首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 968 毫秒
1.
Air-surface exchange of mercury (Hg) was measured from soil low in Hg (0.013 mg/kg) amended with four different ash materials: a wood ash containing -10% coal ash (0.070 mg/kg Hg), a mixture of two subbituminous coal fly ashes (0.075 mg/kg Hg), a subbituminous coal ash containing -10% petroleum coke ash (1.2 mg/kg Hg), and an ash from incinerated municipal sewage sludge (4.3 mg/kg Hg) using a dynamic flux chamber. Ash was added to soil to simulate agricultural supplements, soil stabilization, and pad layers used in livestock areas. For the agricultural amendment, -0.4% ash was well mixed into the soil. To make the stabilized soil that could be used for construction purposes, -20% ash was mixed into soil with water. The pad layer consisted of a wetted 1-cm layer of ash material on the soil surface. Diel trends of Hg flux were observed for all of the substrates with significantly higher Hg emissions during the day and negligible flux or deposition of Hg during the night. Hg fluxes, which were measured in the summer months, were best correlated with solar radiation, temperature, and air O3 concentrations. Mean Hg fluxes measured outdoors for unamended soils ranged from 19 to 140 ng/m2 day, whereas those for soil amended with ash to simulate an agricultural application ranged from 7.2 to 230 ng/m2 day. Fluxes for soil stabilized with ash ranged from 77 to 530 ng/m2 day and for soil with pads constructed of ash ranged from -50 to 90 ng/m2 day. Simple analytical tests (i.e., total Hg content, synthetic precipitation leaching procedure, heating, and indoor gas-exchange experiments) were performed to assess whether algorithms based on these tests could be used to predict Hg fluxes observed outdoors using the flux chamber. Based on this study, no consistent relationships could be developed. More work is needed to assess long-term and seasonal variations in Hg flux from (intact and disturbed) substrates before annual estimates of emissions can be developed.  相似文献   

2.
This paper describes a project that assessed the potential for mercury (Hg) release to air and water from soil amended with combustion products to simulate beneficial use. Combustion products (ash) derived from wood, sewage sludge, subbituminous coal, and a subbituminous coal-petroleum coke mixture were added to soil as agricultural supplements, soil stabilizers, and to develop low-permeability surfaces. Hg release was measured from the latter when intact and after it was broken up and mixed into the soil. Air-substrate Hg exchange was measured for all materials six times over 24 hr, providing data that reflected winter, spring, summer, and fall meteorological conditions. Dry deposition of atmospheric Hg and emission of Hg to the atmosphere were both found to be important fluxes. Measured differences in seasonal and diel (24 hr) fluxes demonstrated that to establish an annual estimate of air-substrate flux from these materials data on both of these time steps should be collected. Air-substrate exchange was highly correlated with soil and air temperature, as well as incident light. Hg releases to the atmosphere from coal and wood combustion product-amended soils to simulate an agricultural application were similar to that measured for the unamended soil, whereas releases to the air for the sludge-amended materials were higher. Hg released to soil solutions during the Synthetic Precipitation Leaching Procedure for ash-amended materials was higher than that released from soil alone. On the basis of estimates of annual releases of Hg to the air from the materials used, emissions from coal and wood ash-amended soil to simulate an agricultural application could simply be re-emission of Hg deposited by wet processes from the atmosphere; however, releases from sludge-amended materials and those generated to simulate soil stabilization and disturbed low-permeability pads include Hg indigenous to the material.  相似文献   

