首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 449 毫秒
1.
A novel process for removal of nitrogen oxides (NOx) from flue gases with iron filings reduction following complex absorption in iron-ethylenediaminetetraacetic acid aqueous solution is proposed. The reaction mechanism involved in the process is discussed briefly. The parameters influencing the process, including the concentration of ferrous chelates, initial pH, amount of iron filings, temperature, flow rate of the flue gas, and inlet nitric oxide concentration and oxygen content of the flue gas, are researched in detail. The optimal NOx removal conditions are established. The regeneration and circular utilization of the absorption solution also is studied.  相似文献   

2.
The nitrogen oxides (NOx) reduction technology by combustion modification which has economic benefits as a method of controlling NOx emitted in the combustion process, has recently been receiving a lot of attention. Especially, the moderate or intense low oxygen dilution (MILD) combustion which applied high temperature flue gas recirculation has been confirmed for its effectiveness with regard to solid fuel as well. MILD combustion is affected by the flue gas recirculation ratio and the composition of recirculation gas, so its NOx reduction efficiency is determined by them. In order to investigate the influence of factors which determine the reduction efficiency of NOx in MILD coal combustion, this study changed the flow rate and concentration of nitrogen (N2), carbon dioxide (CO2) and steam (H2O) which simulate the recirculation gas during the MILD coal combustion using our lab-scale drop tube furnace and performed the combustion experiment. As a result, its influence by the composition of recirculation gas was insignificant and it was shown that flue gas recirculation ratio influences the change of NOx concentration greatly. Implications: We investigated the influence of factors determining the nitrogen oxides (NOx) reduction efficiency in MILD coal combustion, which applied high-temperature flue gas recirculation. Using a lab-scale drop tube furnace and simulated recirculation gas, we conducted combustion testing changing the recirculation gas conditions. We found that the flue gas recirculation ratio influences the reduction of NOx emissions the most.  相似文献   

3.
ABSTRACT

At conditions typical of a bag filter exposed to a coal-fired flue gas that has been adiabatically cooled with water, calcium hydroxide and calcium silicate solids were exposed to a dilute, humidified gas stream of nitrogen dioxide (NO2) and sulfur dioxide (SO2) in a packed-bed reactor. A prior study found that NO2 reacted readily with surface water of alkaline and non-alkaline solids to produce nitrate, nitrite, and nitric oxide (NO). With SO2 present in the gas stream, NO2 also reacted with S(IV), a product of SO2 removal, on the exterior of an alkaline solid. The oxidation of S(IV) to S(VI) by oxygen reduced the availability of S(IV) and lowered removal of NO2. Subsequent acidification of the sorbent by the removal of NO2 and SO2 facilitated the production of NO. However, the conversion of nitrous acid to sulfur-nitrogen compounds reduced NO production and enhanced SO2 removal. A reactor model based on empirical and semi-empirical rate expressions predicted rates of SO2 removal, NO2 removal, and NO production by calcium silicate solids. Rate expressions from the reactor model were inserted into a second program, which predicted the removal of SO2 and NOx by a continuous process, such as the collection of alkaline solids in a baghouse. The continuous process model, depending upon inlet conditions, predicted 30-40% removal for NO and 50-90% removal for SO2. These x 2 results are relevant to dry scrubbing technology for combined SO2 and NOx removal that first oxidizes NO to NO2 by the addition of methanol into the flue duct.  相似文献   

4.
Abstract

The speciation of Hg in coal-fired flue gas can be important in determining the ultimate Hg emissions as well as potential control options for the utility. The effects of NOx control processes, such as selective catalytic reduction (SCR) and selective non-catalytic reduction (SNCR), on Hg speciation are not well understood but may impact emissions of Hg. EPRI has investigated the reactions of Hg in flue gas at conditions expected for some NOx control processes. This paper describes the methodology used to investigate these reactions in actual flue gas at several power plants. Results have indicated that some commercial SCR catalysts are capable of oxidizing elemental Hg in flue gas obtained from the inlets of SCR or air heater units. Results are affected by various flue gas and operating parameters. The effect of flue gas composition, including the presence of NH3, has been evaluated. The influence of NH3 on fly ash Hg reactions also is being investigated.  相似文献   

