首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
The purpose of this study was to analyze quantitative relationships between air pollution and mortality, and to examine the impact of migration on pollution-related mortality functions. Dose-response functions were estimated for intra-urban variations in ambient air quality for the city of Jacksonville, Florida. Indices of air pollution used in this study were sulfur dioxide (SO2) and total suspended particulates (TSP). Ambient air quality was measured by the dispersion of TSP and SO2 across census tracts using the SYMAP dispersion model in conjunction with air quality monitoring stations.

Holding other things constant, TSP apeared to have no statistically significant association with mortality rates. By contrast, the significance of the estimated coefficient for the pollution variable, SO2, supported the contention that there is a positive and statistically significant relationship between air pollution and mortality rates. However, after making a limited test of the impact of migration on dose-response functions, the SO2 pollution variable was no longer statistically significant. That is, recent migrants may have limited exposure to the existing level of SO2 in Jacksonville, Florida, but carry with them long term exposure to more heavily polluted areas in the Northern United States. The results of this study suggest that further epidemiological studies and economic analysis of the health effects on air pollution should make some attempt to control the migration effect.  相似文献   

2.
Pulmonary function of approximately 200 school children in Steubenville, OH was measured before and immediately following air pollution alerts in the fall of 1978 and 1979. TSP concentrations exceeded the National Primary Ambient Air Quality 24 h standards in 1978. SO2 exceeded the standard in 1979. The children were then reexamined in three weekly visits following each alert. Estimated mean Forced Vital Capacity (FVC) was approximately 2% lower following each alert, although the lowest means were observed one to two weeks after the episodes. Forced Expired Volume in 0.75 sec (FEV0.75) did not change during the 1978 study, but was 4% lower immediately following the 1979 alert. The children were measured again in five weekly examinations in the spring and fall of 1980. Air pollution levels did not exceed the standards on either occasion. In the spring of 1980, estimated mean FVC and FEV0.75 showed a decline similar to that observed following the alerts in 1978 and 1979. In the fall of 1980, there were no significant differences in the estimated mean FVC or FEV0.75 between the examinations. A total of 335 children were tested in the four studies, including 194 who participated in more than one study. The evidence for each child from all the studies was combined in a regression analysis of pulmonary function on TSP and SO2 average concentrations in the previous 24 h. The distribution of the individual regression coefficients was centered significantly below zero, implying a decrease in pulmonary function with increasing TSP and SO2 concentrations. The magnitude of the median change was less than 1% of the mean FVC and FEV0.75 over the range of TSP and SO2 concentrations observed.  相似文献   

3.
This study used pollution roses to assess sulfur dioxide (SO2) pollution in a township downwind of a large petrochemical complex based on data collected from a single air quality monitoring station. The pollution roses summarized hourly SO2 concentrations at the Taishi air quality monitoring station, located approximately 7.8–13.0 km south of the No. 6 Naphtha Cracking Complex in Taiwan, according to 36 sectors of wind direction during the preoperational period (1995–1999) and two postoperational periods (2000–2004 and 2005–2009). The 99th percentile of hourly SO2 concentrations 350? downwind from the complex increased from 28.9 ppb in the preoperational period to 86.2–324.2 ppb in the two postoperational periods. Downwind SO2 concentrations were particularly high during 2005–2009 at wind speeds of 6–8 m/sec. Hourly SO2 levels exceeded the U.S. Environmental Protection Agency (EPA) health-based standard of 75 ppb only in the postoperational periods, with 65 exceedances from 0–10? and 330–350? downwind directions during 2001–2009. This study concluded that pollution roses based on a single monitoring station can be used to investigate source contributions to air pollution surrounding industrial complexes, and that it is useful to combine such directional methods with analyses of how pollution varies between different wind speeds, times of day, and periods of industrial development.

Implications: The pollution roses summarize SO2 concentrations by wind direction and to investigate source contribution to air quality. Percentile statistics can catch pollution episodes occurring in a very short time at specific wind directions and speeds. The downwind areas have already exceeded regulated 1-hr SO2 standard since the operation of the complex.  相似文献   

4.

