首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We use an inorganic aerosol thermodynamic equilibrium model in a three-dimensional chemical transport model to understand the roles of ammonia chemistry and natural aerosols on the global distribution of aerosols. The thermodynamic equilibrium model partitions gas-phase precursors among modeled aerosol species self-consistently with ambient relative humidity and natural and anthropogenic aerosol emissions during the 1990s.Model simulations show that accounting for aerosol inorganic thermodynamic equilibrium, ammonia chemistry and dust and sea-salt aerosols improve agreement with observed SO4, NO3, and NH4 aerosols especially at North American sites. This study shows that the presence of sea salt, dust aerosol and ammonia chemistry significantly increases sulfate over polluted continental regions. In all regions and seasons, representation of ammonia chemistry is required to obtain reasonable agreement between modeled and observed sulfate and nitrate concentrations. Observed and modeled correlations of sulfate and nitrate with ammonium confirm that the sulfate and nitrate are strongly coupled with ammonium. SO4 concentrations over East China peak in winter, while North American SO4 peaks in summer. Seasonal variations of NO3 and SO4 are the same in East China. In North America, the seasonal variation is much stronger for NO3 than SO4 and peaks in winter.Natural sea salt and dust aerosol significantly alter the regional distributions of other aerosols in three main ways. First, they increase sulfate formation by 10–70% in polluted areas. Second, they increase modeled nitrate over oceans and reduce nitrate over Northern hemisphere continents. Third, they reduce ammonium formation over oceans and increase ammonium over Northern Hemisphere continents. Comparisons of SO4, NO3 and NH4 deposition between pre-industrial, present, and year 2100 scenarios show that the present NO3 and NH4 deposition are twice pre-industrial deposition and present SO4 deposition is almost five times pre-industrial deposition.  相似文献   

2.
The light extinction and direct forcing properties of the atmospheric aerosol were investigated for a midwestern rural site (Bondville, IL) using field measurements, a semi-empirical light extinction model, and a radiative transfer code. Model inputs were based on the site measurements of the physical and chemical characteristics of atmospheric aerosol during the spring, summer, fall and winter of 1994. The light scattering and extinction coefficients were calculated and apportioned using the elastic light scattering interactive efficiency (ELSIE) model (Sloane and Wolff, 1985, Atmospheric Environment 19(4), 669–680). The average efficiencies calculated for organic carbon (OC, carbon measured as organic multiplied by 1.2) ranged from 3.81 m2/g OC at lower relative humidities (<63%) to 6.90 m2/g OC at higher relative humidities (>75%) while sulfate (assumed as ammonium sulfate) efficiencies ranged from 1.23 m2/g (NH4)2SO4 to 5.78 m2/g (NH4)2SO4 for the same range of relative humidities. Radiative transfer calculations showed that the rural aerosol at Bondville is most likely to have an overall negative (cooling) forcing effect on climate. Elemental carbon (EC), however, acts to counter sulfate forcing to a degree that has a significant seasonal variation, primarily due to the seasonal variation in the sulfate concentrations. Taking the loading to be the mean summer EC+ammonium sulfate loading and assuming [EC]/[(NH4)2SO4] to be zero in one case (i.e. no soot present) and 0.025 (summer mean at Bondville) in another leads to a 37% difference in calculated forcing.  相似文献   