5.
ABSTRACT

This article presents the results of an industrial-scale study (on 400 MWe lignite fired unit) of simultaneous NOx, SO2, and HgT removal in FGD absorber with oxidant injection (NaClO2) into flue gas. It was confirmed that the injection of sodium chlorite upstream the FGD (Flue Gas Desulfurization) absorber oxidize NO to NO2, Hg0 to Hg2+, and enhancing NOx and HgT removal efficiency from exhaust gas in FGD absorber. Mercury removal efficiency grows with the rise of degree of oxidation NO to NO2 and was limited by the phenomenon of re-emission. For NOx removal the most critical parameters is slurry pH and temperature. There was no negative effect on sulfur dioxide removal efficiency caused by oxidant injection in tested FGD absorber. Based on the data provided, NOx and HgT emissions can be reduced by adjusting the FGD absorber operating parameters combined with oxidant injection.  相似文献   

6.
The body of information presented in this paper is directed to those individuals concerned with the catalytic NOx removal reactor for a dirty (containing dust) flue gas. In the case of treating a dirty flue gas, the concentration of dust is the most important factor. While the dirty gas passes through the catalytic reactor, dust particles deposit and plug up the catalyst causing the reactor pressure loss to rise. As a result, the NOx reduction efficiency decreases more and more, and continuous operation becomes impossible. A new type of NOx removal reactor for dirty flue gas, the intermittent moving bed reactor, has been developed. The following characteristics have been evaluated: (1) method of calculating reactor pressure loss caused by dust particles, (2) static pressure distribution across the catalyst bed in the reactor, (3) method of evaluating uniform movement of catalyst and (4) reentrainment pattern of dust by catalyst movement. After carrying out various successful pilot plant tests, the information needed for construction and operation of a commercial plant has been developed.  相似文献   

7.
Abstract

In this study, experiments were performed with a bench-scale tube-type wet electrostatic precipitator (wESPs) to investigate its effectiveness for the removal of mass- and number-based diesel particulate matter (DPM), hydrocarbons (HCs), carbon monoxide (CO), and oxides of nitrogen (NOx) from diesel exhaust emissions. The concentration of ozone (O3) present in the exhaust that underwent a nonthermal plasma treatment process inside the wESP was also measured. A nonroad diesel generator operating at varying load conditions was used as a stationary diesel emission source. The DPM mass analysis was conducted by means of isokinetic sampling and the DPM mass concentration was determined by a gravimetric method. An electrical low-pressure impactor (ELPI) was used to quantify the DPM number concentration. The HC compounds, n-alkanes, and polycyclic aromatic hydrocarbons (PAHs) were collected on a moisture-free quartz filter together with a PUF/XAD/PUF cartridge and extracted in dichloromethane with sonication. Gas chromatography (GC)/mass spectroscopy (MS) was used to determine HC concentrations in the extracted solution. A calibrated gas combustion analyzer (Testo 350) and an O3 analyzer were used for quantifying the inlet and outlet concentrations of CO and NOx (nitric oxide [NO] + nitrogen dioxide [NO2]), and O3 in the diesel exhaust stream. The wESP was capable of removing approximately 67–86% of mass- and number-based DPM at a 100% exhaust volumetric flow rate generated from 0- to 75-kW engine loads. At 75-kW engine load, increasing gas residence time from approximately 0.1 to 0.4 sec led to a significant increase of DPM removal efficiency from approximately 67 to more than 90%. The removal of n-alkanes, 16 PAHs, and CO in the wESP ranged from 31 to 57% and 5 to 38%, respectively. The use of the wESP did not significantly affect NOx concentration in diesel exhaust. The O3 concentration in diesel exhaust was measured to be less than 1 ppm. The main mechanisms responsible for the removal of these pollutants from diesel exhaust are discussed.  相似文献   

8.
基于微生物酸性铁溶液烟气脱硫特性,实验构建了一套内循环气升式反应器.在反应器中,利用处于对数生长期的氧化亚铁硫杆菌(Thiobacillus ferrooxidans)酸性铁溶液进行了模拟烟道气SO2脱除实验研究.为寻求高脱硫率,实验研究了铁离子浓度、入口氧含量、细菌数和pH值的变化对脱硫率的影响.考察了反应液中Fe(Ⅱ)离子浓度的变化规律.实验表明,含T.f菌酸性铁溶液的脱硫效果较高;Fe离子浓度在7.67 g/L左右时脱硫率最佳;入口气中氧含量、反应液中细菌数和pH值越高,反应液的脱硫率也就越高.反应液中的Fe(Ⅱ)离子浓度是一先扬后抑的变化过程.  相似文献   