3.
Abstract

Mercury-bearing material enters municipal landfills from a wide array of sources, including fluorescent lights, batteries, electrical switches, thermometers, and general waste; however, the fate of mercury (Hg) in landfills has not been widely studied. Using automated flux chambers and downwind atmospheric sampling, we quantified the primary pathways of Hg vapor releases to the atmosphere at six municipal landfill operations in Florida. These pathways included landfill gas (LFG) releases from active vent systems, passive emissions from landfill surface covers, and emissions from daily activities at each working face (WF). We spiked the WF at two sites with known Hg sources; these were readily detected downwind, and were used to test our emission modeling approaches. Gaseous elemental mercury (Hg0) was released to the atmosphere at readily detectable rates from all sources measured; rates ranged from ~1–10 ng m?2 hr?1 over aged landfill cover, from ~8–20 mg/hr from LFG flares (LFG included Hg0 at μg/m3 concentrations), and from ~200–400 mg/hr at the WF. These fluxes exceed our earlier published estimates. Attempts to identify specific Hg sources in excavated and sorted waste indicated few readily identifiable sources; because of effective mixing and diffusion of Hg0, the entire waste mass acts as a source. We estimate that atmospheric Hg releases from municipal landfill operations in the state of Florida are on the order of 10–50 kg/yr, substantially larger than our original estimates, but still a small fraction of current overall anthropogenic losses.  相似文献   

4.
Abstract

The long-term stability of Hg in coal combustion byproducts (CCBs) was evaluated at ambient and near-ambient temperatures. Six CCB samples with atypically high levels of total Hg were selected for study assuming a greater potential for release of measurable amounts of Hg vapor. The samples selected included two fly ash samples from U.S. eastern bituminous coal, two fly ash samples from South African low-rank coal, one fly ash from Powder River Basin (PRB) subbituminous coal blended with petroleum coke, and one PRB subbituminous coal fly ash incorporated with flue gas desulfurization material.

Air scrubbed of Hg was passed through compacted 100-g aliquots of each sample at 1 mL/min and vented to a gold-coated quartz trap to collect released Hg vapor. The samples were maintained at ambient and near-ambient (37 °C) temperatures. All samples released low-picogram levels of Hg after 90 days. No pattern was evident to link the total Hg content to the rate of release of Hg vapor. An average of 0.030 pg Hg/g CCB/day was released from the samples, which equates to 2.2 x 10-8 lb Hg/ton CCB/year. If this were applied to a coal-fired power plant production of 200,000 tons of fly ash per year, there would be a maximum potential release of 0.0044 lb, or 2.00 g, of Hg per year. Experiments are continuing to determine long-term vapor release of Hg from CCBs. All samples have been set up in duplicate at ambient temperature with an improved apparatus to reevalu-ate results reported in this article.  相似文献   

5.

Hg emission flux from various land covers, such as forests, wetlands, and urban areas, have been investigated. China has the largest area of coalfield in the world, but data of Hg flux of coalfields, especially, those with coal fires, are seriously limited. In this study, Hg fluxes of a coalfield were measured using the dynamic flux chamber (DFC) method, coupled with a Lumex multifunctional Hg analyzer RA-915+ (Lumex Ltd., Russia). The results show that the Hg flux in Wuda coalfield ranged from 4 to 318 ng m?2 h?1, and the average value for different areas varied, e.g., coal-fire area 99 and 177 ng m?2 h?1; no coal-fire area 19 and 32 ng m?2 h?1; and backfilling area 53 ng m?2 h?1. Hg continued to be emitted from an underground coal seam, even if there were no phenomena, such as vents, cracks, and smog, of coal fire on the soil surface. This phenomenon occurred in all area types, i.e., coal-fire area, no coal-fire area, and backfilling area, which is universal in Wuda coalfield. Considering that many coalfields in northern China are similar to Wuda coalfield, they may be large sources of atmospheric Hg. The correlations of Hg emission flux with influence factors, such as sunlight intensity, soil surface temperature, and atmospheric Hg content, were also investigated for Wuda coalfield.

?

