首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
The relative effects of NH 4 + (N) and PO 4 3- (P) on growth rate, photosynthetic capacity (Pmax), and levels of chemical constituents of the red macroalga Gracilaria tikvahiae McLachlan were assayed during winter and summer, 1983 in inshore waters of the Florida Keys by using in-situ cage cultures. During winter, both N and P enrichment enhanced growth over that of ambient seawater; however, P rather than N accounted for more (60%) of the increased winter growth. During summer, P, but not N, enhanced growth over ambient seawater and accounted for 80% of increased growth. Similarly, Pmax was enhanced by both P and N during winter (but mostly by P) and only by P during summer. Elevated C:P, C:N and N:P ratios of G. tikvahiae tissue during winter, but only C:P and N:P ratios during summer, support the pattern of winter N and P limitation and summer P-limitation. This seasonal pattern of N vs P limited growth of G. tikvahiae appears to be a response to seasonally variable dissolved inorganic N (twofold greater concentrations of NH 4 + and NO 3 - during summer compared to winter) and constantly low to undetectable concentrations of PO 4 3- . Mean C:P and N:P ratios of G. tikvahiae tissue during the study were 1 818 and 124, respectively, values among the highest reported for macroalgae.  相似文献   

2.
Experiments were conducted to determine whether diatom clones isolated from waters (Corio Bay or Hobson's Bay, Australia) chronically contaminated with heavy metals were more metal-resistant than clones of the same species isolated from cleaner waters (Bass Strait). Four species (2 clones per species) and 3 metals (Cu, Zn, Cd) were examined. The growth response of each clone to metal additions was assessed in both Corio Bay water and Bass Strait water. Generally, Cu was readily chelated and the most toxic metal and Cd the least chelated and least toxic. Toxicity of Cu to growth was found to be directly related to cellular Cu levels, which in turn were mediated by dissolved organic compounds in seawater. Corio Bay water had a greater metal-complexing capacity than Bass Strait water, and metal additions generally proved more toxic to each clone when in Bass Strait water. Ultraviolet irradiation eliminated differences between the water types. Relative to Bass Strait clones, no trend of enhanced metal tolerance was noted among the Corio Bay and Hobson's Bay clones; on the contrary the Corio Bay and Hobson's Bay cells were generally less to lerant of metals than were their Bass Strait counterparts, being particularly affected when in Bass Strait water. The results suggest that metal additions to waters rich in dissolved organic compounds would likely have less effect (in terms of direct toxicity and as a selective agent for metal tolerance) on resident phytoplankters than similar additions to waters low in organics.Publication No. 274 in the Ministry for Conservation, Environmental Studies Series  相似文献   

3.
A greenhouse pot experiment was conducted to investigate the effects of the colonization of arbuscular mycorrhizal fungus (AMF) Glomus mosseae on the growth and metal uptake of three leguminous plants (Sesbania rostrata, Sesbania cannabina, Medicago sativa) grown in multi-metal contaminated soil. AMF colonization increased the growth of the legumes, indicating that AMF colonization increased the plant’s resistance to heavy metals. It also significantly stimulated the formation of root nodules and increased the N and P uptake of all of the tested leguminous plants, which might be one of the tolerance mechanisms conferred by AMF. Compared with the control, colonization by G. mosseae decreased the concentration of metals, such as Cu, in the shoots of the three legumes, indicating that the decreased heavy metals uptake and growth dilution were induced by AMF treatment, thereby reducing the heavy metal toxicity to the plants. The root/shoot ratios of Cu in the three legumes and Zn in M. sativa were significantly increased (P < 0.05) with AMF colonization, indicating that heavy metals were immobilized by the mycorrhiza and the heavy metal translocations to the shoot were decreased.  相似文献   