9.
Abstract

Efforts to develop multipollutant control strategies have demonstrated that adding certain oxidants to different classes of Ca-based sorbents leads to a significant improvement in elemental Hg vapor (Hg0), SO2, and NOx removal from simulated flue gases. In the study presented here, two classes of Ca-based sorbents (hydrated limes and silicate compounds) were investigated. A number of oxidizing additives at different concentrations were used in the Ca-based sorbent production process. The Hg0, SO2, and NOx capture capacities of these oxidant-enriched sorbents were evaluated and compared to those of a commercially available activated carbon in bench-scale, fixed-bed, and fluid-bed systems. Calcium-based sorbents prepared with two oxidants, designated C and M, exhibited Hg0 sorp-tion capacities (~100 μg/g) comparable to that of the activated carbon; they showed far superior SO2 and NOx sorption capacities. Preliminary cost estimates for the process utilizing these novel sorbents indicate potential for substantial lowering of control costs, as compared with other processes currently used or considered for control of Hg0, SO2, and NOx emissions from coal-fired boilers. The implications of these findings toward development of multipollutant control technologies and planned pilot and field evaluations of more promising multipollutant sorbents are summarily discussed.  相似文献   

10.
Abstract

Comprehensive surveys conducted at 5-yr intervals were used to estimate sulfur dioxide (SO2) and nitrogen oxides (NOx) emissions from U.S. pulp and paper mills for 1980, 1985, 1990, 1995, 2000, and 2005. Over the 25-yr period, paper production increased by 50%, whereas total SO2 emissions declined by 60% to 340,000 short tons (t) and total NOx emissions decreased approximately 15% to 230,000 t. The downward emission trends resulted from a combination of factors, including reductions in oil and coal use, steadily declining fuel sulfur content, lower pulp and paper production in recent years, increased use of flue gas desulfurization systems on boilers, growing use of combustion modifications and add-on control systems to reduce boiler and gas turbine NOx emissions, and improvements in kraft recovery furnace operations.  相似文献   

11.
ABSTRACT

To explore environmentally benign solvents for the absorption of NO and NO2, a series of caprolactam tetrabutyl ammonium halide ionic liquids were synthesized. The solubility of NO and NO2 was measured at temperatures ranging from 298.2 to 363.2 K and atmospheric pressure, and the following trend in the solubility of NO and NO2 in ionic liquids with various halide anions was observed, respectively: F > Br > Cl and Br > Cl > F. Moreover, as the temperature increased from 308.15 to 363.15 K and the mole ratio of caprolactam increased from 2:1 to 6:1, the solubility of NO increased. Alternatively, the solubility of NO2 decreased as the temperature increased from 298.15 to 363.15 K, and the mole ratio of caprolactam increased from 2:1 to 6:1. The absorption and desorption of NO and NO2 was practically reversible in the ionic liquids, which was characterized by nuclear magnetic resonance. The method, which is at least partially reversible, offers interesting possibilities for the removal of NO and NO2.

IMPLICATIONS Basic ionic liquids with amino groups were synthesized and used to capture CO2, SO2, and H2S, and to promote hydrogenation of CO2. In this paper, the authors used caprolactam tetrabutyl ammonium halide ionic liquid (IL) as absorbing medium in which NOx could be absorbed. NOx desorbed from the absorbent could be efficiently reduced by right catalysts at high temperature. The absorbed NO and NO2 gas could be desorbed at higher temperature, allowing the ionic liquids to be reused several times without loss of capability. It was believed that caprolactam tetrabutyl ammonium bromide (CPL-TBAB) ILs may be useful for NOx removal reagent for pollution control.  相似文献   

12.
Data on the effect of several combustion modifications on the formation of nitrogen oxides and on boiler efficiency were acquired and analyzed for a 110 MW gas fired utility boiler. The results from the study showed that decreasing the oxygen in the flue gas from 2.2% to 0.6% reduced the NOx formation by 33% and also gave better boiler efficiencies. Flue gas recirculation through the bottom of the firebox was found to be ineffective. Staged combustion was found to reduce the NOx emissions by as much as 55 % while decreasing the efficiency by about 5%. Adjustment of the burner air registers reduced the NOx formation by about 20 ppm. The lowest NOx emissions of 42 ppm (at about 3% O2) in the stack was obtained for air only to one top burner and 0.5% oxygen in the flue gas.  相似文献   

13.
Abstract

The removal system for the absorption of CO2 with amines and NH3 is an advanced air pollution control device to reduce greenhouse gas emissions. Absorption of CO2 by amines and NH3 solutions was performed in this study to derive the reaction kinetics. The absorption of CO2 as encountered in flue gases into aqueous solutions of monoethanolamine (MEA), diethanolamine (DEA), and NH3 was carried out using a stirred vessel with a plane gas-liquid interface at 50 °C. Various operating parameters were tested to determine the effect of these variables on the absorption kinetics of the reactants in both gas and liquid phases and the effect of competitions between various reactants on the mass-transfer rate.

