首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
Abstract

A study was conducted to investigate the effect of selective catalytic reduction (SCR) catalyst on mercury (Hg) speciation in bituminous and subbituminous coal combustion flue gases. Three different Illinois Basin bituminous coals (from high to low sulfur [S] and chlorine [Cl]) and one Powder River Basin (PRB) subbituminous coal with very low S and very low Cl were tested in a pilot-scale combustor equipped with an SCR reactor for controlling nitrogen oxides (NOx) emissions. The SCR catalyst induced high oxidation of elemental Hg (Hg0), decreasing the percentage of Hg0 at the outlet of the SCR to values <12% for the three Illinois coal tests. The PRB coal test indicated a low oxidation of Hg0 by the SCR catalyst, with the percentage of Hg0 decreasing from ~96% at the inlet of the reactor to ~80% at the outlet. The low Cl content of the PRB coal and corresponding low level of available flue gas Cl species were believed to be responsible for low SCR Hg oxidation for this coal type. The test results indicated a strong effect of coal type on the extent of Hg oxidation.  相似文献   

2.
Selective catalytic reduction (SCR) technology increasingly is being applied for controlling emissions of nitrogen oxides (NOx) from coal-fired boilers. Some recent field and pilot studies suggest that the operation of SCR could affect the chemical form of mercury (Hg) in coal combustion flue gases. The speciation of Hg is an important factor influencing the control and environmental fate of Hg emissions from coal combustion. The vanadium and titanium oxides, used commonly in the vanadia-titania SCR catalyst for catalytic NOx reduction, promote the formation of oxidized mercury (Hg2+). The work reported in this paper focuses on the impact of SCR on elemental mercury (Hg0) oxidation. Bench-scale experiments were conducted to investigate Hg0 oxidation in the presence of simulated coal combustion flue gases and under SCR reaction conditions. Flue gas mixtures with different concentrations of hydrogen chloride (HCl) and sulfur dioxide (SO2) for simulating the combustion of bituminous coals and subbituminous coals were tested in these experiments. The effects of HCl and SO2 in the flue gases on Hg0 oxidation under SCR reaction conditions were studied. It was observed that HCl is the most critical flue gas component that causes conversion of Hg0 to Hg2+ under SCR reaction conditions. The importance of HCl for Hg0 oxidation found in the present study provides the scientific basis for the apparent coal-type dependence observed for Hg0 oxidation occurring across the SCR reactors in the field.  相似文献   

3.
A study was conducted to investigate the effect of selective catalytic reduction (SCR) catalyst on mercury (Hg) speciation in bituminous and subbituminous coal combustion flue gases. Three different Illinois Basin bituminous coals (from high to low sulfur [S] and chlorine [Cl]) and one Powder River Basin (PRB) subbituminous coal with very low S and very low Cl were tested in a pilot-scale combustor equipped with an SCR reactor for controlling nitrogen oxides (NOx) emissions. The SCR catalyst induced high oxidation of elemental Hg (Hg0), decreasing the percentage of Hg0 at the outlet of the SCR to values <12% for the three Illinois coal tests. The PRB coal test indicated a low oxidation of Hg0 by the SCR catalyst, with the percentage of Hg0 decreasing from approximately 96% at the inlet of the reactor to approximately 80% at the outlet. The low Cl content of the PRB coal and corresponding low level of available flue gas Cl species were believed to be responsible for low SCR Hg oxidation for this coal type. The test results indicated a strong effect of coal type on the extent of Hg oxidation.  相似文献   