4.
A change in the Si:N ratio of diatom cells during growth was examined for Chaetoceros socialis and Thalassiosira sp., with different initial silicate to nitrate (Si:N) ratios in the media. During exponential growth, C. socialis assimilated silicate and nitrate with a molar ratio of 0.5, independent of the ratio in the media, but after the depletion of nitrate, silicate continued to be taken up, and the Si:N ratio in the stationary phase increased to 2 as a function of the Si:N ratios in the media. In contrast, the ratio of silicate to nitrate taken up by Thalassiosira sp. increased with an increase in the Si:N ratio in the media. The Si:N ratio in the cells during the stationary phase increased in response to an increase in this ratio in the media. The Si:chl  a ratio also increased with the increase in the initial Si:N ratio in the media, while the N:chl  a ratio did not change to a great extent, indicating the changes in the cellular Si:N ratio was derived from changes in the Si content of the cells. These results indicated that the cellular Si:N ratio changed with the Si:N ratio in the medium, and the Si:N uptake ratio during the growth phase was different depending on diatom species. Thus, the dominance of different diatom species may affect nutrient composition and dynamics in the ocean.  相似文献   

5.
Batch culture experiments were performed to investigate potential effects of nutrient starvation on the allelochemical potency of the toxic dinoflagellate Alexandrium tamarense. Triplicate cultures with reduced nitrate (−N) or phosphate (−P) seed were compared to nutrient-replete (+N+P) cultures. Total depletion of the dissolved inorganic limiting nutrient, reduced cell quotas, changed mass ratios of C/N/P and reduced cell yield clearly indicate that treatment cultures at stationary phase were starved by either N or P, whereas growth cessation of +N+P cultures was probably due to carbon limitation and/or a direct effect of high pH. Pulsed addition of the limiting nutrient allowed −N and −P cultures to resume growth. Lytic activity of A. tamarense as quantified by a Rhodomonas bioassay was generally high (EC50 around 100 cells mL−1) and was only slightly modulated by growth phase and/or nutrient starvation. Lytic activity per cell increased with time in both +N+P and −P cultures but not −N cultures. P-starved stationary-phase cells were slightly more lytic than +N+P cultures, but this difference may be due to increased cell size and/or accumulation of extracellular compounds. In conclusion, only slight changes but no general and major increase in lytic activity in response to nutrient starvation was observed.  相似文献   

6.
The influence of different N:P supply ratios on cell accumulation, chemical composition and toxicity of the marine haptophyte Chrysochromulina polylepis was examined in semi-continuous cultures. A non-axenic strain of C. polylepis was exposed to five different N:P supply ratios (N:P = 1:1, 4:1, 16:1, 80:1 and 160:1, by atoms), in order to create a range of N- and P-limited conditions. The toxicity per cell in C. polylepis was determined on four occasions at steady state cell density using the haemolytic activity of the cells expressed as saponin nanoequivalents. Haemolytic activity was demonstrated in all treatments, and increased in the algae when cell growth was nutrient limited (N:P = 1:1, 4:1, 80:1 and 160:1), compared to cells grown under non-limiting conditions (N:P = 16:1). This occurred regardless of the growth-limiting nutrient (N or P) and became more pronounced as nutrient limitation increased. In P-limited cultures the haemolytic activity per cell increased linearly with the cellular N:P ratio, whereas the N-limited cultures showed an opposite trend. The haemolytic activity per cell showed an inverse relationship with both cellular N and cellular P content. Cells limited by P showed a higher haemolytic activity than cells limited by N. The results suggest that toxicity in C. polylepis is strongly influenced by the physiological state of the algae. This may partially explain the large variability previously observed in the toxicity of C. polylepis blooms. The potential ecological significance of our findings is also discussed. Received: 18 November 1998 / Accepted: 5 July 1999  相似文献   