  相似文献   

6.
Abstract

A study was conducted to investigate the effect of selective catalytic reduction (SCR) catalyst on mercury (Hg) speciation in bituminous and subbituminous coal combustion flue gases. Three different Illinois Basin bituminous coals (from high to low sulfur [S] and chlorine [Cl]) and one Powder River Basin (PRB) subbituminous coal with very low S and very low Cl were tested in a pilot-scale combustor equipped with an SCR reactor for controlling nitrogen oxides (NOx) emissions. The SCR catalyst induced high oxidation of elemental Hg (Hg0), decreasing the percentage of Hg0 at the outlet of the SCR to values <12% for the three Illinois coal tests. The PRB coal test indicated a low oxidation of Hg0 by the SCR catalyst, with the percentage of Hg0 decreasing from ~96% at the inlet of the reactor to ~80% at the outlet. The low Cl content of the PRB coal and corresponding low level of available flue gas Cl species were believed to be responsible for low SCR Hg oxidation for this coal type. The test results indicated a strong effect of coal type on the extent of Hg oxidation.  相似文献   

7.
Abstract

Incorporation of the remaining crop residue, including the root system, of grain (soybean and corn) and fiber (cotton) crops into the soil following harvest is a common agricultural practice. The crop residue represents a substantial portion of nitrogen initially applied as fertilizer, and thus is a potential source of nitrogen for NO emissions during the winter fallow period. Fluxes of NO and NO2 were measured from fallow fields from February 7 to March 23, 1994, using a dynamic chamber technique (ambient air as the carrier gas). Average NO flux rates, as a function of previous crop residue, were 9.2 (range –4.2 to 76) ng–N m–2 s–1 for soybean, 6.1 (range –11.7 to 110) ng–N m–2 s–1 for cotton, and 4.7 (range –0.2 to 40) ng–N m–2 s–1 for corn. Maximum NO fluxes were observed in mid–morning when soil temperatures were lowest. Minimum NO flux occurred after mid–afternoon when soil temperature reached a maximum. The decrease in NO flux with increase in soil temperature (5 cm depth) reflected the existence of a NO compensation concentration (i.e., the rate for the NO consumption reactions continued to increase with increase in temperature). NO2 deposition was calculated for 92% of the data points, with no trend in deposition between the three fields and their corresponding crop residue. These results indicate that significant fluxes of NO are generated from fallow agricultural fields following incorporation of the residue from the previous crop.  相似文献   

8.
Abstract

The CO2 and N2O soil emissions at a rice paddy in Mase, Japan, were measured by enclosures during a fallow winter season. The Mase site, one of the AsiaFlux Network sites in Japan, has been monitored for moisture, heat, and CO2 fluxes since August 1999. The paddy soil was found to be a source of both CO2 and N2O flux from this experiment. The CO2 and N2O fluxes ranged from -27.6 to 160.4μg CO2/m2/sec (average of 49.1 ± 42.7 μg CO2/m2/sec) and from -4.4 to 129.5 ng N2O/m2/sec (average of 40.3 ± 35.6 ng N2O/m2/sec), respectively. A bimodal trend, which has a sub-peak in the morning around 10:00 a.m. and a primary peak between 2:00 and 3:00 p.m., was observed. Gas fluxes increased with soil temperature, but this temperature dependency seemed to occur only on the calm days. Average CO2 and N2O fluxes were 27.7 μg CO2/m2/sec and 13.4 ng N2O/m2/sec, with relatively small fluctuation during windy days, while averages of 69.3 μg CO2/m2/sec and 65.8 ng N2O/m2/sec were measured during calm days. This relationship was thought to be a result of strong surface winds, which enhance gas exchange between the soil surface and the atmosphere, thus reducing the gas emissions from soil surfaces.  相似文献   