3.
In this study, we present ∼1 yr (October 1998–September 1999) of 12-hour mean ammonia (NH3), ammonium (NH4+), hydrochloric acid (HCl), chloride (Cl), nitrate (NO3), nitric acid (HNO3), nitrous acid (HONO), sulfate (SO42−), and sulfur dioxide (SO2) concentrations measured at an agricultural site in North Carolina's Coastal Plain region. Mean gas concentrations were 0.46, 1.21, 0.54, 5.55, and 4.15 μg m−3 for HCl, HNO3, HONO, NH3, and SO2, respectively. Mean aerosol concentrations were 1.44, 1.23, 0.08, and 3.37 μg m−3 for NH4+, NO3, Cl, and SO42−, respectively. Ammonia, NH4+, HNO3, and SO42− exhibit higher concentrations during the summer, while higher SO2 concentrations occur during winter. A meteorology-based multivariate regression model using temperature, wind speed, and wind direction explains 76% of the variation in 12-hour mean NH3 concentrations (n=601). Ammonia concentration increases exponentially with temperature, which explains the majority of variation (54%) in 12-hour mean NH3 concentrations. Dependence of NH3 concentration on wind direction suggests a local source influence. Ammonia accounts for >70% of NHx (NHx=NH3+NH4+) during all seasons. Ammonium nitrate and sulfate aerosol formation does not appear to be NH3 limited. Sulfate is primarily associated ammonium sulfate, rather than bisulfate, except during the winter when the ratio of NO3–NH4+ is ∼0.66. The annual average NO3–NH4+ ratio is ∼0.25.  相似文献   

4.
We use GEOS-Chem chemical transport model simulations of sulfate–ammonium aerosol data from the NASA ARCTAS and NOAA ARCPAC aircraft campaigns in the North American Arctic in April 2008, together with longer-term data from surface sites, to better understand aerosol sources in the Arctic in winter–spring and the implications for aerosol acidity. Arctic pollution is dominated by transport from mid-latitudes, and we test the relevant ammonia and sulfur dioxide emission inventories in the model by comparison with wet deposition flux data over the source continents. We find that a complicated mix of natural and anthropogenic sources with different vertical signatures is responsible for sulfate concentrations in the Arctic. East Asian pollution influence is weak in winter but becomes important in spring through transport in the free troposphere. European influence is important at all altitudes but never dominant. West Asia (non-Arctic Russia and Kazakhstan) is the largest contributor to Arctic sulfate in surface air in winter, reflecting a southward extension of the Arctic front over that region. Ammonium in Arctic spring mostly originates from anthropogenic sources in East Asia and Europe, with added contribution from boreal fires, resulting in a more neutralized aerosol in the free troposphere than at the surface. The ARCTAS and ARCPAC data indicate a median aerosol neutralization fraction [NH4+]/(2[SO42?] + [NO3?]) of 0.5 mol mol?1 below 2 km and 0.7 mol mol?1 above. We find that East Asian and European aerosol transported to the Arctic is mostly neutralized, whereas West Asian and North American aerosol is highly acidic. Growth of sulfur emissions in West Asia may be responsible for the observed increase in aerosol acidity at Barrow over the past decade. As global sulfur emissions decline over the next decades, increasing aerosol neutralization in the Arctic is expected, potentially accelerating Arctic warming through indirect radiative forcing and feedbacks.  相似文献   

5.
Abstract

An annular denuder system, which consisted of a cyclone separator; two diffusion denuders coated with sodium carbonate and citric acid, respectively; and a filter pack consisting of Teflon and nylon filters in series, was used to measure acid gases, ammonia (NH3), and fine particles in the atmosphere from April 1998 to March 1999 in eastern North Carolina (i.e., an NH3?rich environment). The sodium carbonate denuders yielded average acid gas concentrations of 0.23 μg/m3 hydrochloric acid (standard deviation [SD] ± 0.2 μg/m3); 1.14 μg/m3 nitric acid (SD ± 0.81 μg/m3), and 1.61 μg/m3 sulfuric acid (SD ± 1.58 μg/m3). The citric acid denuders yielded an average concentration of 17.89 μg/m3 NH3 (SD ± 15.03 μg/m3). The filters yielded average fine aerosol concentrations of 1.64 μg/m3 ammonium (NH4 +;SD ± 1.26 μg/m3); 0.26 μg/m3 chloride (SD ± 0.69 μg/m3), 1.92 μg/m3 nitrate (SD ± 1.09 μg/m3), and 3.18 μg/m3 sulfate (SO4 2?; SD ± 3.12 μg/m3). From seasonal variation, the measured particulates (NH4 +,SO4 2?, and nitrate) showed larger peak concentrations during summer, suggesting that the gas-to-particle conversion was efficient during summer. The aerosol fraction in this study area indicated the domination of ammonium sulfate particles because of the local abundance of NH3, and the long-range transport of SO4 2? based on back trajectory analysis. Relative humidity effects on gas-to-particle conversion processes were analyzed by particulate NH4 + concentration originally formed from the neutralization processes with the secondary pollutants in the atmosphere.  相似文献   