7.
T. Ikeda  B. Bruce 《Marine Biology》1986,92(4):545-555
Oxygen uptake and ammonia excretion rates, and body carbon and nitrogen contents were measured in krill (Euphausia superba) and eight other zooplankton species collected during November–December 1982 in the Prydz Bay, Antarctica. From these data, metabolic O:N ratios (by atoms), body C:N ratios (by weight) and daily metabolic losses of body carbon and nitrogen were calculated as a basis from which to evaluate seasonal differences in metabolism and nutritional condition. Comparison of the present data with mid-summer (January) data revealed that early-summer E. superba were characterized by higher metabolic O:N ratios (58.7 to 103, compared with 15.9 to 17.5 for mid-summer individuals). Higher O:N ratios of early-summer E. superba resulted largely from reduced ammonia excretion rates and, to a lesser degree, from slightly increased oxygen uptake rates. Body C:N ratios of E. superba were low in early-summer (3.8 to 4.2) compared with mid-summer krill (4.1 to 4.7) due to lowered body-carbon contents in the former (42.6 to 43.6% compared with 43.2 to 47.5% dry weight of midsummer individuals); gravid females formed an exception, since no seasonal differences in body elemental composition were detected for these. No significant changes in water content (75.3 to 81.4% wet wt) and nitrogen content (9.9 to 11.1% dry wt) in E. superba were evident between the two seasons. Seasonal differences in metabolic rates and elemental composition were less pronounced in a salp (Salpa thompsoni), but a higher metabolic O:N ratio occurred in early-summer individuals. Interspecific comparison of the seven remaining zooplankton species studied with twelve species from mid-summer zooplankton investigated in an earlier study indicated that higher metabolic O:N ratios in early-summer are characteristic not only of herbivore/filter-feeders, but also of some carnivores/omnivores. No relationship between metabolic O:N ratios and body C:N ratios was apparent either intraspecifically or interspecifically, within or between early-summer and mid-summer seasons.  相似文献   

8.
Recruitment, life span and growth rate were investigated in field and experimental populations of Abra alba (Wood) in Kiel Bay, FRG (55°N) from 1975 to 1978 to determine production to biomass (P:B) ratios and to assess the importance of A. alba to production by commercial fish. Life span and growth rates were determined from changes in length frequency modes at each site and from winter rings on the shell. A peak of recruitment usually occurred in August, sometimes followed by a second peak between December and February. Life span was between a little more than one year and two and a half years. Growth rates were highest at the two sites in offshore fishing grounds, where bivalves reached a mean length of 13 to 16 mm at the end of two years. At the inshore control site and in the nearby experimental containers, individuals reached a mean length of 7 mm at the end of two years. Production estimates ranged from 110 to 3.000 mg C m-2 year-1, differing markedly among sites and among years. Production was highest during the first year after recruitment, occurring mainly between July and December. Mortality occurred mainly between January and June, and was in approximate balance with production over a three-year period. Annual P:B ratios were from 1.3 to 3.4; a long-term mean P:B ratio of 2.2 is suggested for Kiel Bay populations of A. alba. Annual production by A. alba appears to exceed considerably consumption by fish of commercial size. The significance of A. alba in the food web of Kiel Bay may thus be as food for juvenile fish or for intermediate-level predators that are themselves prey for larger fish.Publication No. 431 of the Sonderforschungsbereich 95 Meer-MeeresbodenPublication No. 1031 of the CSIRO Marine Laboratories  相似文献   

9.
长期氮(N)沉降及其诱导的N、磷(P)养分平衡性对森林生长与生产力的生态反馈效应已成为当前森林生态学研究的前沿与热点,但目前大多研究主要基于已有文献数据整合分析,而缺乏野外原位系统性研究与试验证据.以西南亚高山两种典型人工针叶林——云杉(Picea asperata)林和华山松(Pinus armandii)林为对象,...  相似文献   