Background, aim, and scope

Ten years of public health interventions on industrial emissions to clean air were monitored for the Mediterranean city of Cartagena. During the 1960s, a number of large chemical and non-ferrous metallurgical factories were established that significantly deteriorated the city’s air quality. By the 1970s, the average annual air concentration of sulfur dioxide (SO2) ranged from 200 to 300 µg/m3 (standard conditions units). In 1979, the Spanish government implemented an industrial intervention plan to improve the performance of factories and industrial air pollution surveillance. Unplanned urban development led to residential housing being located adjacent to three major factories. Factory A produced lead, factory B processed zinc from ore concentrates, and factory C produced sulfuric acid and phosphates. This, in combination with the particular abrupt topography and frequent atmospheric thermal inversions, resulted in the worsening of air quality and heightening concern for public health. In 1990, the City Council authorized the immediate intervention at these factories to reduce or shut down production if ambient levels of SO2 or total suspended particles (TSP) exceeded a time-emission threshold in pre-established meteorological contexts. The aim of this research was to assess the appropriateness and effectiveness of the intervention plan implemented from 1992 to 2001 to abate industrial air pollution.

Materials and methods

The maximum daily 1-h ambient air level of SO2, NO2, and TSP pollutants was selected from one of the three urban automatic stations, designed to monitor ambient air quality around industrial emissions sources. The day on which an intervention took place to reduce and/or interrupt industrial production by factory and pollutant was defined as a control day, and the day after an intervention as a post-control day. To assess the short-term intervention effect on air quality, an ecological time series design was applied, using regression analysis in generalized additive models, focusing on day-to-day variations of ambient air pollutants levels. Two indicators were estimated: (a) appropriateness, the ratio between mean levels of the pollutant for control days versus the other days, and (b) effectiveness, the ratio between mean levels of the pollutant for post-control days versus the other days. Ratios in regression analyses were adjusted for trend, seasonality, temperature, humidity and atmospheric pressure, calendar day, and special events as well as the other pollutants.

Results

A total of 702 control days were made on the factories’ industrial production during the 10-year period. Fifteen reductions and five shutdown control days took place at factory A for ambient air SO2. At factory B, more controls were carried out for the SO2 pollutant in the years 1992–1993 and 1997. At factory C, the control days for SO2 decreased from 59 reductions and 14 shutdowns to a minimum from 1995 onwards, whereas the controls on TSP were more frequent, reaching a maximum of 99 reductions and 47 shutdowns in the last year. SO2 ambient air mean levels ranged from 456 to 699 µg/m3 among factories on reduction control days and between 624 and 1,010 µg/m3 on shutdown days. The TSP ambient air mean levels were 428 and 506 µg/m3 on reduction and shutdown days, respectively. For all types of control days and factories, a mean ratio of 104% (95% confidence interval [CI] 88 to 121) in SO2 levels was obtained and a mean ratio of 67% (95% CI 59 to 75) in TSP levels. Post-control days at all factories showed a mean ratio of ?16% (95% CI ?7 to ?24) in SO2 levels and a mean ratio of ?13% (95% CI ?7 to ?19) in TSP levels.

Discussion

Interventions on industrial production based on the urban SO2 and TSP ambient air levels were justified by the high concentrations detected. The best assessment of the interventions’ effectiveness would have been to utilize the ambient air pollutant concentration readings from the entire time of the production shutdowns or reductions; however, the daily hourly maximum turned out to be a useful indicator because of meteorological factors influencing the diurnal concentration profile. A substantial number of interventions were carried out from 1 to 3 am, when vehicular traffic was minimum. On the other hand, atmospheric stability undergoes diurnal cycling in the autumn–winter period due to thermal inversion, which reaches maximum levels around daybreak. Therefore, this increases the ambient air levels and justified the interventions carried out at daybreak in spite of the traffic influence.

