. At 20°C and 20–50×106 cells of Chlamydomonas/l, the maximum amount of algae is sieved out and phagocytosed; the concentration of 10×106 cells/l is too low and cannot be compensated for by increased activity of the molluscs. With increasing temperatures, the amount of suspended matter, allowing higher rates of filtration and food utilization, shifts toward higher particle concentrations; but at each temperature a threshold exists, above which increase in particle density is not followed by increase in the amount of particles ingested. Based on theoretical considerations and facts known from literature, 7 different levels of food concentration are distinguishable. Experiments with Chlamydomonas sp. and Dunaliella sp. used as food, reveal the combined influence of particle concentration and particle size on filtration rate. Supplementary experiments with Mytilus edulis resulted in filtration rates similar to those obtained for M. modiolus, whereas, experiments with Cardium edule, Mya arenaria, Mya truncata and Venerupis pullastra revealed low filtration rates. These species, inhabiting waters with high seston contents, seem to be adapted to higher food concentrations, and unable to compensate for low concentrations by higher filtration activities. Adaptation to higher food concentrations makes it possible to ingest large amounts of particles even at low filtration rates. Suspension feeding bivalves are subdivided into four groups on the basis of their different food filtration behaviour.  相似文献   

11.
Specimens of Chlamys opercularis, Modiolus modiolus, Mytilus edulis, Crassostrea gigas, Scrobicularia plana and Mya arenaria were exposed to both gradual (sinusoidal) and abrupt (square-wave) salinity fluctuations and measurements made of osmotic, Na+, Mg2+ and Ca2+ concentrations in the hemolymph and where applicable in the mantle fluid. In both sinusoidal and square-wave regimes fluctuating between 100 and 50% seawater (100%=ca. 32 S), the hemolymph Na+, Mg2+, Ca2+ and osmotic concentrations followed the concentrations of the external medium in Chlamys opercularis. The hemolymph and mantle fluid osmotic Na+, Mg2+ and Ca2+ concentrations of Modiolus modiolus, Mytilus edulis, Crassostrea gigas and S. plana followed those of the external medium as long as the molluscs' shell valves remained open. There were no changes in the ionic or osmotic concentrations of the hemolymph or mantle fluid of any of these species during periods of shell-valve closure. The hemolymph osmotic, Na+ and Mg2+ concentrations of wedged-open Modiolus modiolus, Mytilus edulis, C. gigas and S. plana followed those of the external medium. Hemolymph Ca2+ concentrations showed a damped response in C. gigas and Mytilus edulis. The hemolymph osmotic, Na+, Ca2+ and Mg2+ concentrations of Mya arenaria fluctuated in a similar manner to the external medium, but were damped. Wedged-open Mytilus edulis exposed to fluctuating salinity and supplied with a constant supply of 10 mM Ca2+ showed greater changes in hemolymph ionic and osmotic concentrations than M. edulis exposed to the same salinity fluctuation without a constant Ca2+ supply. Chlamys opercularis and Modiolus modiolus survived in a 50% seawater minimum sinusoidal salinity fluctuation for 10 days; wedged-open M. modiolus survived only 3 days. Burrowing had no effect on the osmotic, Na+, Mg2+ or Ca2+ concentrations of the hemolymph of Mya arenaria or S. plana exposed to fluctuating salinities. All of the species studied were shown to be osmoconformers.  相似文献   

12.
The crab community in the Ría de Arousa, North-West Spain, was studied for 2 yr (1974–1975; 1975–1976), firstly to detect any differences due to mussel (Mytilus edulis) raft aquaculture; secondly to study temporal changes in spatial distributions in beach, raft and non-raft areas throughout the ría. Portunid crabs dominated the fauna, the dominant species being Macropipus puber and M. depurator in the raft areas, M. depurator in non-raft subtidal areas, and M. arcuatus in beach stations. No substantial seasonal changes were observed in species composition throughout the ría. In general, the highest densities occurred in fall and winter. Raft stations showed the highest values of abundance, up to 0.47 individual per m2, and 8.20 g wet wt m-2. The food resource provided by the rich epifauna associated with the mussel rafts, and changes in the sediment due to shell deposits could account for the high density values in raft areas. Raft areas (polygons) cover about 10% of the surface of the Ría de Arousa and, thus, the raft aquaculture of mussels significantly increases crab production.  相似文献   