4.
Abstract

The proposed mercury (Hg) oxidation mechanism consists of a 168-step gas phase mechanism that accounts for interaction among all important flue gas species and a heterogeneous oxidation mechanism on unburned carbon (UBC) particles, similar to established chemistry for dioxin production under comparable conditions. The mechanism was incorporated into a gas cleaning system simulator to predict the proportions of elemental and oxidized Hg species in the flue gases, given relevant coal properties (C/H/O/N/S/Cl/Hg), flue gas composition (O2, H2O, HCl), emissions (NOX, SOX, CO), the recovery of fly ash, fly ash loss-on-ignition (LOI), and a thermal history. Predictions are validated without parameter adjustments against datasets from lab-scale and from pilot-scale coal furnaces at 1 and 29 MWt. Collectively, the evaluations cover 16 coals representing ranks from sub-bituminous through high-volatile bituminous, including cases with Cl2 and CaCl2 injection. The predictions are, therefore, validated over virtually the entire domain of Cl-species concentrations and UBC levels of commercial interest. Additional predictions identify the most important operating conditions in the furnace and gas cleaning system, including stoichiometric ratio, NOX, LOI, and residence time, as well as the most important coal properties, including coal-Cl.  相似文献   

5.
Abstract

Bench-scale testing of elemental mercury (Hg0) sorption on selected activated carbon sorbents was conducted to develop a better understanding of the interaction among the sorbent, flue gas constituents, and Hg0. The results of the fixed-bed testing under simulated lignite combustion flue gas composition for activated carbons showed some initial breakthrough followed by increased mercury (Hg) capture for up to ~4.8 hr. After breakthrough, the Hg in the effluent stream was primarily in an oxidized form (>90%). Aliquots of selected activated carbons were exposed to simulated flue gas containing Hg0 vapor for varying time intervals to explore surface chemistry changes as the initial breakthrough, Hg capture, and oxidation occurred. The samples were analyzed by X-ray photoelectron spectroscopy to determine changes in the abundance and forms of sulfur, chlorine, oxygen, and nitrogen moieties as a result of interactions of flue gas components on the activated carbon surface during the sorption process. The data are best explained by a competition between the bound hydrogen chloride (HCl) and increasing sulfur [S(VI)] for a basic carbon binding site. Because loss of HCl is also coincident with Hg breakthrough or loss of the divalent Hg ion (Hg2+), the competition of Hg2+ with S(VI) on the basic carbon site is also implied. Thus, the role of the acid gases in Hg capture and release can be explained.  相似文献   

6.
A bench-scale reactor consisting of a natural gas burner and an electrically heated reactor housing a selective catalytic reduction (SCR) catalyst was constructed for studying elemental mercury (Hg(o)) oxidation under SCR conditions. A low sulfur Powder River Basin (PRB) subbituminous coal combustion fly ash was injected into the entrained-flow reactor along with sulfur dioxide (SO2), nitrogen oxides (NOx), hydrogen chloride (HCl), and trace Hg(o). Concentrations of Hg(o) and total mercury (Hg) upstream and downstream of the SCR catalyst were measured using a Hg monitor. The effects of HCl concentration, SCR operating temperature, catalyst space velocity, and feed rate of PRB fly ash on Hg(o) oxidation were evaluated. It was observed that HCl provides the source of chlorine for Hg(o) oxidation under simulated PRB coal-fired SCR conditions. The decrease in Hg mass balance closure across the catalyst with decreasing HCl concentration suggests that transient Hg capture on the SCR catalyst occurred during the short test exposure periods and that the outlet speciation observed may not be representative of steady-state operation at longer exposure times. Increasing the space velocity and operating temperature of the SCR led to less Hg(o) oxidized. Introduction of PRB coal fly ash resulted in slightly decreased outlet oxidized mercury (Hg2+) as a percentage of total inlet Hg and correspondingly resulted in an incremental increase in Hg capture. The injection of ammonia (NH3) for NOx reduction by SCR was found to have a strong effect to decrease Hg oxidation. The observations suggest that Hg(o) oxidation may occur near the exit region of commercial SCR reactors. Passage of flue gas through SCR systems without NH3 injection, such as during the low-ozone season, may also impact Hg speciation and capture in the flue gas.  相似文献   