9.
The long-term stability of Hg in coal combustion by-products (CCBs) was evaluated at ambient and near-ambient temperatures. Six CCB samples with atypically high levels of total Hg were selected for study assuming a greater potential for release of measurable amounts of Hg vapor. The samples selected included two fly ash samples from U.S. eastern bituminous coal, two fly ash samples from South African low-rank coal, one fly ash from Powder River Basin (PRB) subbituminous coal blended with petroleum coke, and one PRB subbituminous coal fly ash incorporated with flue gas desulfurization material. Air scrubbed of Hg was passed through compacted 100-g aliquots of each sample at 1 mL/min and vented to a gold-coated quartz trap to collect released Hg vapor. The samples were maintained at ambient and near-ambient (37 degrees C) temperatures. All samples released low-picogram levels of Hg after 90 days. No pattern was evident to link the total Hg content to the rate of release of Hg vapor. An average of 0.030 pg Hg/g CCB/day was released from the samples, which equates to 2.2 x 10(-8) lb Hg/ton CCB/year. If this were applied to a coal-fired power plant production of 200,000 tons of fly ash per year, there would be a maximum potential release of 0.0044 lb, or 2.00 g, of Hg per year. Experiments are continuing to determine long-term vapor release of Hg from CCBs. All samples have been set up in duplicate at ambient temperature with an improved apparatus to reevaluate results reported in this article.  相似文献   

10.
Wuchuan Hg mine, located in the Circum-Pacific Global Mercuriferous Belt, is one of the important Hg production centers in Guizhou province, China. Soil Hg concentrations in this area are elevated by 2–4 orders of magnitude compared to the national background value in soil which is 0.038 μg g−1. In situ air Hg concentrations and air/soil Hg fluxes were measured at five sampling sites in Wuchuan Hg mining area (WMMA) from 19 to 26 December 2003 and from 18 to 25 December 2004. The results showed that air Hg concentrations were 2–4 orders of magnitude higher than those observed in background areas in Europe and North America due to a large amount of Hg emission from artisanal Hg smelting activities. The average in situ Hg fluxes at site Laohugou, Jiaoyan, Luoxi, Sankeng and Huanglong were −5493, 124, −924, −13 and 140 ng m−2 h−1, respectively. Diurnal pattern of Hg flux was not found and a number of negative Hg fluxes were observed in our sampling campaigns. The correlations between Hg fluxes and meteorological parameters such as solar irradiation, air temperature, soil temperature and relative humidity and air Hg concentrations were investigated. The commonly observed significant correlations between Hg fluxes and meteorological parameters observed in many previous studies were not obtained in WMMA. However, significantly negative correlations between Hg flux and air Hg concentration were observed at all sites. Our study demonstrated that highly elevated air Hg concentrations could suppress Hg emission processes even from Hg-enriched soil. At specific conditions in WMMA, air Hg concentrations play a dominant role in controlling Hg emission from soil.  相似文献   

11.
Emissions of nitric oxide (NO) were determined during late spring and summer 1995 and the spring of 1996 from four agricultural soils on which four different crops were grown. These agricultural soils were located at four different sites throughout North Carolina. Emission rates were calculated using a dynamic flow-through chamber system coupled to a mobile laboratory for in-situ analysis. Average NO fluxes during late spring 1995 were: 50.9±47.7 ng N m−2 s−1 from soil planted with corn in the lower coastal plain. Average NO fluxes during summer 1995 were: 6.4±4.6 and 20.2±19.0 ng N m−2 s−1, respectively, from soils planted with corn and soybean in the coastal region; 4.2±1.7 ng N m−2 s−1 from soils planted with tobacco in the piedmont region; and 8.5±4.9 ng N m−2 s−1 from soils planted with corn in the upper piedmont region. Average NO fluxes for spring 1996 were: 66.7±60.7 ng N m−2 s−1 from soils planted with wheat in the lower coastal plain; 9.5±2.9 ng N m−2 s−1 from soils planted with wheat in the coastal plain; 2.7±3.4 ng N m−2 s−1 from soils planted with wheat in the piedmont region; and 56.1±53.7 ng N m−2 s−1 from soils planted with corn in the upper piedmont region. An apparent increase in NO flux with soil temperature was present at all of the locations. The composite data from all the research sites revealed a general positive trend of increasing NO flux with soil water content. In general, increases in total extractable nitrogen (TEN) appeared to be related to increased NO emissions within each site, however a consistent trend was not evident across all sites.  相似文献   