6.
Measurements of airborne (gaseous and aerosol), cloud water, and precipitation concentrations of nitrogen compounds were made at Mt. Mitchell State Park (Mt. Gibbs, ~2006 m MSL), North Carolina, during May through September of 1988 and 1989, An annular denuder system was used to ascertain gaseous (nitric acid, nitrous acid, and ammonia) and particulate (nitrate and ammonium) nitrogen species, and a chemiluminescence nitrogen oxides analyzer was used to measure nitric oxide and nitrogen dioxide. Measurements of NO3 ? and NH4 + ions in cloud and rain water samples were made during the same time period. Mean concentrations of gaseous nitric acid, nitrous acid, and ammonia were 1.14 μg/m3, 0.3 μg/m3, and 0.62 μg/m3 for 1988, and 1.40 μg/m3,0.3 μg/m3, and 1.47 μg/m3 for 1989, respectively. Fine particulate nitrate and ammonium ranged from 0.02 to 0.21 μg/m3 and 0.01 to 4.72 μg/m3 for 1988, and 0.1 to 0.78 μg/m3 and 0.24 to 2.32 μg/m3 for 1989, respectively. The fine aerosol fraction was dominated by ammonium sulfate particles. Mean concentrations of nitrate and ammonium ions in cloud water samples were 238 and 214 μmol/l in 1988, and 135 and 147 μmol/l in 1989, respectively. Similarly, the concentrations of NO3 and NH4 + in precipitation were 26.4 and 14.0 μmol/l in 1988, and 16.6 and 15.2 μmol/l in 1989, respectively. The mean total nitrogen deposition due to wet, dry, and cloud deposition processes was estimated as ~30 and ~40 kg N/ha/year (i.e., ~10 and ~13 kg N/ha/growing season) for 1988 and 1989. Based on an analytical analysis, deposition to the forest canopy due to cloud interception, precipitation, and dry deposition processes was found to contribute ~60, ~20, and ~20 percent, respectively, of the total nitrogen deposition.  相似文献   

7.
Abstract

Acidic sulfate concentrations were measured in metropolitan Philadelphia during the summers of 1992 and 1993, as part of a continuing effort to characterize particle concentrations in urban environments. Sampling was performed simultaneously at eight sites located within and around metropolitan Philadelphia. Sites were selected based on their population density and on their distance and direction from the city center. Air pollution sampling was conducted every other day during the summer of 1992 and every day during the summer of 1993. All samples were collected for 24-h periods beginning at 9 a.m. (EDT). All acidic sulfate and ammonia samples were collected using modified Harvard-EPA Annular Denuder Systems (HEADS).

In this paper, we examine the spatial variation in acidic sulfate and ammonia concentrations within the metropolitan Philadelphia area. We also identify factors that may influence their variation and develop models to predict their concentrations. Outdoor sulfate (SO4 2?) concentrations were uniform within metropolitan Philadelphia; however, aerosol strong acidity (H+) concentrations varied spatially. This variation generally was independent of wind direction, but was related to local factors, such as the NH3 concentration, population density, and distance from the center of the city. Physico-chemical models, which were developed using data collected during the summer of 1992, were excellent predictors of 24-h and mean summertime H+ concentrations measured during the summer of 1993. Models accounted for 78% of the variation in 24-h H+ levels. Results suggest that a single stationary ambient (SAM) monitor would be sufficient to estimate SO4 2? exposures for populations living in Philadelphia. For H+, however, multiple monitoring sites or models should be used to determine the outdoor H+ exposures of populations living in urban environments, although a single SAM site may provide an excellent index of H+ variation over time.  相似文献   