Conclusions

All the interventions for SO2 and TSP were carried out when the measured ambient air levels of pollutants were exceeded, which shows the appropriateness of the intervention program. This excess was greater when intervening on SO2 than on the TSP levels. For both ambient air levels of SO2 and TSP, significant drops in air pollution were achieved from all three factories following activity reductions. The production shutdown controls were very effective, because they returned excess levels, higher than in the reduction controls, to everyday mean values.

Recommendations and perspectives

The Cartagena City observational system of intermittent control has proven to effectively reduce industrial emissions’ impact on ambient air quality. This experienced model approach could serve well in highly polluted industrial settings. From a public health perspective, studies are needed to assess that the industrial interventions to control air pollution were related to healthier human populations. Legislation was needed to allow the public administration to take direct actions upon the polluting industries.  相似文献   

5.
This paper presents a detailed analysis of the meteorological conditions that are associated with strong air pollution episodes in Ankara, Turkey. Based on climatological and air quality data [SO2 and TSP (total suspended particulates)] obtained for the winter months during 1989-1994, the analysis showed that the presence of weak atmospheric pressure gradients and warm air advection were the most important factors leading to high SO2 and TSP concentrations. In addition, the onset of the high air pollution episodes was generally associated with a trend toward negative vorticity at the 850-hPa level.  相似文献   

6.
ABSTRACT

We studied the association of daily mortality with short-term variations in the ambient concentrations of major gaseous pollutants and PM in the Netherlands. The magnitude of the association in the four major urban areas was compared with that in the remainder of the country. Daily cause-specific mortality counts, air quality, temperature, relative humidity, and influenza data were obtained from 1986 to 1994. The relationship between daily mortality and air pollution was modeled using Poisson regression analysis. We adjusted for potential confounding due to long-term and seasonal trends, influenza epidemics, ambient temperature and relative humidity, day of the week, and holidays, using generalized additive models.

Influenza episodes were associated with increased mortality up to 3 weeks later. Daily mortality was significantly associated with the concentration of all air pollutants. An increase in the PM10 concentration by 100 u.g/m3 was associated with a relative risk (RR) of 1.02 for total mortality. The largest RRs were found for pneumonia deaths. Ozone had the most consistent, independent association with mortality. Particulate air pollution (e.g., PM10, black smoke [BS]) was not more consistently associated with mortality than were the gaseous pollutants SO2 and NO2. Aerosol SO4 -2, NO3 -, and BS were more consistently associated with total mortality than was PM10. The RRs for all pollutants were substantially larger in the summer months than in the winter months. The RR of total mortality for PM10 was 1.10 for the summer and 1.03 for the winter. There was no consistent difference between RRs in the four major urban areas and the more rural areas.  相似文献   

7.
Examination of total deaths in New York City by day of occurrence shows periodic peaks in mortality which are associated with periods of high air pollution. These peaks are usually associated with periods of low wind speed and temperature inversion conditions which permit air pollution to build up to high levels. Unlike the experience of London, fog is not a necessary part of this picture, and therefore the presence of these episodes is often not apparent at the time to most inhabitants. A characteristic feature of these episodes is the immediate rise in mortality occurring on the same day as the peaks of pollution. A second characteristic is their frequent influence on death rates in the 45–64 year age group as well as in those over 65. These characteristics suggest that if these excess deaths are related to air pollution (as we believe to be highly likely) the mechanism is probably protean and pervasive affecting the course of a variety of different diseases through a basic physiologic effect. The relationship of morbidity in a normal urban population to air pollution is also demonstrated by time series analysis of correlation coefficients. The relation of two symptoms (cough and eye irritation) in a group of 1090 persons observed for three years is compared with two measures of air pollution (SO2 and particulate density) to which they were exposed. Time lags of up to 28 days were introduced and a constant relationship between air pollution levels and those symptoms was demonstrated.  相似文献   

8.
ABSTRACT

Time-series of daily mortality data from May 1992 to September 1995 for various portions of the seven-county Philadelphia, PA, metropolitan area were analyzed in relation to weather and a variety of ambient air quality parameters. The air quality data included measurements of size-classified PM, SO4 2-, and H+ that had been collected by the Harvard School of Public Health, as well as routine air pollution monitoring data. Because the various pollutants of interest were measured at different locations within the metropolitan area, it was necessary to test for spatial sensitivity by comparing results for different combinations of locations. Estimates are presented for single pollutants and for multiple-pollutant models, including gaseous pollutants and mutually exclusive components of PM (PM2.5 and coarse particles, SO4 2- and non-SO4 2- portions of total suspended particulate [TSP] and PM10), measured on the day of death and the previous day.