7.
Sodium hypochlorite (NaClO) has been widely used as a chemical additive for enhancing nitrogen oxide (NOx; NO + NO2), sulfur dioxide (SO2), and mercury (Hg0) removals in a wet scrubber. However, they are each uniquely dependent on NaClO(aq) pH, hence making the simultaneous control difficult. In order to overcome this weakness, we sprayed low liquid-to-gas (L/G) ratio (0.1 L/Nm3) of NaClO(aq) to vaporize quickly at 165 °C. Results have shown that the maximized NOx, SO2, and Hg0 removals can be achieved at the pH range between 4.0 and 6.0. When NOx and Hg0 coexist with SO2, in addition, their removals are significantly enhanced by reactions with solid and gaseous by-products such as NaClO(s), NaClO2(s), OClO, ClO, and Cl species, originated from the reaction between SO2 and NaClO(aq). We have also demonstrated the feasibility of this approach in the real flue gases of a combustion plant and observed 50%, 80%, and 60% of NOx, SO2, and Hg0 removals, respectively. These findings led us to conclude that the spray of NaClO(aq) at a relatively high temperature at which the sprayed solution can vaporize quickly makes the simultaneous control of NOx, SO2, and Hg0 possible.

Implications: The simple spray of NaClO(aq) at temperatures above 165 °C can cause the simultaneous removal of gaseous NOx, SO2, and Hg0 by its quick vaporization. Their maximized removals are achieved at the pH range between 4.0 and 6.0. NOx and Hg0 removals are also enhanced by gaseous and solid intermediate products generated from the reaction of SO2 with NaClO(aq). The feasibility of this approach has been demonstrated in the real flue gases of a combustion plant.  相似文献   


8.
Abstract

This paper introduces a predictive mechanism for elemental mercury (Hg0) oxidation on selective catalytic reduction (SCR) catalysts in coal-fired utility gas cleaning systems, given the ammonia (NH3)/nitric oxide (NO) ratio and concentrations of Hg0 and HCl at the monolith inlet, the monolith pitch and channel shape, and the SCR temperature and space velocity. A simple premise connects the established mechanism for catalytic NO reduction to the Hg0 oxidation behavior on SCRs: that hydrochloric acid (HCl) competes for surface sites with NH3 and that Hg0 contacts these chlorinated sites either from the gas phase or as a weakly adsorbed species. This mechanism explicitly accounts for the inhibition of Hg0 oxidation by NH3, so that the monolith sustains two chemically distinct regions. In the inlet region, strong NH3 adsorption minimizes the coverage of chlorinated surface sites, so NO reduction inhibits Hg0 oxidation. But once NH3 has been consumed, the Hg0 oxidation rate rapidly accelerates, even while the HCl concentration in the gas phase is uniform. Factors that shorten the length of the NO reduction region, such as smaller channel pitches and converting from square to circular channels, and factors that enhance surface chlorination, such as higher inlet HCl concentrations and lower NH3/NO ratios, promote Hg0 oxidation.

This mechanism accurately interprets the reported tendencies for greater extents of Hg0 oxidation on honeycomb monoliths with smaller channel pitches and hotter temperatures and the tendency for lower extents of Hg0 oxidation for hotter temperatures on plate monoliths. The mechanism also depicts the inhibition of Hg0 oxidation by NH3 for NH3/NO ratios from zero to 0.9. Perhaps most important for practical applications, the mechanism reproduces the reported extents of Hg0 oxidation on a single catalyst for four coals that generated HCl concentrations from 8 to 241 ppm, which covers the entire range encountered in the U.S. utility industry. Similar performance is also demonstrated for full-scale SCRs with diverse coal types and operating conditions.  相似文献   

9.
A previously proposed technology incorporating TiO2 into common household fluorescent lighting was further tested for its Hg0 removal capability in a simulated flue-gas system. The flue gas is simulated by the addition of O2, SO2, HCl, NO, H2O, and Hg0, which are frequently found in combustion facilities such as waste incinerators and coal-fired power plants. In the O2 + N2 + Hg0 environment, a Hg0 removal efficiency (ηHg) greater than 95% was achieved. Despite the tendency for ηHg to decrease with increasing SO2 and HCl, no significant drop was observed at the tested level (SO2: 5–300 ppmv, HCl: 30–120 ppmv). In terms of NO and moisture, a significant negative effect on ηHg was observed for both factors. NO eliminated the OH radical on the TiO2 surface, whereas water vapor caused either the occupation of active sites available to Hg0 or the reduction of Hg0 by free electron. However, the negative effect of NO was minimized (ηHg > 90%) by increasing the residence time in the photochemical reactor. The moisture effect can be avoided by installing a water trap before the flue gas enters the Hg0 removal system.