8.
Laboratory experiments suggest that strong acids promote formation of enhanced levels of secondary organic aerosol (SOA), and organic aerosols may contribute to the health impacts of fine PM. We report results from examining hourly speciated fine particle data for evidence of ambient aerosol acidity-catalyzed SOA formation, as indicated by larger increases in the concentrations of organic aerosol mass occurring on days and in locations where more acidic aerosol (lower NH4+/SO4= molar ratios) exists. Data sets from the southeastern U.S. were examined for which hourly acidity of PM2.5 aerosols could be estimated, and for which hourly organic carbon (OC) content had been measured simultaneously. Within-day organic aerosol changes during selected periods were statistically related to concurrent aerosol acidity levels estimated from nitrate-corrected ammonium-to-sulfate ratios. Data from the Look Rock, TN, TVA/IMPROVE site for mid-July to mid-August 2004 showed average compositions frequently as acidic as NH4HSO4, however, no apparent increases in OC levels with increasing aerosol acidity were observed, even when [OC] changes were compared with time-delayed aerosol acidity estimates. SEARCH network data (2003–2004) for rural Centreville, AL (CTR) and Yorkville, GA (YRK) sites were also examined. Warm-season acidity levels were higher at CTR than at YRK, and daytime levels exceeded those at night at both sites. At the YRK site no consistent positive correlations were found between changes in OC or TC levels and aerosol acidity, even with time lags up to 6 h. Aerosol acidity at this site, however, is relatively low due to nearby agricultural sources of NH3. In contrast, during selected periods from April to October 2004, at CTR, 6-h lagged OC changes were weakly correlated with daytime, nitrate-corrected NH4+/SO4= molar ratios, but distinguishing this apparent relationship from meteorological effects on measured OC levels is challenging.  相似文献   

9.
The ionic compositions of particulate matter with aerodynamic diameter < or = 2.5 microm (PM2.5) and size-resolved aerosol particles were measured in Big Bend National Park, Texas, during the 1999 Big Bend Regional Aerosol and Visibility Observational study. The ionic composition of PM2.5 aerosol was dominated by sulfate (SO4(2-)) and ammonium (NH4+). Daily average SO4(2-) and NH4+ concentrations were strongly correlated (R2 = 0.94). The molar ratio of NH4+ to SO4(2-) averaged 1.54, consistent with concurrent measurements of aerosol acidity. The aerosol was observed to be comprised of a submicron fine mode consisting primarily of ammoniated SO4(2-) and a coarse particle mode containing nitrate (NO3-). The NO3- appears to be primarily associated with sea salt particles where chloride has been replaced by NO3-, although formation of calcium nitrate (Ca(NO3)2) is important, too, on several days. Size-resolved aerosol composition results reveal that a size cut in particulate matter with aerodynamic diameter < or = 1 microm would have provided a much better separation of fine and coarse aerosol modes than the standard PM2.5 size cut utilized for the study. Although considerable nitric acid exists in the gas phase at Big Bend, the aerosol is sufficiently acidic and temperatures sufficiently high that even significant future reductions in PM2.5 SO4(2-) are unlikely to be offset by formation of particulate ammonium nitrate in summer or fall.  相似文献   