We concluded that associations between air quality and mortality were not limited to data collected in the same part of the metropolitan area; that is, mortality for one part may be associated with air quality data from another, not necessarily neighboring, part. Significant associations were found for a wide variety of gaseous and particulate pollutants, especially for peak O3. Using joint regressions on peak O3 with various other pollutants, we found that the combined responses were insensitive to the specific other pollutant selected. We saw no systematic differences according to particle size or chemistry. In general, the associations between daily mortality and air pollution depended on the pollutant or the PM metric, the type of collection filter used, and the location of sampling. Although peak O3 seemed to exhibit the most consistent mortality responses, this finding should be confirmed by analyzing separate seasons and other time periods.  相似文献   

9.
Pulmonary function was measured in 163 primary school children before, during and after an air pollution episode. During the episode, TSP, RSP and SO2 concentrations were each in the range of 200-250 μg/m3, whereas during the baseline measurements, they were generally below 100 μg/m3. During the episode, pulmonary functions were significantly lower by 3-5 percent compared to the baseline measurements. The decline was still observed 16 days after the episode, but not 25 days after the episode. Differences in pulmonary function technician, pulmonary function test appliance and in the prevalence of colds between baseline and follow-up measurement were not able to explain the findings. These results suggest that an air pollution episode of a few days, with 24-hour average TSP, RSP and SO2 concentrations in the range of 200-250 μg/m3, was associated with a decrease in pulmonary function of primary school children.  相似文献   

10.
BackgroundCurrent standards for fine particulates and nitrogen dioxide are under revision. Patients with cardiovascular disease have been identified as the largest group which need to be protected from effects of urban air pollution.MethodsWe sought to estimate associations between indicators of urban air pollution and daily mortality using time series of daily TSP, PM10, PM2.5, NO2, SO2, O3 and nontrauma deaths in Vienna (Austria) 2000–2004. We used polynomial distributed lag analysis adjusted for seasonality, daily temperature, relative humidity, atmospheric pressure and incidence of influenza as registered by sentinels.ResultsAll three particulate measures and NO2 were associated with mortality from all causes and from ischemic heart disease and COPD at all ages and in the elderly. The magnitude of the effect was largest for PM2.5 and NO2. Best predictor of mortality increase lagged 0–7 days was PM2.5 (for ischemic heart disease and COPD) and NO2 (for other heart disease and all causes). Total mortality increase, lagged 0–14 days, per 10 μg m−3 was 2.6% for PM2.5 and 2.9% for NO2, mainly due to cardiopulmonary and cerebrovascular causes.ConclusionAcute and subacute lethal effects of urban air pollution are predicted by PM2.5 and NO2 increase even at relatively low levels of these pollutants. This is consistent with results on hospital admissions and the lack of a threshold. While harvesting (reduction of mortality after short increase due to premature deaths of most sensitive persons) seems to be of minor importance, deaths accumulate during 14 days after an increase of air pollutants. The limit values for PM2.5 and NO2 proposed for 2010 in the European Union are unable to prevent serious health effects.  相似文献   