10.
Dietary-induced responses in the phagotrophic flagellate Oxyrrhis marina   总被引:1,自引:0,他引:1  
Primary producers may be limited by different nutrients as well as by light availability, which in turn affects their quality as food for higher trophic levels. Typically, algae with high C:N and/or C:P ratios are low-quality food for consumers. Heterotrophic protists are important grazers on these autotrophes, but despite their importance as grazers, knowledge of food quality effects on heterotrophic protists is sparse. In the present study, we examined how differently grown Rhodomonas salina (nutrient replete, N-limited and P-limited) affected the phagotrophic flagellate Oxyrrhis marina. The functional response of O. marina (based on ingested biovolume) did not show significant differences between food sources, thus food uptake was independent of food quality. O. marina was weakly homoeostatic which means that its C:N:P ratio still reflected the elemental composition of its food to some extent. Food quality had a significantly negative effect on the numerical response of O. marina. Whereas N-limited R. salina and nutrient replete R. salina resulted in similar growth rates, P-limited algae had a significantly negative effect on the specific growth rate of O. marina. Hence, the lack of elemental phosphorus of O. marina feeding on P-limited algae caused a reduction in growth. Thus, despite their weaker homoeostasis, heterotrophic protists are also affected by high C:P food in a similar way to crustacean zooplankton.  相似文献   

11.
选定4个尾叶桉种源在不同的施P水平下盆栽,研究它们之间在生长和P、N吸收上的遗传差异.结果显示:施P肥对尾叶桉4个种源的生长高度、生物量积累、P及N吸收有着明显的作用,种源之间在上述指标上也有着明显的差异.在低P和高P施肥条件下,这种差异不明显,最大差异出现在土壤P的临界供给范围内(每kg土壤施15-20mg的P).施P肥还会改变苗木地上部分和地下部分的干重之比、地上部分和地下部分的P、N吸收量之比.  相似文献   

12.
The secondary tropical forests in southern China have suffered from frequent human disturbance and increasing high N deposition. In order to explore the nutrient limitation status in secondary tropical forests of South China, this 3-year field experiment of nitrogen (+N) and phosphorus (+P) addition investigated nitrogen (N) and phosphorus (P) concentrations of the aboveground tissue (leaf and branch) of two widely distributed understory native species Clerodendrum cyrtophyllum and Uvaria microcarpa in a secondary tropical forest of South China. The results showed that: 1) the N and P concentrations of the two species were significantly different (P < 0.001); N and P concentrations of different tissues in the same species were different; N&P addition greatly affected N and P concentrations in branch rather than new leaf and older leaf. 2) +N treatment had no significant effect on N or P concentrations of either species, but significantly decreased N:P ratios (P = 0.001), at the level of 9% for C. cyrtophyllum and 50% for U. microcarpa, respectively. 3) +P treatment had no significant effect on tissue N concentrations, but significantly increased plant P concentrations (P < 0.001), at 54% for C. cyrtophyllum and 88% for U. microcarpa, respectively; +P treatment significantly decreased plant N:P ratios (P < 0.001), at 28% and 60%, respectively. 4) The alterations of P concentrations of two species had significantly negative correlations with N:P alterations under +N/+P treatment (P < 0.001), suggesting that the alteration of P concentrations in plant tissue was the major driver for N:P alteration. Our results show that N and P addition would affect tissue N and P concentrations of the two species, with +P treatment having relatively greater effect on nutrient concentrations than +N treatment; the branch is more sensitive than new or older leaf in response to nutrient addition. Therefore, P availability may be the limiting factor for plant growth in the tropical forests.  相似文献   