Implications: This paper reports a novel technology for a removal of gas-phase elemental mercury (Hg0) from a simulated flue gas using TiO2-coated glass beads under a low-cost, easily maintainable household fluorescent light instead of ultraviolet (UV) light. In this study, the effects of individual chemical species (O2, SO2, HCl, NO, and water vapor) on the performance of the proposed technology for Hg0 removal are investigated. The result suggests that the proposed technology can be highly effective, even in real combustion environments such as waste incinerators and coal-fired power plants.  相似文献   

10.
Abstract

This paper is particularly related to elemental mercury (Hg0) oxidation and divalent mercury (Hg2+) reduction under simulated flue gas conditions in the presence of nitric oxide (NO) and sulfur dioxide (SO2). As a powerful oxidant and chlorinating reagent, Cl2 has the potential for Hg oxidation. However, the detailed mechanism for the interactions, especially among chlorine (Cl)-containing species, SO2, NO, as well as H2O, remains ambiguous. Research described in this paper therefore focused on the impacts of SO2 and NO on Hg0 oxidation and Hg2+ reduction with the intent of unraveling unrecognized interactions among Cl species, SO2, and NO most importantly in the presence of H2O. The experimental results demonstrated that SO2 and NO had pronounced inhibitory effects on Hg0 oxidation at high temperatures when H2O was also present in the gas blend. Such a demonstration was further confirmed by the reduction of Hg2+ back into its elemental form. Data revealed that SO2 and NO were capable of promoting homogeneous reduction of Hg2+ to Hg0 with H2O being present. However, the above inhibition or promotion disappeared under homogeneous conditions when H2O was removed from the gas blend.  相似文献   

11.
Abstract

For the past 22 years in the Netherlands, the behavior of Hg in coal-fired power plants has been studied extensively. Coal from all over the world is fired in Dutch power stations. First, the Hg concentrations in these coals were measured. Second, the fate of the Hg during combustion was established by performing mass balance studies. On average, 43 ± 30% of the Hg was present in the flue gases downstream of the electrostatic precipitator (ESP; dust collector). In individual cases, this figure can vary between 1 and 100%. Important parameters are the Cl content of the fuel and the flue gas temperature in the ESP. On average, 54 ± 24% of the gaseous Hg was removed in the wet flue-gas desulfurization (FGD) systems, which are present at all Dutch coal-power stations. In individual cases, this removal can vary between 8% (outlier) and 72%.

On average, the fate of Hg entering the power station in the coal was as follows: <1% in the bottom ash, 49% in the pulverized fuel ash (ash collected in the ESP), 16.6% in the FGD gypsum, 9% in the sludge of the wastewater treatment plant, 0.04% in the effluent of the wastewater treatment plant, 0.07% in fly dust (leaving the stack), and 25% as gaseous Hg in the flue gases and emitted into the air. The distribution of Hg over the streams leaving the FGD depends strongly on the installation. On average, 75% of the Hg was removed, and the final concentration of Hg in the emitted flue gases of the Dutch power stations was only ~3 μg/mSTP 3 at 6% O2. During co-combustion with biomass, the removal of Hg was similar to that during 100% coal firing.