11.
Emissions from the Black Triangle Region were considered to be the major source of air pollution problems in Europe during the 1990s. This discussion reviews the changes in emissions and pollution concentrations in the Krusne Hory Region (Czech Republic) in the winter half of the year during most of the past decade, and describes the relationships with meteorology. Sulfur dioxide (SO2) is used as the example pollutant. The results show a decrease in pollution concentrations since 1996, as air pollution control and management strategies for important point sources take effect. The winter of 1995–1996 was especially harsh in the number of pollution episodes. Correlations between SO2 and meteorological parameters are inconsistent. Wind direction provides the best relationship at monitoring stations along the Krusne Hory Plateau, with wind speed and temperature more variable depending on month and location. For the valley stations, higher SO2 concentrations are strongly related to colder temperatures, higher relative humidities, and lower wind speeds. A case study during the winter of 1995–1996 (November 9–15) illustrated the importance of synoptic high pressure and a low-level inversion in minimizing plume dispersion from point sources. Specific sources of SO2 affecting each station could thus be identified.  相似文献   

12.
The TSP, SO4= and Pb levels observed downwind of a large refinery and in the city of Willemstad in Curaçao are presented. The results show that wiht increasing wind speed TSP and SO4= levels increase while Pb levels decrease. On the other hand, at relatively constant wind speeds a good correlation between TSP and Pb was observed.The correlation observed between TSP, SO4= and Pb and the wind speed, the effect of rain on the atmospheric levels observed during the sampling period, the lack of secondary pollutants (e.g. ozone, NO3?) and the composition of the island background air, allow us to conclude that the SO4= measured at the monitoring sites is mainly produced as a primary pollutant in the refinery, the high atmospheric TSP levels are due to refinery emissions (traditional source) and the recirculation of street dust particles (non traditional source) produced by traffic and the predominantly high wind velocity.The implication on air quality and control measures are discussed.  相似文献   

13.
A three-dimensional Eulerian hemispheric air pollution model, the Danish Eulerian Hemispheric Model (DEHM), is in development at the National Environmental Research Institute (NERI). The model has been used to study long-range transport of air pollution in the Northern Hemisphere. The present version of the model includes long-range transport of sulphur dioxide (SO2) and particulate sulphate (SC42−. The chemistry in the model is described by a simple linear oxidation of SO2 to SO42−, and the wet deposition of SO2 and SO4 is estimated based on the amount of precipitation, which is calculated from the contents of liquid cloud water (see Christensen, Air Pollution Modelling and its Applicatioons, Vol. X, pp. 119–127, Vol. XI, pp. 249–256, Plenum press, New York; 1995, Ph.D. thesis, National Environmental Research Institute, Denmark). The model has been used to study the air pollution in the Arctic. Results from yr simulation with an analysis of the results is presented: the model results are verified by comparisons, to measurements not only from the Arctic region but also from Europe and Canada. Some examples of episodes in the Arctic including analysis of the meteorological conditions during the episodes are presented. Finally, the model has been used to estimate the contribution from the different source regions on the northern hemisphere to the Arctic sulphur pollution.  相似文献   

14.
Abstract

China is undergoing rapid urbanization because of unprecedented economic growth. As a result, many cities suffer from air pollution. Two-thirds of China’s cities have not attained the ambient air quality standards applicable to urban residential areas (Grade II). Particulate matter (PM), rather than sulfur dioxide (SO2), is the major pollutant reflecting the shift from coal burning to mixed source pollution. In 2002, 63.2 and 22.4% of the monitored cities have PM and SO2 concentrations exceeding the Grade II standard, respectively. Nitrogen oxides (NOx) concentration kept a relatively stable level near the Grade II standard in the last decade and had an increasing potential in recent years because of the rapid motorization. In general, the air pollutants emission did not increase as quickly as the economic growth and energy consumption, and air quality in Chinese cities has improved to some extent. Beijing, a typical representative of rapidly developing cities, is an example to illustrate the possible options for urban air pollution control. Beijing’s case provides hope that the challenges associated with improving air quality can be met during a period of explosive development and motorization.  相似文献   