12.
The Proposed New Environmental Quality (Clean Air) Regulation 201X (Draft), which replaces the Malaysia Environmental Quality (Clean Air) 1978, specifies limits to additional pollutants from power generation using fossil fuel. The new pollutants include Hg, HCl, and HF with limits of 0.03, 100, and 15 mg/N-m3 at 6% O2, respectively. These pollutants are normally present in very small concentrations (known as trace elements [TEs]), and hence are often neglected in environmental air quality monitoring in Malaysia. Following the enactment of the new regulation, it is now imperative to understand the TEs behavior and to assess the capability of the existing abatement technologies to comply with the new emission limits. This paper presents the comparison of TEs behavior of the most volatile (Hg, Cl, F) and less volatile (As, Be, Cd, Cr, Ni, Se, Pb) elements in subbituminous and bituminous coal and coal combustion products (CCP) (i.e., fly ash and bottom ash) from separate firing of subbituminous and bituminous coal in a coal-fired power plant in Malaysia. The effect of air pollution control devices configuration in removal of TEs was also investigated to evaluate the effectiveness of abatement technologies used in the plant. This study showed that subbituminous and bituminous coals and their CCPs have different TEs behavior. It is speculated that ash content could be a factor for such diverse behavior. In addition, the type of coal and the concentrations of TEs in feed coal were to some extent influenced by the emission of TEs in flue gas. The electrostatic precipitator (ESP) and seawater flue gas desulfurization (FGD) used in the studied coal-fired power plant were found effective in removing TEs in particulate and vapor form, respectively, as well as complying with the new specified emission limits.

Implications:Coals used by power plants in Peninsular Malaysia come from the same supplier (Tenaga Nasional Berhad Fuel Services), which is a subsidiary of the Malaysia electricity provider (Tenaga Nasional Berhad). Therefore, this study on trace elements behavior in a coal-fired power plant in Malaysia could represent emission from other plants in Peninsular Malaysia. By adhering to the current coal specifications and installation of electrostatic precipitator (ESP) and flue gas desulfurization, the plants could comply with the limits specified in the Malaysian Department of Environment (DOE) Scheduled Waste Guideline for bottom ash and fly ash and the Proposed New Environmental Quality (Clean Air) Regulation 201X (Draft).  相似文献   

13.
Environmental pollution by mercury (Hg) is a considerable environmental problem world-wide. Due to the occurrence of Hg volatilization from their soils, floodplains can function as an important source of volatile Hg. Soil temperature and soil water content related to flood dynamics are considered as important factors affecting seasonal dynamics of total gaseous mercury (TGM) fluxes. We quantified seasonal variations of TGM fluxes and conducted a laboratory microcosm experiment to assess the effect of temperature and moisture on TGM fluxes in heavily polluted floodplain soils. Observed TGM emissions ranged from 10 to 850 ng m−2 h−1 and extremely exceeded the emissions of non-polluted sites. TGM emissions increased exponentially with raised air and soil temperatures in both field (R2: 0.49-0.70) and laboratory (R2: 0.99) experiments. Wet soil material showed higher TGM fluxes, whereas the role of soil water content was affected by sampling time during the microcosm experiments.  相似文献   

14.
Surface–atmosphere mercury fluxes are difficult to measure accurately. Current techniques include dynamic flux chambers and micrometeorological gradient and aerodynamic approaches, all of which have a number of intrinsic problems associated with them. We have adapted conditional sampling (relaxed eddy accumulation), a micrometeorological technique commonly used to measure other trace gas fluxes, to measure surface–air mercury fluxes. Our initial flux measurement campaign over an agricultural soil consisted of two 1-week measurement periods, and was longer in duration than previously reported mercury flux measurement periods. Fluxes during both measurement periods ranged between 190.5 (evolution) and –91.7 ng m−2 h−1 (deposition) with an average evolution of 9.67 ng m−2 h−1. The data showed significant diurnal trends, weakly correlated with shallow soil temperatures and solar radiation. This initial trial run indicates that conditional sampling has much promise for the accurate quantification of both short and long-term mercury fluxes.  相似文献   