The observed absorption rate increases with increasing gas-liquid concentration, solvent concentration, temperature, and gas flow rate, but changes with the O2 concentration and pH value. The absorption efficiency of MEA is better than that of NH3 and DEA, but the absorption capacity of NH3 is the best. The active energies of the MEA and NH3 with CO2 are 33.19 and 40.09 kJ/mol, respectively.  相似文献   

14.
The body of Information presented in this paper is directed to those Individuals concerned with the removal of NOx in combustion flue gases. A catalytic process for the selective reduction of nitrogen oxides by ammonia has been investigated. Efforts were made toward the development of catalysts resistant to SOx poisoning. Nitrogen oxides were reduced over various metal oxide catalysts in the presence or absence of SOx(SO2 and SO3). Catalysts consisting of oxides of base metals (for example, Fe2O3) were easily poisoned by SO3, forming sulfates of the base metals. A series of catalysts which are not susceptible to the SOx poisoning has been developed. The catalysts possess a high activity and selectivity over a wide range of temperatures, 250—450°C. The catalysts were tested in a pilot plant which treated a flue gas containing 110-150 ppm NOx, 660-750 ppm SO2, and 40-90 ppm SO3. The pilot plant was operated at 350°C and at a space velocity of 10,000 h-1. The removal of nitrogen oxides was more than 90% for several months.

A mechanism of the NO-NH3 reaction has also been investigated. It is found that NO reacts with NH3 at a 1:1 mole ratio in the presence of oxygen and the reaction is completely inhibited by the absence of oxygen. The experimental data show that the NO-NH3 reaction in the presence of oxygen is represented byNO + NH3 + 1/4 O2 = N2 + 3/2 H2O.  相似文献   

15.
In the present study, an attempt has been made to grow microalgae Scenedesmus quadricauda, Chlorella vulgaris and Botryococcus braunii in mixotropic cultivation mode using two different substrates, i.e. sewage and glucose as organic carbon sources along with flue gas inputs as inorganic carbon source. The experiments were carried out in 500 ml flasks with sewage and glucose-enriched media along with flue gas inputs. The composition of the flue gas was 7 % CO2, 210 ppm of NO x and 120 ppm of SO x . The results showed that S. quadricauda grown in glucose-enriched medium yielded higher biomass, lipid and fatty acid methyl esters (FAME) (biodiesel) yields of 2.6, 0.63 and 0.3 g/L, respectively. Whereas with sewage, the biomass, lipid and FAME yields of S. quadricauda were 1.9, 0.46, and 0.21 g/L, respectively. The other two species showed closer results as well. The glucose utilization was measured in terms of Chemical Oxygen Demand (COD) reduction, which was up to 93.75 % by S. quadricauda in the glucose-flue gas medium. In the sewage-flue gas medium, the COD removal was achieved up to 92 % by S. quadricauda. The other nutrients and pollutants from the sewage were removed up to 75 % on an average by the same. Concerning the flue gas treatment studies, S. quadricauda could remove CO2 up to 85 % from the flue gas when grown in glucose medium and 81 % when grown in sewage. The SO x and NO x concentrations were reduced up to 50 and 62 %, respectively, by S. quadricauda in glucose-flue gas medium. Whereas, in the sewage-flue gas medium, the SO x and NO x concentrations were reduced up to 45 and 50 %, respectively, by the same. The other two species were equally efficient however with little less significant yields and removal percentages. This study laid emphasis on comparing the feasibility in utilization of readily available carbon sources like glucose and inexpensive leftover carbon sources like sewage by microalgae to generate energy coupled with economical remediation of waste. Therefore on an industrial scale, the sewage is more preferable. Because the results obtained in the laboratory demonstrated both sewage and glucose-enriched nutrient medium are equally efficient for algae cultivation with just a slight difference. Essentially, the sewage is cost effective and easily available in large quantities compared to glucose.  相似文献   