10.
A PM10 monitoring network was established throughout the South Coast Air Basin (SOCAB) in the greater Los Angeles region during the calendar year 1986. Annual average PM10 mass concentrations within the Los Angeles metropolitan area ranged from 47.0 µg m-3 along the coast to 87.4 µg m-3 at Rubldoux, the furthest inland monitoring station. Measurements made at San Nicolas Island suggest that regional background aerosol contributes between 28 to 44 percent of the PM10 aerosol at monitoring sites In the SOCAB over the long term average. Five major aerosol components (carbonaceous material, NO- 3, SO= 4, NH+ 4, and soil-related material) account for greater than 80 percent of the annual average PM10 mass at all on-land monitoring stations. Peak 24-h average mass concentrations of nearly 300 µg m-3 were observed at inland locations, with lower peak values (?130–150 µg m-3) measured along the coast. Peak-day aerosol composition was characterized by increased NO- 3 Ion and associated ammonium ion levels, as compared to the annual average. There appears to be only a weak dependence of PM10 mass concentration on season of the year. This lack of a pronounced seasonal dependence results from the complex and contradictory seasonal variations in the major chemical components (carbonaceous material, nitrate, sulfate, ammonium ion and crustal material). At most sites within the Los Angeles metropolitan area, PM10 mass concentrations exceeded both the annual and 24-h average federal and state of California PM10 regulatory standards.  相似文献   

11.
Regional simulations of sulfate, nitrate and ammonium aerosols were performed by a nested application of the online-coupled three-dimensional Eulerian model system COSMO-MUSCAT. This was done in a domain covering the northern part of Germany and surrounding regions for the full month of May and a 6-week period in August/September 2006 with the primary focus on secondary inorganic aerosol levels caused by ammonia emissions from domesticated animals and agricultural operations.The results show that in situations with westerly winds ammonium nitrate dominates with concentrations of about 5–10 μg m?3 whereas the ammonium sulfate concentrations are about 5 μg m?3. In situations with winds mainly from the East characterized by warmer and dryer air the ammonium sulfate concentrations have their maximum at about 10 μg m?3 whereas at the same time no ammonium nitrate is present.A reduction of agricultural NH3 emissions by 50% in a regional scale reduces the ammonium nitrate concentrations to a maximum of 30%, while the ammonium sulfate concentrations are unchanged. The reduction of NH3 emissions in a more limited area (here in the Federal state of Germany Niedersachsen) does have no noticeable effect neither on ammonium sulfate nor on ammonium nitrate.  相似文献   

12.
Measurements of ammonia and particulate ammonium were made in the daytime (1200–1500) at a urban site in Yokohama during the 5-year period, 1982–1986. Diurnal NH3 concentrations showed a distinct seasonal trend with a maximum in summer. The diurnal monthly average concentrations were above 10 ppb during the late spring and summer months, while the concentrations during the winter months were between 1 and 5 ppb. The seasonal variation was found to be very similar to that of the average air temperature and showed a periodic pattern over 1 year. A good correlation was observed between diurnal NH3 concentrations and average air temperatures during the 5-year period. The annual mean concentrations were in the range of 6.6–7.6 ppb with only a minor deviation. The diurnal monthly average concentrations of particulate NH4+ were between 1 and 4 μg m−3 and no significant seasonal variations were seen. As a short-term study, simultaneous measurements of NH3, HNO3 and particulate NO3 were made. The diurnal mean concentrations of NH3 and HNO3 were 7.6 and 0.8 ppb, respectively. The concentration of particulate NO3 ranged from 0.3 to 6μg−3. Both HNO3 and particulate NO3 concentrations were relatively low and constant. Thus, NH3 and HNO3 levels did not agree with the concentrations predicted from the NH4NO3 equilibrium constant.  相似文献   