13.
Nitrogen inputs promote the spread of an invasive marsh grass.   总被引:3,自引:0,他引:3  
Excess nutrient loading and large-scale invasion by nonnatives are two of the most pervasive and damaging threats to the biotic and economic integrity of our estuaries. Individually, these are potent forces, but it is important to consider their interactive impacts as well. In this study we investigated the potential limitation of a nonnative intertidal grass, Spartina alterniflora, by nitrogen (N) in estuaries of the western United States. Nitrogen fertilization experiments were conducted in three mud-flat habitats invaded by S. alterniflora in Willapa Bay, Washington, USA, that differed in sediment N. We carried out parallel experiments in San Francisco Bay, California, USA, in three habitats invaded by hybrid Spartina (S. alterniflora x S. foliosa), in previously unvegetated mud flat, and in native S. foliosa or Salicornia virginica marshes. We found similar aboveground biomass and growth rates between habitats and estuaries, but end-of-season belowground biomass was nearly five times greater in San Francisco Bay than in Willapa Bay. In Willapa Bay, aboveground biomass was significantly correlated with sediment N content. Addition of N significantly increased aboveground biomass, stem density, and the rate of spread into uninvaded habitat (as new stems per day) in virtually all habitats in both estuaries. Belowground biomass increased in Willapa Bay only, suggesting that belowground biomass is not N limited in San Francisco Bay due to species differences, N availability, or a latitudinal difference in the response of Spartina to N additions. The relative impact of added N was greater in Willapa Bay, the estuary with lower N inputs from the watershed, than in San Francisco Bay, a highly eutrophic estuary. Nitrogen fertilization also altered the competitive interaction between hybrid Spartina and Salicornia virginica in San Francisco Bay by increasing the density and biomass of the invader and decreasing the density of the native. There was no significant effect of N on the native, Spartina foliosa. Our results indicate that excess N loading to these ecosystems enhances the vulnerability of intertidal habitats to rapid invasion by nonnative Spartina sp.  相似文献   

14.
Production dynamics of eelgrass, Zostera marina was examined in two bay systems (Koje Bay and Kosung Bay) on the south coast of the Korean peninsula, where few seagrass studies have been conducted. Dramatically reduced eelgrass biomass and growth have been observed during summer period on the coast of Korea, and we hypothesized that the summer growth reduction is due to increased water temperature and/or reduced light and nutrient availabilities. Shoot density, biomass, morphological characteristics, leaf productivities, and tissue nutrient content of eelgrass were measured monthly from June 2001 to April 2003. Water column and sediment nutrient concentrations were also measured monthly, and water temperature and underwater irradiance were monitored continuously at seagrass canopy level. Eelgrass shoot density, biomass, and leaf productivities exhibited clear seasonal variations, which were strongly correlated with water temperature. Optimal water temperature for eelgrass growth in the present study sites was about 15–20°C during spring period, and eelgrass growths were inhibited at the water temperature above 20°C during summer. Daily maximum underwater photon flux density in the study sites was usually much higher than the light saturation point of Z. marina previously reported. Densities of each terminal, lateral, and reproductive shoot showed their unique seasonal peak. Seasonal trends of shoot densities suggest that new eelgrass shoots were created through formation of lateral shoots during spring and a part of the vegetative shoots was transformed into flowering shoots from March. Senescent reproductive shoots were detached around June, and contributed to reductions of shoot density and biomass during summer period. Ambient nutrient level appeared to provide an adequate reserve of nutrient for eelgrass growth throughout the experimental period. The relationships between eelgrass growth and water temperature suggested that rapid reductions of eelgrass biomass and growth during summer period on the south coast of the Korean peninsula were caused by high temperature inhibition effects on eelgrass growth during this season.  相似文献   

15.
Cladophora vagabunda (L.) van den Hoek and Gracilaria tikvahiae (McLachlan) have become dominant components of the macroalgal assemblage in Waquoit Bay, a Massachusetts embayment, possibly due to nitrogen (N) enrichment from anthropogenic inputs transported via groundwater. During 1989–1993, we measured site-related growth, ammonium uptake rates and tissue constituents of these macroalgae from areas subject to high N loading rates (Childs River) and lower N loadings rates (Sage Lot Pond). We also conducted in situ and microcosm enrichment experiments to determine what limited algal growth throughout the year. Our results indicated that these species are strongly affected by and have a strong impact on the N environment of this embayment. For example, C. vagabunda and G. tikvahiae from Childs River had higher light-harvesting pigments and tissue-N concentrations than Sage Lot Pond populations. Additionally, both Childs River populations showed greater site-specific growth and N uptake rates, particularly during the summer period of peak growth. In fact, maximum uptake rates of 90 and over 140 mol dry wt g-1 h-1 for Childs River C. vagabunda and G. tikvahiae, respectively, suggest that these species can remove substanital quantities of N from overlying waters, and may be responsible for low (often (<1 M) water-column nutrient concentrations during summer. In situ and tank enrichment experiments indicated that growth rates were limited by available N during summer, while P may be limiting during a brief period toward the end of the annual growth cycle (autumn). Under experimental enrichment, growth rates of Sage Lot Pond algae were similar to values measured at the site receiving higher N inputs, and generally, G. tikvahiae showed growth enhancement (up to 0.2 doublings d-1) under light-saturating conditions (0.5 m) while C. vagabunda showed nutrient-enhanced growth at 2.5 m. The effects of available nutrients on algal growth were strongly influenced by irradiance and temperature, resulting in a complex seasonal interaction that emphasized the dynamic nature of species response to N loading. Dominance by these two macroalgae in Waquoit Bay, as in other areas undergoing eutrophication, is likely related to physiological strategies that enable these species to tolerate large environmental variations, to take advantage of greater N availability and to survive indirect effects of N loading (e.g. reduced irradiance, anoxia).  相似文献   