15.
Abstract

Some mercury (Hg) naturally present in coal is retained in the fly ash remaining after combustion. Concern has been raised regarding the potential for release of this Hg to the environment. The exchange of Hg between fly ash and the atmosphere was measured in the laboratory and in situ at a fly ash landfill. All samples of fly ash used in the laboratory study, with the exception of that derived from lignite-type coal, acted as a sink for atmospheric Hg. Deposition rates were found to increase as air Hg concentrations increased and to decrease with incident light and increased temperature. Addition of water to fly ash samples resulted in re-emission of deposited atmospheric Hg. Deposition was the dominant flux measured in situ at a fly ash landfill. Atmospheric Hg was deposited to all samples collected as part of two demonstration projects using carbon injection for enhanced Hg capture. Hg concentrations of extracts derived using U.S. Environmental Protection Agency Method 1312 (Synthetic Precipitation Leaching Procedure) were ≤14.4 ng/L. Data developed demonstrate that fly ash, including that collected from Hg removal projects, will release little Hg to the air or water, and under certain conditions, absorbs Hg from the air.  相似文献   

16.
Previous laboratory studies have shown that lignite-derived fly ash emitted mercury (Hg) to the atmosphere, whereas bituminous- and subbituminous-derived fly ash samples adsorbed Hg from the air. In addition, wet flue gas desulfurization (FGD) materials were found to have higher Hg emission rates than fly ash. This study investigated in situ Hg emissions at a blended bituminous-subbituminous ash landfill in the Great Lakes area and a lignite-derived ash and FGD solids landfill in the Midwestern United States using a dynamic field chamber. Fly ash and saturated FGD materials emitted Hg to atmosphere at low rates (-0.1 to 1.2 ng/ m2hr), whereas FGD material mixed with fly ash and pyrite exhibited higher emission rates (approximately 10 ng/m2hr) but were still comparable with natural background soils (-0.3 to 13 ng/ m2hr). Air temperature, solar radiation, and relative humidity were important factors correlated with measured Hg fluxes. Field study results were not consistent with corresponding laboratory observations in that fluxes measured in the latter were higher and more variable. This is hypothesized to be partially an artifact of the flux measurement methods.  相似文献   

17.
Mt. Gongga area in southwest China was impacted by Hg emissions from industrial activities and coal combustion, and annual means of atmospheric TGM and PHg concentrations at a regional background station were 3.98 ng m−3 and 30.7 pg m−3, respectively. This work presents a mass balance study of Hg in an upland forest in this area. Atmospheric deposition was highly elevated in the study area, with the annual mean THg deposition flux of 92.5 μg m−2 yr−1. Total deposition was dominated by dry deposition (71.8%), and wet deposition accounted for the remaining 28.2%. Forest was a large pool of atmospheric Hg, and nearly 76% of the atmospheric input was stored in forest soil. Volatilization and stream outflow were identified as the two major pathways for THg losses from the forest, which yielded mean output fluxes of 14.0 and 8.6 μg m−2 yr−1, respectively.  相似文献   