15.
Three thousand four hundred fifty-one Austrian elementary school children were examined (between 2 and 8 times) by spirometry by standardized methods, over a 5 yr period. The districts where they lived were grouped into those where NO2 declined during this period (by at least 30 μg/m3 measured as half year means) and those with less or no decline in ambient NO2. In both groups of districts, SO2 and TSP fell by similar amounts over this period. A continuous improvement of MEF25 (maximum exspiratory flow rate at 25% vital capacity) was found in districts with declining ambient NO2. Populations did not differ in respect of anthropometric factors, passive smoking or socioeconomic status. A birth cohort from this study population which was followed up to age 18 confirmed the improved growth of MEF25 with decline in NO2, while the improved growth of forced vital capacity was more related to decline in SO2. This study provides the first evidence that improvements in the outdoor air quality during the 1980s are correlated with health benefits, and suggest that adverse effects on lung function related to ambient air pollution are reversible before adulthood. Improvement of small airway functions appeared to be more dependent on reductions of NO2 than reduction in SO2 and TSP.  相似文献   

16.
TSP and PM2.5 samples were collected at Xi'an, China during dust storms (DSs) and several types of pollution events, including haze, biomass burning, and firework displays. Aerosol mass concentrations were up to 2 times higher during the particulate matter (PM) events than on normal days (NDs), and all types of PM led to decreased visibility. Water-soluble ions (Na+, NH4+, K+, Mg2+, Ca2+, F?, Cl?, NO3?, and SO42?). were major aerosol components during the pollution episodes, but their concentrations were lower during DSs. NH4+, K+, F?, Cl?, NO3?, and SO42? were more abundant in PM2.5 than TSP but the opposite was true for Mg2+ and Ca2+. PM collected on hazy days was enriched with secondary species (NH4+, NO3?, and SO42) while PM from straw combustion showed high K+ and Cl?. Firework displays caused increases in K+ and also enrichments of NO3? relative to SO42?. During DSs, the concentrations of secondary aerosol components were low, but Ca2+ was abundant. Ion balance calculations indicate that PM from haze and straw combustion was acidic while the DSs samples were alkaline and the fireworks' PM was close to neutral. Ion ratios (SO42?/K+, NO3?/SO42?, and Cl?/K+) proved effective as indicators for different pollution episodes.  相似文献   

17.
ABSTRACT

The correlation between sulfur dioxide (SO2) concentrations measured at the European and Asian sides of Istanbul and meteorological parameters is investigated using principal component analysis (PCA) and multiple regression analysis techniques. Several meteorological parameters are selected to represent the atmospheric conditions during two winter periods: 1993–1994 and 1994–1995. Six principal components are found to explain the majority of the observed meteorological variability. Surface pressure, 850-mb temperature, and surface zonal (east-west) and meridional (north-south) winds show high loadings on separate factors identified by PCA. We seek dominant meteorological parameters that control the SO2 levels at each monitoring station. Several multiple regression analysis models are fitted to the data from each monitoring station using six principal components and previous day SO2 concentrations as independent variables.

Results suggest that the most important parameters, highly correlated with SO2 concentrations in the Istanbul metropolitan area, are atmospheric pressure and surface zonal and meridional winds. These components have more influence on the determination of the air pollution levels at the Asian side than at the European side.  相似文献   

18.
Source apportionment of air pollution due to particulate matter with an aerodynamic diameter <10 μm (PM10) was investigated in Central Eastern European urban areas. A combination of four methods was developed to distinguish long-range transport (LRT) and regional transport (RT) from local pollution (LP) sources as well as to discern the involvement of traffic or residential sources in LP. Sources of PM10 events of pollution were determined in January 2006 in representative Polish cities using monitored air quality and meteorological data, backward air mass trajectories, correlation and principal component analysis (PCA). Daily patterns of PM10 levels show that several peak episodes were registered in Poland; January 21–30th being the most polluted days. Air mass back-trajectory analysis shows that all cities were under the influence of LRT from North-eastern origins (Russia–Belarus–Ukraine), most were also under LRT from Southern origin (Slovakia, Czech Republic), and northern cities were under national RT influence. PCA analysis shows that ion-sums of secondary inorganic aerosols account for LRT pollution while arsenic and chromium represents markers of RT (industrial) and LP (residential) sources of PM10, respectively. Determination of several ratios (REG/UB, REG/TRAF, TRAF/UB) calculated between PM10 levels measured at regional background (REG); urban background (UB) and traffic (TRAF) monitoring sites shows that, with ratios REG/UB ≥ 0.57, PM10 episodes in both Szczecin and Warsaw bore a marked RT origin. The lower REG/UB ≤ 0.35 in the Southern cities of Cracow and Zabrze indicates that LP was the main contributor to the observed episodes. Only PM10 episodes in Southern-western Poland (Jelenia Góra) were clearly of LP origin as characterized, by the lowest REG/UB ratio (<0.2). The high TRAF/UB ratios obtained for all cities (close to 1) indicate that there was a great uniformity of PM levels on an urban scale owing to the meteorologically stagnant conditions. A high correlation between PM10, NO2 and CO confirms that traffic emission represented a common and an important LP source of urban pollution in most Polish cities during January 2006. On the other hand PM10 which is also highly correlated with SO2 in 4 cities out of 6, indicates that coal combustion through domestic heating or industrial activities was also an important LP source of PM10. Finally, extremely unfavourable meteorological conditions caused by the influence of a Siberian high-pressure system were found to be associated with the occurrence of severe PM10 episodes of pollution.  相似文献   