Speciation of Hg is a very important factor. An oxidized form (HgCl2) favors a high degree of removal. The conversion from Hg0 to HgCl2 is positively correlated with the Cl content of the fuel. A catalytic DENOX (SCR) favors the formation of oxidized Hg, and, in combination with a wet FGD, the total removal can be as high as 90%.  相似文献   

12.
Abstract

Efforts to develop multipollutant control strategies have demonstrated that adding certain oxidants to different classes of Ca-based sorbents leads to a significant improvement in elemental Hg vapor (Hg0), SO2, and NOx removal from simulated flue gases. In the study presented here, two classes of Ca-based sorbents (hydrated limes and silicate compounds) were investigated. A number of oxidizing additives at different concentrations were used in the Ca-based sorbent production process. The Hg0, SO2, and NOx capture capacities of these oxidant-enriched sorbents were evaluated and compared to those of a commercially available activated carbon in bench-scale, fixed-bed, and fluid-bed systems. Calcium-based sorbents prepared with two oxidants, designated C and M, exhibited Hg0 sorp-tion capacities (~100 μg/g) comparable to that of the activated carbon; they showed far superior SO2 and NOx sorption capacities. Preliminary cost estimates for the process utilizing these novel sorbents indicate potential for substantial lowering of control costs, as compared with other processes currently used or considered for control of Hg0, SO2, and NOx emissions from coal-fired boilers. The implications of these findings toward development of multipollutant control technologies and planned pilot and field evaluations of more promising multipollutant sorbents are summarily discussed.  相似文献   

13.
Abstract

Emissions of sulfur trioxide (SO3) are a key component of plume opacity and acid deposition. Consequently, these emissions need to be low enough to not cause opacity violations and acid deposition. Generally, a small fraction of sulfur (S) in coal is converted to SO3 in coal-fired combustion devices such as electric utility boilers. The emissions of SO3 from such a boiler depend on coal S content, combustion conditions, flue gas characteristics, and air pollution devices being used. It is well known that the catalyst used in the selective catalytic reduction (SCR) technology for nitrogen oxides control oxidizes a small fraction of sulfur dioxide in the flue gas to SO3. The extent of this oxidation depends on the catalyst formulation and SCR operating conditions. Gas-phase SO3 and sulfuric acid, on being quenched in plant equipment (e.g., air preheater and wet scrubber), result in fine acidic mist, which can cause increased plume opacity and undesirable emissions. Recently, such effects have been observed at plants firing high-S coal and equipped with SCR systems and wet scrubbers. This paper investigates the factors that affect acidic mist production in coal-fired electric utility boilers and discusses approaches for mitigating emission of this mist.  相似文献   

14.
ABSTRACT

The capture of elemental mercury (Hg0) and mercuric chloride (HgCl2) by three types of calcium (Ca)-based sor-bents was examined in this bench-scale study under conditions prevalent in coal-fired utilities. Ca-based sorbent performances were compared with that of an activated carbon. Hg0 capture of about 40% (nearly half that of the activated carbon) was achieved by two of the Ca-based sorbents. The presence of sulfur dioxide (SO2) in the simulated coal combustion flue gas enhanced the Hg0 capture from about 10 to 40%. Increasing the temperature in the range of 65-100 °C also caused an increase in the Hg0 capture by the two Ca-based sorbents. Mercuric chloride (HgCl2) capture exhibited a totally different pattern. The presence of SO2 inhibited the HgCl2 capture by Ca-based sorbents from about 25 to less than 10%. Increasing the temperature in the studied range also caused a decrease in HgCl2 capture. Upon further pilot-scale confirmations, the results obtained in this bench-scale study can be used to design and manufacture more cost-effective mercury sorbents to replace conventional sorbents already in use in mercury control.  相似文献   

15.