13.
This paper reports the results of over 2 years of measurements of several of the species comprising atmospheric SOx (=SO2+SO42−) and NOy (=NO+NO2 + PAN + HNO3+NO3+ organicnitrates + HONO + 2N2O5 …) at Whiteface Mountain, New York. Continuous real-time measurements of SO2 and total gaseous NOy provided data for about 50% and 65% of the period, respectively, and 122 filter pack samples were obtained for HNO3, SO2 and aerosol SO42−, NO3, H+ and NH4+. Concentrations of SO2 and NOy were greatest in winter, whereas concentrations of the reaction products SO42− and HNO3were greatest in summer. The seasonal variation in SO42− was considerably more pronounced than that of HNO3and the high concentrations of SO42− aerosol present in summer were also relatively more acidic than SO42− aerosol in other seasons. As a result, SO42− aerosol was the predominant acidic species present in summer, HNO3was predominant in other seasons. Aerosol NO3 concentrations were low in all seasons and appeared unrelated to simultaneous NOy and HNO3concentrations. These data are consistent with seasonal variations in photochemical oxidation rates and with existing data on seasonal variations in precipitation composition. The results of this study suggest that emission reductions targeted at the summer season might be a cost-effective way to reduce deposition of S species, but would not be similarly cost-effective in reducing deposition of N species. kwAcid deposition, seasonal variation, sulfate, nitrate, nitric acid, sulfur dioxide, oxides of nitrogen, hydrogen peroxide, ozone, air pollution, Adirondack Mountains  相似文献   

14.
Health studies have shown premature death is statistically associated with exposure to particulate matter <2.5 μm in diameter (PM2.5). The United States Environmental Protection Agency requires all States with PM2.5 non-attainment counties or with sources contributing to visibility impairment at Class I areas to submit an emissions control plan. These emission control plans will likely focus on reducing emissions of sulfur oxides and nitrogen oxides, which form two of the largest chemical components of PM2.5 in the eastern United States: ammonium sulfate and ammonium nitrate. Emission control strategies are simulated using three-dimensional Eulerian photochemical transport models.A monitor study was established using one urban (Detroit) and nine rural locations in the central and eastern United States to simultaneously measure PM2.5 sulfate ion (SO42−), nitrate ion (NO3), ammonium ion (NH4+), and precursor species sulfur dioxide (SO2), nitric acid (HNO3), and ammonia (NH3). This monitor study provides a unique opportunity to assess how well the modeling system predicts the spatial and temporal variability of important precursor species and co-located PM2.5 ions, which is not well characterized in the central and eastern United States.The modeling system performs well at estimating the PM2.5 species, but does not perform quite as well for the precursor species. Ammonia is under-predicted in the coldest months, nitric acid tends to be over-predicted in the summer months, and sulfur dioxide appears to be systematically over-predicted. Several indicators of PM2.5 ammonium sulfate and ammonium nitrate formation and chemical composition are estimated with the ambient data and photochemical model output. PM2.5 sulfate ion is usually not fully neutralized to ammonium sulfate in ambient measurements and is usually fully neutralized in model estimates. The model and ambient estimates agree that the ammonia study monitors tend to be nitric acid limited for PM2.5 nitrate formation. Regulatory strategies in this part of the country should focus on reductions in NOX rather than ammonia to control PM2.5 ammonium nitrate.  相似文献   

15.
Abstract

A three-dimensional chemical transport model (Particulate Matter Comprehensive Air Quality Model with Extensions [PMCAMx]) is used to investigate changes in fine particle (PM2.5) concentrations in response to 50% emissions changes of oxides of nitrogen (NOx) and anthropogenic volatile organic compounds (VOCs) during July 2001 and January 2002 in the eastern United States. The reduction of NOx emissions by 50% during the summer results in lower average oxidant levels and lowers PM2.5 (8% on average), mainly because of reductions of sulfate (9–11%), nitrate (45–58%), and ammonium (7–11%). The organic particulate matter (PM) slightly decreases in rural areas, whereas it increases in cities by a few percent when NOx is reduced. Reduction of NOx during winter causes an increase of the oxidant levels and a rather complicated response of the PM components, leading to small net changes. Sulfate increases (8–17%), nitrate decreases (18– 42%), organic PM slightly increases, and ammonium either increases or decreases a little. The reduction of VOC emissions during the summer causes on average a small increase of the oxidant levels and a marginal increase in PM2.5. This small net change is due to increases in the inorganic components and decreases of the organic ones. Reduction of VOC emissions during winter results in a decrease of the oxidant levels and a 5–10% reduction of PM2.5 because of reductions in nitrate (4–19%), ammonium (4–10%), organic PM (12–14%), and small reductions in sulfate. Although sulfur dioxide (SO2) reduction is the single most effective approach for sulfate control, the coupled decrease of SO2 and NOx emissions in both seasons is more effective in reducing total PM2.5 mass than the SO2 reduction alone.  相似文献   