16.
Incineration flue gas contains polycyclic aromatic hydrocarbons (PAHs) and sulfur dioxide (SO2). The effects of SO2 concentration (0, 350, 750, and 1000 ppm), reaction temperature (160, 200, and 280 °C), and the type of activated carbon fibers (ACFs) on the removal of SO2 and PAHs by ACFs were examined in this study. A fluidized bed incinerator was used to simulate practical incineration flue gas. It was found that the presence of SO2 in the incineration flue gas could drastically decrease removal of PAHs because of competitive adsorption. The effect of rise in the reaction temperature from 160 to 280 °C on removal of PAHs was greater than that on SO2 removal at an SO2 concentration of 750 ppm. Among the three ACFs studied, ACF-B, with the highest microporous volume, highest O content, and the tightest structure, was the best adsorbent for removing SO2 and PAHs when these gases coexisted in the incineration flue gas.
ImplicationsSimultaneous adsorption of sulfur dioxide (SO2) and polycyclic aromatic hydrocarbons (PAHs) emitted from incineration flue gas onto activated carbon fibers (ACFs) meant to devise a new technique showed that the presence of SO2 in the incineration flue gas leads to a drastic decrease in removal of PAHs because of competitive adsorption. Reaction temperature had a greater influence on PAHs removal than on SO2 removal. ACF-B, with the highest microporous volume, highest O content, and tightest structure among the three studied ACFs, was found to be the best adsorbent for removing SO2 and PAHs.  相似文献   

17.
旋转填料床/柠檬酸盐法吸收-解吸SO2   总被引:1,自引:1,他引:0  
提出采用旋转填料床结合柠檬酸盐法脱除烟气中SO2的方法,考察了旋转填料床转子转速、液气比、初始柠檬酸根浓度和初始pH值等因素对脱硫效率的影响。结果表明,采用超重力法超重机转子转速为1 000 r/min、液气比为7L/m3、初始柠檬酸根浓度为1.5 mol/L、吸收液的初始pH值为5.0,脱硫效率稳定在99%左右。研究了水蒸气汽提法解吸SO2时初始柠檬酸根浓度、初始pH值、SO2浓度、富液流量和水蒸气流量对解吸效率的影响,得出了影响SO2解吸率的基本规律,并进行了分析。通过实验证明该方法在技术上是可行的,具有良好的应用前景。  相似文献   

18.
Abstract

Selective catalytic reduction (SCR) technology increasingly is being applied for controlling emissions of nitrogen oxides (NOx) from coal-fired boilers. Some recent field and pilot studies suggest that the operation of SCR could affect the chemical form of mercury (Hg) in coal combustion flue gases. The speciation of Hg is an important factor influencing the control and environmental fate of Hg emissions from coal combustion. The vanadium and titanium oxides, used commonly in the vanadia-titania SCR catalyst for catalytic NOx reduction, promote the formation of oxidized mercury (Hg2+).

The work reported in this paper focuses on the impact of SCR on elemental mercury (Hg0) oxidation. Bench-scale experiments were conducted to investigate Hg0 oxidation in the presence of simulated coal combustion flue gases and under SCR reaction conditions. Flue gas mixtures with different concentrations of hydrogen chloride (HCl) and sulfur dioxide (SO2) for simulating the combustion of bituminous coals and subbituminous coals were tested in these experiments. The effects of HCl and SO2 in the flue gases on Hg0 oxidation under SCR reaction conditions were studied. It was observed that HCl is the most critical flue gas component that causes conversion of Hg0 to Hg2+ under SCR reaction conditions. The importance of HCl for Hg0 oxidation found in the present study provides the scientific basis for the apparent coal-type dependence observed for Hg0 oxidation occurring across the SCR reactors in the field.  相似文献   

19.
尿素添加剂湿法烟气脱氮的试验研究   总被引:7,自引:0,他引:7  
在填有金属鲍尔环的管式吸收反应器中,分别研究了尿素含量、添加剂(三乙醇胺)浓度、吸收柱彳丁效高度、烟气浓度对NOx脱除效率的影响。试验结果表明,尿素含量和添加剂浓度的增加可以少量提高脱氮效率:烟气浓度的大小对脱氮效率的影响不大;吸收柱有效高度对脱氮效率的影响较大。  相似文献   

20.
ABSTRACT

This paper presents a technique for the complete, simultaneous decomposition of CO2, SO2, and NOx, as well as the simultaneous removal of fly ash by ultra-high voltage pulse activation. Ultra-high voltage narrow pulse is used to make the gases in the reactor become active molecules, which are then dissociated into nonpoisonous gas molecules and solid particles under the control of a directional reaction model. By using a sufficient charge and a strong electric field, the fly ash can be removed. It becomes the carrier of C and S, and its efficiency is 99.5%. Owing to the action of catalyst B (using Ni as the mother's body), the activation energy of CO2, SO2, and NOx gases is reduced in great magnitude, and their removal efficiency can reach 75~90% at normal pressure and 180 °C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号