Activated carbon was one of the main adsorptions utilized in elemental mercury (Hg0) removal from coal combustion flue gas. However, the high cost and low physical adsorption efficiency of activated carbon injection (ACI) limited its application. In this study, an ultra-high efficiency (nearly 100%) catalyst sorbent-Sex/Activated carbon (Sex/AC) was synthesized and applied to remove Hg0 in the simulated flue gas, which exhibited 120 times outstanding adsorption performance versus the conventional activated carbon. The Sex/AC reached 17.98 mg/g Hg0 adsorption capacity at 160 °C under the pure nitrogen atmosphere. Moreover, it maintained an excellent mercury adsorption tolerance, reaching the efficiency of Hg0 removal above 85% at the NO and SO2 conditions in a bench-scale fixed-bed reactor. Characterized by the multiple methods, including BET, XRD, XPS, kinetic and thermodynamic analysis, and the DFT calculation, we demonstrated that the ultrahigh mercury removal performance originated from the activated Se species in Sex/AC. Chemical adsorption plays a dominant role in Hg0 removal: Selenium anchored on the surface of AC would capture Hg0 in the flue gas to form an extremely stable substance-HgSe, avoiding subsequent Hg0 released. Additionally, the oxygen-containing functional groups in AC and the higher BET areas promote the conversion of Hg0 to HgO. This work provided a novel and highly efficient carbon-based sorbent -Sex/AC to capture the mercury in coal combustion flue gas.

Selenium-modified porous activated carbon and the interface functional group promotes the synergistic effect of physical adsorption and chemical adsorption to promote the adsorption capacity of Hg0.

  相似文献   

16.
ABSTRACT

Analysis of Hg speciation in combustion flue gases is often accomplished in standardized sampling trains in which the sample is passed sequentially through a series of aqueous solutions to capture and separate oxidized Hg (Hg2+) and elemental Hg (Hg0). Such methods include the Ontario Hydro (OH) and the Alkaline Mercury Speciation (AMS) methods, which were investigated in the laboratory to determine whether the presence of Cl2 and other common flue gas species can bias the partitioning of Hg0 to front impingers intended to isolate Hg2+ species. Using only a single impinger to represent the front three impingers for each method, it was found that as little as 1-ppm Cl2 in a simulated flue gas mixture led to a bias of approximately 10-20% of Hg0 misreported as Hg2+ for both the OH and the AMS methods. Experiments using 100-ppm Cl2 led to a similar bias in the OH method, but to a 30-60% bias in the AMS method. These false readings are shown to be due to liquid-phase chemistry in the impinger solutions, and not necessarily to the gas-phase reactions between Cl2 and Hg as previously proposed. The pertinent solution chemistry causing the interference  相似文献   

17.
湿式烟气脱硫系统同时脱汞研究   总被引:3,自引:0,他引:3  
研究表明,湿法烟气脱硫装置(WFGD)可去除烟气中绝大部分Hg2+,但对单质汞的吸收效果不明显,因此研究提高湿法烟气脱硫系统中单质汞的氧化率的方法对控制汞的排放具有重要意义。综述了WFGD及在此系统中各种添加剂的脱汞性能,认为在添加剂中,气态的臭氧、液态的次氯酸和氯化钠稀溶液、 黄磷乳浊液、氢硫化钠溶液及EDTA的汞去除效果较好,且不会被SO2大量消耗,可在WFGD系统实现同时脱硫脱汞;而气态的氯气,液态的K2S2O8溶液虽然也有较好的汞去除效果,但因易被SO2或亚硫酸盐溶液消耗,当在WFGD系统中用其氧化单质汞时,需要对脱硫塔进行分层或其他改造,使烟气中的SO2被吸收后再控制汞,提高经济性。  相似文献   

18.
Selective catalytic reduction (SCR) catalysts are deactivated by several mineral and metallic trace elements at highly variable rates determined by fuel quality and furnace firing conditions. With a loss in activity, NO is reduced over a longer inlet length of the SCR monolith, which leaves a shorter trailing section to sustain the most favorable conditions to oxidize Hg0 and SO2. Since virtually no operating SCR was designed for Hg oxidation and since different monoliths are routinely combined as layers in particular units, the Hg oxidation performance of any SCR fleet is largely unmanaged. The analysis in this paper directly relates a measurement or manufacturer’s forecast on the deterioration in NO reduction with age to corresponding estimates for oxidation of Hg0. It accommodates any number of catalyst layers with grossly different properties, including materials from different manufacturers and different ages. In this paper, the analysis is applied to 16 full-scale SCRs in the Southern Company fleet to demonstrate that catalyst deactivation disrupts even the most prominent connections among the Hg0 oxidation performance of commercial SCRs and the behavior of fresh catalysts at lab, pilot, and even full scale.