19.
Contribution of pollution from different types of sources in Jamshedpur, the steel city of India, has been estimated in winter 1993 using two approaches in order to delineate and prioritize air quality management strategies for the development of region in an environmental friendly manner. The first approach mainly aims at preparation of a comprehensive emission inventory and estimation of spatial distribution of pollution loads in terms of SO2 and NO2 from different types of industrial, domestic and vehicular sources in the region. The results indicate that industrial sources account for 77% and 68% of the total emissions of SO2 and NO2, respectively, in the region, whereas vehicular emissions contributed to about 28% of the total NO2 emissions. In the second approach, contribution of these sources to ambient air quality levels to which the people are exposed to, was assessed through air pollution dispersion modelling. Ambient concentration levels of SO2 and NO2 have been predicted in winter season using the ISCST3 model. The analysis indicates that emissions from industrial sources are responsible for more than 50% of the total SO2 and NO2 concentration levels. Vehicular activities contributed to about 40% of NO2 pollution and domestic fuel combustion contributed to about 38% of SO2 pollution. Predicted 24-h concentrations were compared with measured concentrations at 11 ambient air monitoring stations and good agreement was noted between the two values. In-depth zone-wise analysis of the above indicates that for effective air quality management, industrial source emissions should be given highest priority, followed by vehicular and domestic sources in Jamshedpur region.  相似文献   

20.
Air pollutants in Santiago (33.5°S, 70.8°W, 500 m a.s.l.), a city with 5 million inhabitants, located in a basin in Central Chile surrounded by the high Andes, frequently exceed air quality standards. This affects human health and it stresses vegetation. The most extreme winter and fall pollution events occur when the subsident regime of the Pacific high is further enhanced by coastal lows (CLs), which bring down the base of the subsidence inversion. Under these conditions, the air quality worsens significantly giving rise to acute air pollution episodes. We assess the ability of a regional transport/chemistry/deposition model (MATCH) coupled to a meteorological model (High Resolution Limited Area Model—HIRLAM) to simulate the evolution of oxidized sulfur (SOx) in connection with intensive CLs. We focus on SOx since it is an environmental issue of concern, and the emissions and concentrations of SOx have been regularly monitored making it easier to bracket model outputs for SOx than for other pollutants. Furthermore, the SOx emissions in the area are very large, i.e., about 0.4% of the global anthropogenic sources. Comparisons with observations indicate that the combination of HIRLAM and MATCH is a suitable tool for describing the regional patterns of dispersion associated with CLs. However, the low number and the limited geographical coverage of reliable air quality data preclude a complete evaluation of the model. Nevertheless, we show evidence of an enhanced contribution of the largest copper smelter in the area, i.e., Caletones, to the burden of SOx in the Santiago basin, especially in the form of sulfate associated to fine particles (diameters <2.5 μm), during CLs. Further, we speculate that the Caletones plume may trigger or promote secondary aerosol formation during CLs in the Santiago basin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号