16.
Forest management, climatic change, and atmospheric N deposition can affect soil biogeochemistry, but their combined effects are not well understood. We examined the effects of water and N amendments and forest thinning and burning on soil N pools and fluxes in ponderosa pine forests near Flagstaff, Arizona (USA). Using a 15N-depleted fertilizer, we also documented the distribution of added N into soil N pools. Because thinning and burning can increase soil water content and N availability, we hypothesized that these changes would alleviate water and N limitation of soil processes, causing smaller responses to added N and water in the restored stand. We found little support for this hypothesis. Responses of fine root biomass, potential net N mineralization, and the soil microbial N to water and N amendments were mostly unaffected by stand management. Most of the soil processes we examined were limited by N and water, and the increased N and soil water availability caused by forest restoration was insufficient to alleviate these limitations. For example, N addition caused a larger increase in potential net nitrification in the restored stand, and at a given level of soil N availability, N addition had a larger effect on soil microbial N in the restored stand. Possibly, forest restoration increased the availability of some other limiting resource, amplifying responses to added N and water. Tracer N recoveries in roots and in the forest floor were lower in the restored stand. Natural abundance delta15N of labile soil N pools were higher in the restored stand, consistent with a more open N cycle. We conclude that thinning and burning open up the N cycle, at least in the short-term, and that these changes are amplified by enhanced precipitation and N additions. Our results suggest that thinning and burning in ponderosa pine forests will not increase their resistance to changes in soil N dynamics resulting from increased atmospheric N deposition or increased precipitation due to climatic change. Restoration plans should consider the potential impact on long-term forest productivity of greater N losses from a more open N cycle, especially during the period immediately after thinning and burning.  相似文献   

17.
Atmospheric nitrogen (N) deposition can increase forest growth. Because N deposition commonly increases foliar N concentrations, it is thought that this increase in forest growth is a consequence of enhanced leaf-level photosynthesis. However, tests of this mechanism have been infrequent, and increases in photosynthesis have not been consistently observed in mature forests subject to chronic N deposition. In four mature northern hardwood forests in the north-central United States, chronic N additions (30 kg N ha(-1) yr(-1) as NaNO3 for 14 years) have increased aboveground growth but have not affected canopy leaf biomass or leaf area index. In order to understand the mechanism behind the increases in growth, we hypothesized that the NO3(-) additions increased foliar N concentrations and leaf-level photosynthesis in the dominant species in these forests (sugar maple, Acer saccharum). The NO3(-) additions significantly increased foliar N. However, there was no significant difference between the ambient and +NO3(-) treatments in two seasons (2006-2007) of instantaneous measurements of photosynthesis from either canopy towers or excised branches. In measurements on excised branches, photosynthetic nitrogen use efficiency (micromol CO2 s(-1) g(-1) N) was significantly decreased (-13%) by NO3(-) additions. Furthermore, we found no consistent NO3(-) effect across all sites in either current foliage or leaf litter collected annually throughout the study (1993-2007) and analyzed for delta 13C and delta 18O, isotopes that can be used together to integrate changes in photosynthesis over time. We observed a small but significant NO3(-) effect on the average area and mass of individual leaves from the excised branches, but these differences varied by site and were countered by changes in leaf number. These photosynthesis and leaf area data together suggest that NO3(-) additions have not stimulated photosynthesis. There is no evidence that nutrient deficiencies have developed at these sites, so unlike other studies of photosynthesis in N-saturated forests, we cannot attribute the lack of a stimulation of photosynthesis to nutrient limitations. Rather than increases in C assimilation, the observed increases in aboveground growth at our study sites are more likely due to shifts in C allocation.  相似文献   