Implications: Catalyst deactivation confounds even the most prominent connections among the Hg0 oxidation performance of commercial SCRs and the behavior of fresh catalyst at lab, pilot, and even full scale. The halogen dependence has been emphasized throughout the literature on catalytic Hg0 oxidation, based on a large database on fresh catalysts. But for deactivated catalysts in commercial SCRs, the number of layers is much more indicative of the Hg0 oxidation performance, in that SCRs with four layers perform better than those with three layers, and so on. The new qualified conclusion is that Hg0 oxidation is greater for progressively greater HCl concentrations only among SCRs with the same number of layers, even for an assortment of catalyst design specifications and operating conditions.  相似文献   


19.

Due to its adverse impact on health, as well as its global distribution, long atmospheric lifetime and propensity for deposition in the aquatic environment and in living tissue, the US Environmental Protection Agency (US EPA) has classified mercury and its compounds as a severe air quality threat. Such widespread presence of mercury in the environment originates from both natural and anthropogenic sources. Global anthropogenic emission of mercury is evaluated at 2000 Mg year−1. According to the National Centre for Emissions Management (Pol. KOBiZE) report for 2014, Polish annual mercury emissions amount to approximately 10 Mg. Over 90% of mercury emissions in Poland originate from combustion of coal.

The purpose of this paper was to understand mercury behaviour during sub-bituminous coal and lignite combustion for flue gas purification in terms of reduction of emissions by active methods. The average mercury content in Polish sub-bituminous coal and lignite was 103.7 and 443.5 μg kg−1. The concentration of mercury in flue gases emitted into the atmosphere was 5.3 μg m−3 for sub-bituminous coal and 17.5 μg m−3 for lignite. The study analysed six low-cost sorbents with the average achieved efficiency of mercury removal from 30.6 to 92.9% for sub-bituminous coal and 22.8 to 80.3% for lignite combustion. Also, the effect of coke dust grain size was examined for mercury sorptive properties. The fine fraction of coke dust (CD) adsorbed within 243–277 μg Hg kg−1, while the largest fraction at only 95 μg Hg kg−1. The CD fraction < 0.063 mm removed almost 92% of mercury during coal combustion, so the concentration of mercury in flue gas decreased from 5.3 to 0.4 μg Hg m−3. The same fraction of CD had removed 93% of mercury from lignite flue gas by reducing the concentration of mercury in the flow from 17.6 to 1.2 μg Hg m−3. The publication also presents the impact of photochemical oxidation of mercury on the effectiveness of Hg vapour removal during combustion of lignite. After physical oxidation of Hg in the flue gas, its effectiveness has increased twofold.

  相似文献   

20.
Fe2O3 and CeO2 modified activated coke (AC) synthesized by the equivalent-volume impregnation were employed to remove elemental mercury (Hg0) from simulated flue gas at a low temperature. Effects of the mass ratio of Fe2O3 and CeO2, reaction temperature, and individual flue gas components including O2, NO, SO2, and H2O (g) on Hg0 removal efficiency of impregnated AC were investigated. The samples were characterized by Brunauer–Emmett–Teller (BET), X-ray diffraction (XRD), scanning electron microscopy (SEM), and X-ray photoelectron spectroscopy (XPS). Results showed that with optimal mass percentage of 3 % Fe2O3 and 3 % CeO2 on Fe3Ce3/AC, the Hg0 removal efficiency could reach an average of 88.29 % at 110 °C. Besides, it was observed that O2 and NO exhibited a promotional effect on Hg0 removal, H2O (g) exerted a suppressive effect, and SO2 showed an insignificant inhibition without O2 to some extent. The analysis of XPS indicated that the main species of mercury on used Fe3Ce3/AC was HgO, which implied that adsorption and catalytic oxidation were both included in Hg0 removal. Furthermore, the lattice oxygen, chemisorbed oxygen, and/or weakly bonded oxygen species made a contribution to Hg0 oxidation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号