16.
Recent epidemiologic studies have emphasized a relationship between alteration in lung function, respiratory symptoms in asthmatics, and elevated levels of sulfate air pollutants. In asthmatics, it has been reported that 1) the more acidic sulfate aerosols, sulfuric acid (H2SO4) and ammonium bisulfate (NH4HSO4), provoked the greatest changes in lung function and 2) a definite exposure-response relationship exists for H2SO4 inhalation. To determine if sulfate aerosol exposure caused increased reactivity to a known bronchoconstrictor, normal and asthmatic subjects inhaled subthreshold doses of carbachol after the following sulfates: H2SO4, NH4HSO4, and sodium bisulfate. A NaCI aerosol served as a control. Exposure times averaged 16 minutes with sulfate concentrations ranging from 100 μ/m3 to 1000 jtg/m3. In normal subjects, prior inhalation of either 1000 yug/m3 H2SO4 or NH4HSO4 significantly potentiated (P < 0.05) the bronchoconstrictor action of carbachol on airway conductance compared to NaCI and carbachol or carbachol alone by t-tests. For the asthmatic group, prior inhalation of either 1000/tg/m3 H2SO4 or NH4HSO4 (P < 0.05), or 450 μ/m3 H2SO4 (P < 0.05) similarly enhanced the carbachol bronchoconstrictor effect compared to NaCI and carbachol. At the low 100 μ/m3, no sulfates altered the effects of carbachol on pulmonary function. Although mean changes between the sulfate groups did not attain significance by an analysis of variance, it was found that the bronchoconstrictor action of carbachol was potentiated by the sulfate aerosols more or less in relation to their acidity.  相似文献   

17.
This paper is Part II in a pair of papers that examines the results of the Community Multiscale Air Quality (CMAQ) model version 4.5 (v4.5) and discusses the potential explanations for the model performance characteristics seen. The focus of this paper is on fine particulate matter (PM2.5) and its chemical composition. Improvements made to the dry deposition velocity and cloud treatment in CMAQ v4.5 addressing compensating errors in 36-km simulations improved particulate sulfate (SO42−) predictions. Large overpredictions of particulate nitrate (NO3) and ammonium (NH4+) in the fall are likely due to a gross overestimation of seasonal ammonia (NH3) emissions. Carbonaceous aerosol concentrations are substantially underpredicted during the late spring and summer months, most likely due, in part, to a lack of some secondary organic aerosol (SOA) formation pathways in the model. Comparisons of CMAQ PM2.5 predictions with observed PM2.5 mass show mixed seasonal performance. Spring and summer show the best overall performance, while performance in the winter and fall is relatively poor, with significant overpredictions of total PM2.5 mass in those seasons. The model biases in PM2.5 mass cannot be explained by summing the model biases for the major inorganic ions plus carbon. Errors in the prediction of other unspeciated PM2.5 (PMOther) are largely to blame for the errors in total PM2.5 mass predictions, and efforts are underway to identify the cause of these errors.  相似文献   