18.
The present study deals with metal uptake by Brassica juncea in the presence of Pseudomonas fluorescens Pf 27 for Zn, Cu and Cd removal from brass and electroplating-industry effluent-contaminated soil. Inoculation of P. fluorescens significantly (p<0.05) increased water soluble (Ws) and exchangeable (Ex) metal content in contaminated soil in laboratory conditions and also enhanced plant biomass by 99% and chlorophyll content by 91% as compared to uninoculated plants in the greenhouse. The metal uptake by B. juncea followed the pattern Zn>Cu>Cd and increased with increasing plant growth duration. P. fluorescens inoculation increased root and shoot uptake of Zn by 3.05 and 2.69, Cu by 3.19 and 2.82 and Cd by 3.11- and 2.75-fold, respectively. BCF value for each metal was>1 and increased by 44%, 42% and 38% for Zn, Cu and Cd, respectively, in inoculated conditions, whereas TF remained unaffected and followed the order Zn>Cd>Cu. P. fluorescens inoculation also enhanced Ws fraction of Zn, Cu and Cd by 99%, 77% and 90% and Ex by 107%, 70% and 93%, respectively. Results depicted that association of B. juncea with P. fluorescens could be a promising strategy for enhancing soil metal bioavailability and plant growth for successful phytoremediation of heavy metal contaminated soils.  相似文献   

19.
Skeletonema costatum (Greville) Cleve isolated from Narragansett Bay, USA, was incubated at 3 light intensities (ca. 0.008, 0.040 and 0.075 ly min-1) under a 12 h light: 12 h dark (12L:12D) photoperiod at 2°, 10° and 20°C. Cellular chlorophyll a increased at intensities less than ca. 0.040 ly min-1; increases occured within one photoperiod at temperatures above 10°C. Cellular carbohydrate increased with light intensity at all temperatures; increases during the photophase were due to net production of the dilute acid-soluble fraction. Cellular protein increased during the photoperiod at 10° and 20°C; there was little difference in cellular protein among all cultures after one photoperiod. The rate at which cellular chlorophyll a increased in response to a decrease in light suggests that diel variation in cellular chlorophyll a is temperature-dependent in S. costatum. Protein: carbohydrate ratios ranged from ca. 0.5 to 2.0 over a diel cycle; ratios increased at lower intensities and higher temperatures. The diel range in protein:carbohydrate ratios equals that in cultures developing nitrogen deficiency; thus, use of this ratio as an index to phytoplankton physiological state must account for diel light effects.  相似文献   

20.
The Pomatoschistus minutus (Pallas) and P. lozanoi (de Buen) stock of the ebb-tidal delta of the former Grevelingen estuary was sampled monthly from September 1992 to October 1993. Sagittae were extracted and the areas of the sagitta and sulcus acusticus were measured with a digitizer. The frequency response and auditory threshold of these two sympatric goby species were determined from the ratio of the sulcus acusticus area to the sagitta area (S:O ratio). The S:O ratio of P. minutus increased while in P. lozanoi the S:O ratio was constant with increasing standard length. The average S:O ratio of P. lozanoi was significantly higher than that of P. minutus of the same mean length, which makes the former more sensitive to sound frequency. The S:O ratios of these two sympatric fishes were lower than the S:O ratios of demersal and pelagic fishes available from the literature. An interspecific growth difference of sagitta and sulcus acusticus was observed. The sagitta and sulcus acusticus of P. minutus are larger than those of P. lozanoi of the same length.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号