18.
Most polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) in the atmosphere are bound to particles which are suspended in the atmosphere, and eventually settle on soil, vegetation, water bodies or other receptors in the environment. Monitoring atmospheric deposition fluxes (dry/wet) is important in tracing the environmental fate and behavior of PCDD/Fs. PCDD/F depositions were collected via an automated PCDD/F ambient sampler and traditional cylindrical vessels, respectively, from April 2007 to February 2008. The automated PCDD/F ambient sampler used in this study can prevent both re-suspension and photo degradation of the PCDD/Fs collected and effectively separates the PCDD/F samples into dry and wet contributions. The results indicated that the ambient PCDD/F concentrations collected using the PS-1 sampler ranged from 0.02 pg I-TEQ/m3 to 0.16 pg I-TEQ/m3 in Northern Taiwan. The results also indicated that the PCDD/F deposition flux collected using the automated PCDD/F sampler (17.5 pg I-TEQ/m2 d to 25.8 pg I-TEQ/m2 d) was significantly higher than that sampled with the cylindrical vessels (2.0 pg I-TEQ/m2 d to 9.9 pg I-TEQ/m2 d). The difference was attributed to the fact that part of the PCDD/F depositions collected using the traditional cylindrical vessels had undergone photo degradation and evaporation. In addition, the wet deposition flux of PCDD/Fs (39.4 pg I-TEQ/m2 rainy day to 228 pg I-TEQ/m2 rainy day) observed in this study was significantly higher than the dry deposition flux (12.3 pg I-TEQ/m2 sunny day to 16.7 pg I-TEQ/m2 sunny day). These results demonstrated that wet deposition is the major PCDD/F removal mechanism in the atmosphere.  相似文献   

19.
Four seasonal sampling campaigns were carried out in the Florida Everglades to measure elemental Hg vapor (Hg°) fluxes over emergent macrophytes using a modified Bowen ratio gradient approach. The predominant flux of Hg° over both invasive cattail and native sawgrass stands was emission; mean day time fluxes over cattail ranged from ∼20 (winter) to ∼40 (summer) ng m−2 h−1. Sawgrass fluxes were about half those over cattail during comparable periods. Emission from vegetation significantly exceeded evasion of Hg° from the underlying water surface (∼1–2 ng m−2 h−1) measured simultaneously using floating chambers. Among several environmental factors (e.g. CO2 flux, water vapor flux, wind speed, water, air and leaf temperature, and solar radiation), water vapor exhibited the strongest correlation with Hg° flux, and transpiration is suggested as an appropriate term to describe this phenomenon. The lack of significant Hg° emissions from a live, but uprooted (floating) cattail stand suggests that a likely source of the transpired Hg° is the underlying sediments. The pattern of Hg° fluxes typically measured indicated a diel cycle with two peaks, possibly related to different gas exchange dynamics: one in early morning related to lacunal gas release, and a second at midday related to transpiration; nighttime fluxes approached zero.  相似文献   

20.
Micrometeorological flux-gradient and nocturnal boundary layer methods were combined with Fourier transform infrared (FTIR) spectroscopy for high-precision trace gas analysis to measure fluxes of the trace gases CO2, CH4 and N2O between agricultural fields and the atmosphere. The FTIR measurements were fully automated and routinely obtained a precision of 0.1–0.2% for several weeks during a measurement campaign in October 1995. In flux-gradient measurements, vertical profiles of the trace gases were measured every 30 min from the ground to 22 m. When combined with independent micrometeorological measurements of water vapour fluxes, trace gas fluxes from the underlying surface could be determined. In the nocturnal boundary layer method the rate of change in mass storage in the 0–22 m layer was combined with fluxes measured at 22 m to estimate surface fluxes. Daytime fluxes for CO2 were −0.78±0.40 (1σ) mg CO2 m−2 s−1. Daytime fluxes of N2O and CH4 were very small and difficult to measure reliably using the flux-gradient technique, despite the high precision of the concentration measurements. Mean daytime flux for N2O was 17±48 ng N m−2 s−1, while the corresponding flux for CH4 was 47±410 ng CH4 m−2 s−1. The mean nighttime flux of CO2 estimated using the nocturnal boundary layer method was +0.15±0.05 mg CO2 m−2 s−1, in good agreement with chamber measurements of respiration rates. Nighttime fluxes of CH4 and N2O from the nocturnal boundary layer method were 109±69 ng CH4 m−2 s−1 and 2±3.2 ng N m−2 s−1, respectively, in good agreement with chamber measurements and inventory estimates based on the sheep and cattle stocking rates in the region. The suitability of FTIR-based methods for long term monitoring of spatially and temporally averaged flux measurements is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号