13.
The current study determined behavioral and electrophysiological photosensitivities for three species of mesopelagic crustaceans: Pasiphaea multidentata Esmark, 1866 (Decapoda: Pasiphaeidae), Sergestes arcticus Kröyer, 1855 (Decapoda: Sergestidae), and Meganyctiphanes norvegica M. Sars, 1857 (Euphausiacea: Euphausiidae). In addition, in situ quantifications of the species vertical distributions in relation to downwelling irradiances were also determined in two locations in the northwest Atlantic Ocean, Wilkinson Basin (WB) and Oceanographer Canyon (OC). Data are from six 2-week cruises between June and September from 1995 to 2001. P. multidentata and M. norvegica were the most abundant large crustaceans in WB, and S. arcticus and M. norvegica were the most abundant large crustaceans in OC. The behavioral light sensitivity thresholds of P. multidentata and M. norvegica from WB were both 107 photons cm–2 s–1 and those of S. arcticus and M. norvegica from OC were both 108 photons cm–2 s–1. Electrophysiologically, P. multidentata was significantly more sensitive than M. norvegica from either location, S. arcticus was significantly more sensitive than M. norvegica from OC, and M. norvegica from WB was significantly more sensitive than M. norvegica from OC. A correlation was found between electrophysiologically measured photosensitivity and downwelling irradiance, with the most sensitive species, P. multidentata and S. arcticus, associated with the lowest irradiance at daytime depths. The photosensitivities of M. norvegica collected from the clearer waters of OC were significantly lower than those of individuals collected from the more turbid WB waters. These results indicate that downwelling irradiance has a significant impact on interspecies and intraspecies vertical distribution patterns in the mesopelagic realm.Communicated by J.P. Grassle, New Brunswick  相似文献   

14.
The biological community that surrounds the hypersaline cold water brine seeps at the base of the Florida Escarpment is dominated by two macrofaunal species: an undescribed bivalve of the family Mytilidac and a vestimentiferan worm, Escarpia laminata. These animals are apparently supported by the chemoautotrophic fixation of carbon via bacterial endosymbionts. Water column and sediment data indicate that high levels of both sulfide and methane are present in surface sediments around the animals but absent from overlying waters. Stable isotopic analyses of pore water indicate that there are two sources of sulfide: the first is geothermal sulfide carried in groundwater leaching from the base of the escarpment, and the second is microbial sulfide produced in situ. The vestimentiferan E. laminata, and the mytilid bivalve (seep mussel) live contiguously but rely on different substrates for chemoautotrophy. Enzyme assays, patterns of elemental sulfur storage and stable isotopic analyses indicate that E. laminata relies on sulfide oxidation and the seep mussel on methane oxidation for growth.  相似文献   

15.
Utilization of algae for decorating by the intertidal majid crab Tiarinia cornigera was examined by laboratory experiments in relation to availability of algae, presence of a predator, and the presence of conspecific and heterospecific crabs. Different availabilities of decorating materials had a positive correlation on decorating amount by juveniles, while the correlation was not so clear in subadults. The amount of decorating decreased with increasing density of conspecific crabs in the presence of a predator, but there was so clear relationship in the absence of a predator. The decrease in decorating under high density could be due to intraspecific aggression, because the superior crab, in fighting, was found to be decorated with more algae. Tiarinia cornigera was found to be superior to the co-occurring different majid species Micippa platipes in fighting. When T. cornigera and M. platipes were housed together, the former was decorated with more algae than the latter in the presence of a predator, but in the absence of a predator, the amount of algae was not different. Thus, presence of a predator may motivate intraspecific competition in T. cornigera as well as interspecific competition between T. cornigera and M. platipes for decorating materials.  相似文献   

16.
A community of decapod crustaceans (Brachyura) was sampled seasonally (October 1978–July 1979) from three habitats (raft, middle and beach) in the Ría de Muros e Noia (North-West Spain), with the purpose of studying spatial and temporal changes in the community and comparing with communities in the neighbouring Ría de Arousa, which supports an intense mussel (Mytilus edulis)-raft culture. The Portunidae family dominated the decapod community. Polybius henslowi, a species with pelagic stages, which enters the rías periodically in large numbers, was the dominant species at all the stations throughout the sampling period, attaining densities of 1.6 individuals m-2 (18.7 g wet wt m-2) in summer. Macropipus depurator and M. puber were the next most important species at the raft station, M. depurator at middle stations, and M. vernalis and Carcinus maenas at beach stations. The highest population densities were recorded in summer, due to the great abundance of Polybius henslowi at this time. When the data were reconsidered omitting p. henslowi, highest densities were in autumn and winter in the inner ría. In general, the nature of the substratum, the presence of mussel rafts, depth and salinity were the main factors determining the structure of the community. Density and biomass in the Ría de Muros e Noia (P. henslowi omitted) were lower than in the Ría de Arousa (up to six times lower in some areas). The Ría de Muros lacks the extensive number of mussel rafts present in the Ría de Arousa which constitute an important food resource for decapods.  相似文献   

17.
The influence of silt on growth of juvenile hard clams Mercenaria mercenaria (L.) (9 mm in mean shell length) was investigated in the laboratory using mixed suspensions of algae (50x106 Pseudoisochrysis paradoxa cells l-1) and fine-grained bottom sediments (0 to 44 mg l-1). Growth rates, expressed as percent increase in ash-free dry tissue weight, were not significantly affected by sediment concentrations up to 25 mg l-1. Significant reduction in growth (by 16% relative to controls fed only algae), and condition of clams, occurred at 44 mg silt l-1. The results of the 3-week growth experiment agree well with predictions made in an earlier study by integrating results of shortterm physiological measurements. Growth rates obtained with experimental algal-silt diets at 21°C (2.6 to 3.3% increase in dry tissue weight d-1) were comparable to those determined at ambient concentrations of Great South Bay particulates at 20°C (0.9 to 4.0% d-1). Levels of particulate inorganic matter in seawater from Great South Bay, New York, exhibited pronounced daily changes, and ranged from 6 to 126 mg dry weight l-1. Growth enhancement by the addition of silt to an algal diet, reported in mussels, surf clams and oysters, was not found in M. mercenaria. It is suggested that these three species are better suited than hard clams for culturing efforts in inshore turbid waters above uncompacted, muddy bottoms.Contribution No. 452 from the Marine Sciences Research Center, State University of New York at Stony Brook, USA  相似文献   