18.
Totally nine measurement campaigns for ambient particles and SO2 have been conducted during the period of 1997–2000 in Qingdao in order to understand the characteristics of the particulate matter in coastal areas of China. The mass fractions of PM2.5, PM2.5−10 and PM>10 in TSP are 49%, 25% and 26%, respectively. The size distribution of particles mass concentrations in Qingdao shows bi-modal distribution. Mass fraction percentages of water-soluble ions in PM2.5, PM2.5−10 and PM>10 decreased from 62% to 35% and 21%. In fine particles, sulfate, nitrate and ammonium, secondary formed compounds, are major components, totally accounting for 50% of PM2.5 mass concentration.The ratios of sulfate, chloride, ammonium and potassium in PM2.5 for heating versus non-heating periods are 1.34, 1.80, 1.56 and 1.44, respectively. The ratio of nitrate is 3.02 and this high ratio could be caused by reduced volatilization at lower temperature. Sulfate concentrations are higher than nitrate in PM2.5. The chemical forms of sulfate and nitrate are probably (NH4)2SO4 and NH4NO3 and chloride depletion was observed.Backward trajectory analysis reflected possible influence of air pollutant transport to Qingdao local aerosol pollution.  相似文献   

19.
Aerosol light-scattering in The Netherlands   总被引:2,自引:0,他引:2  
The relation between the (midday) aerosol light-scattering and the concentrations of nitrate and sulfate has been assessed at a site near the coast of the North Sea in The Netherlands. Midday was selected for the measurements because this is the time at which the aerosol is most effective in the scattering of solar radiation. Automated thermodenuders were used for the hourly measurement of the concentration of nitrate and sulfate with a lower detection limit of 0.1 μ m−3. The site is operational since October 1993. The first-year average dry aerosol light-scattering (measured with an integrating nephelometer at a wavelength of 525 nm) was 0.71 × 10−4 m1&#x0304;. In arctic marine air the aerosol light-scattering was a factor of 10 lower than the average value, in polluted continental air it was up to a factor of 10 higher. The ratio of the total aerosol light-scattering to the concentration of sulfate was 20 m2 g−1. The contribution of nitrate to the aerosol light-scattering was higher than that of sulfate in the winter and of about equal magnitude in the summer period. In November and December of 1993, the humidity dependence of the aerosol light-scattering was investigated. Two types of (continental) aerosol were found with respect to the humidity behavior. One type showed a significant increase in light-scattering at the deliquescence points of ammonium nitrate and ammonium sulfate, with that of ammonium nitrate the most pronounced. The second type of continental aerosol did not show deliquescence, but followed the typical humidity dependence of aerosol in a supersaturated droplet state. In this latter aerosol type, nitrate dominated over sulfate. It was concluded from the study that the aerosol light-scattering in The Netherlands, in particular its humidity dependence, is governed by (ammonium) nitrate.  相似文献   

20.
We used aerosol data from 4 sites along the west coast of the U.S. to evaluate the role of transport, seasonal pattern, chemical composition and possible trends in the marine background aerosol for the Pacific Northwest. For the Crater Lake samples, the data have been segregated using 10 day back isentropic trajectories to evaluate the role of transport. Our analysis of the segregated data indicates that the trajectories can successfully separate “locally influenced” from “marine background” aerosol, but are not able to identify a significant difference in the mean concentrations during marine vs Asian transport pathways.The background marine aerosol has an annual mean and median concentrations of 2.0 and 1.5 μg m−3, respectively, for particles less than 2.5 μm diameter. There is a seasonal pattern in all components of the aerosol mass, with a summer maximum and winter minimum. This pattern is most likely due to the strong seasonal pattern in precipitation, which peaks in winter, combined with enhanced sources in summer. The Crater Lake marine aerosol composition is dominated by organics (∼40% by mass), with smaller contributions from sulfates, mineral dust and elemental carbon. Analysis of the background marine aerosol found no apparent trend since 1988. This is in contrast to results reported by Prospero et al. (J. Geophys. Res. 108 (2003) 4019) for nss-SO42− samples from Midway Island in the North Pacific. Comparison of the mean concentrations for each site shows that the Midway samples are significantly more influenced by Asian industrial sources of sulfur, compared to Crater Lake, which implies a substantial loss of nss-SO42− from Asian sources that occurs during transit across the Pacific to Crater Lake due to precipitation scavenging.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号