18.
Stimulation of photosynthate excretion from zooxanthellae and free-living algae by tissue homogenate of several bivalves was studied. Mantle tissue homogenate of Tridacna derasa enhanced 10-to 15-fold excretion of photosynthetically fixed carbon from freshly isolated zooxanthellae within 2 h incubation. Maximum carbon excretion was 35 to 45% of the total carbon fixed. This excretion stimulating activity was detected in the homogenates of the mantle, adductor muscle, gill, and kidney. However, no excretion stimulating activity was detected in the haemolymph. The excretion stimulation activity of mantle homogenate, directed against freshly isolated zooxanthellae from T. derasa, was higher in bivalves belonging to the Tridacnidae (T. derasa, T. crocea, T. maxima, T. squamosa, Hippopus hippopus) than in the Cardiidae (Fragum fragum, F. mundum, F. unedo), non-symbiotic bivalves (Mytilus edulis, Meretrix lusoria, Ruditapes philippinarum) or gastropods (Umbonium giganteum, Turbo argyrostoma). The mantle homogenate of T. derasa enhanced photosynthate excretion by free-living algae belonging to the Dinophyceae (Prorocentrum micans, Amphidinium carterae, and Heterocapsa triquetra) but did not enhance its excretion by free-living algae belonging to the Chlorophyceae, Cyanophyceae, Rhodophyceae, Prasinophyceae, and Haptophyceae. T. derase used in this study originated from Belau (Palau). T. crocea, T. squamosa, T. maxima, H. hippopus and F. unedo were collected at Ishigaki Island in Okinawa in 1992. F. mundum and F. fragm were collected at Okinawa Island in 1992.  相似文献   

19.
A new apparatus for long-term, continuous automatic measurements of filtration rates in suspension-feeding organisms is described. As the concentration of algae in the experimental medium is diminished by the filter-feeding activity of the experimental animals, algal suspension is automatically added, thus keeping the algal concentration constant. In this way, accurate determinations of filtration rates in relation to particle concentration are made possible. For determination of filtration rates in the common mussel Mytilus edulis L., individuals of different body size (shell length 8.5 to 56.5 mm) were used. Within the range of 10x106 to 40x106 cells of Dunaliella marina/l, mussels of the same body size filter-out approximately the same amount of algae at high or low concentrations. A low algal concentration is counterbalanced by a corresponding higher filtration rate. Within the range of body size (W=dry weight of tissues) and algal concentrations used, the filtration rate (F) follows the general allometric equation F=a·W b, where a and b are constants at specific experimental conditions. At a temperature of 12 °C, the values obtained for a are 2410 at a concentration of 20x106, and 1313 at a concentration of 40x106 Dunaliella cells/l; correspondingly, the filtration rates of a mussel of 1 g dry-tissue weight are 2410 ml/h and 1313 ml/h. b, the slope of the regression line (0.73 to 0.74), is independent of algal concentration. However, examination of all known measurements reveals that, most probably, the general allometric equation is an oversimplification; in large individuals there is a more pronounced decrease in filtration rate. The relationship between filtration rate, body size of mussels, and algal concentrations used is discussed.This work was made possible through a research grant from the Deutsche Forschungsgemeinschaft in connection with the program Litoralforschung — Abwässer in Küstennähe.  相似文献   

20.
Habitat-forming, ecosystem engineer species are common in most marine systems. Still, much uncertainty exists about how individual and population-level traits of these species contribute to ecosystem processes and how engineering species jointly affect biodiversity. In this manipulative field experiment, we examined how biodiversity in marginal blue mussel beds is affected by blue mussel (1) body size, density and patch context and (2) presence of fucoid and algal structures. In the study area, bladder-wrack (Fucus vesiculosus), filamentous algae and blue mussels (Mytilus edulis) coexist at shallow depths in a variety of patch configurations and offer complex habitats with a high variability of resources. We hypothesized that complexity in terms of mussel bed structure and algal presence determines species composition and abundance. Results from the experiment were compared with macrofaunal communities found in natural populations of both engineering species. Results show that the physical structure and blue mussel patch context are important determinants for species composition and abundance. Results further show that the presence of algal structures positively affects diversity in blue mussel habitats due to increased surface availability and complexity that these algae offer. This study shows that blue mussel beds at the very margin of their distribution have an indisputable function for promoting and maintaining biodiversity and suggest that facilitative effects of habitat-modifying species are important on Baltic Sea rocky shores with fundamental importance to community structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号