首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Natural radionuclides have been proposed as a means of assessing the transport of ozone (O3) and aerosols in the troposphere. Beryllium-7 (7Be) is produced in the upper troposphere and lower stratosphere by the interaction of cosmogenic particles with atmospheric nitrogen and oxygen. 7Be has a 53.29-day half-life (478 keV gamma) and is known to attach to fine particles in the atmosphere once it is formed. It has been suggested that O3 from aloft can be transported into rural and urban regions during stratospheric-tropospheric folding events leading to increased background levels of O3 at the surface. 7Be can be used as a tracer of upper atmospheric air parcels and the O3 associated with them. Aerosol samples with a 2.5-microm cutoff were collected during 12-hr cycles (day/night) for a 30-day period at Deer Park, TX, near Houston, in August-September of 2000, and at Waddell, AZ, near Phoenix, in June-July of 2001. A comparison of 7Be levels with 12-hr O3 averages and maxima shows little correlation. Comparison of nighttime and daytime O3 levels indicate that during the day, when mixing is anticipated to be higher, the correlation of 7Be with O3 in Houston is approximately twice that observed at night. This is consistent with mixing and with the anticipated loss of O3 by reaction with nitric oxide (NO) and dry deposition. At best, 30% of the O3 variance can be explained by the correlation with 7Be for Houston, less than that for Phoenix where no significant correlation was seen. This result is consistent with the intercept values obtained for 7Be correlations with either O3 24-hr averages or O3 12-hr maxima and is also in the range of the low O3 levels (25 ppb) observed at Deer Park during a tropical storm event where the O3 is attributable primarily to background air masses. That is, maximum background O3 level contributions from stratospheric sources aloft are estimated to be in the range of 15-30 ppb in the Houston, TX, and Phoenix, AZ, area, and levels above these are because of local tropospheric photochemical production.  相似文献   

2.
A background of ozone (O3), principally of stratospheric origin, is present in the lower free troposphere. Typical mean O3 levels of 50 ppb, 40 ppb, and 30 ppb are encountered here in spring, summer, and fall, respectively. Maximum hourly O3 concentrations which are twice these mean values can be expected. Ozone from the free troposphere is routinely brought down to ground level under turbulent atmospheric conditions. Deep and rapid Intrusions of stratospheric air into the lower troposphere are associated with low-pressure troughs and occur regularly. In the mid troposphere, O3 levels as high as 300 ppb are found within these intrusions. Observational data showing these intrusions, containing high O3 concentrations, to directly reach ground level are currently lacking. Over the United States, an intrusion was present aloft on 8 9% of the days in 1978. The frequency, however, is somewhat reduced in summer and a northward movement is evident. During 1978, no intrusion occurred south of 30°N between June and August and none south of 40 °N in August.

The hypothesis that low levels of stratospheric O3 produce disproportionately large amounts of O3 in the polluted atmosphere cannot be supported from currently known chemistry but should be studied further. The experimental technique involving a 7Be/O3 ratio to estimate the daily stratospheric component of ground level O3 is unverified and considered to be inadequate for air quality applications. Estimates resulting from such a technique are considered uncertain by a factor of more than three. Specially designed aircraft studies provide the best means to determine quantitatively the impact of stratospheric O3 on ground level air quality.  相似文献   

3.
The 7Be activity concentrations measured from 1996 to 1998 at four high-altitude stations, Jungfraujoch—Switzerland, Zugspitze—Germany, Sonnblick—Austria and Mt. Cimone—Italy, were analyzed in combination with a set of, meteorological and atmospheric parameters such as the tropopause height, relative and specific humidity and also in conjunction with 3D back-trajectories in order to investigate the climatological features of 7Be. A frequency distribution analysis on 7Be activity concentrations revealed the existence of two concentration classes around 1.5 and 6 mBq m−3 and a transition class between the two modes of the distribution at 3–4 mBq m−3. Cross-correlation analysis performed between 7Be and a number of meteorological and atmospheric parameters at the first three stations showed a strong negative correlation with relative humidity (−0.56, −0.51, −0.41) indicating the importance of wet scavenging as a controlling mechanism. Also, the positive correlation with the height of 3-days back-trajectories and tropopause height (+0.49/+0.43, +0.59/+0.36, +0.44/+0.38) shows that downward transport from the upper or middle to lower troposphere within anticyclonic conditions plays also an important role. Trajectory statistics showed that low 7Be concentrations typically originate from lower-altitude subtropical ocean areas, while high concentrations arrive from the north and high altitudes, as is characteristic for stratospheric intrusions. Although the 7Be activity concentrations are highly episodic, the monthly means indicate an annual cycle with a late-summer maximum at all stations. The correlation coefficients calculated for monthly means of the 7Be and atmospheric data suggest that the main predictor controlling the seasonality of the 7Be concentrations is tropopause height (+0.76, +0.56, +0.60), reflecting more vertical transport from upper tropospheric levels into the lower troposphere during the warm season than during the cold season.  相似文献   

4.
The 7Be activity concentrations measured from 1996 to 1998 at four high-altitude stations, Jungfraujoch—Switzerland, Zugspitze—Germany, Sonnblick—Austria and Mt. Cimone—Italy, were analyzed in combination with a set of, meteorological and atmospheric parameters such as the tropopause height, relative and specific humidity and also in conjunction with 3D back-trajectories in order to investigate the climatological features of 7Be. A frequency distribution analysis on 7Be activity concentrations revealed the existence of two concentration classes around 1.5 and 6 mBq m−3 and a transition class between the two modes of the distribution at 3–4 mBq m−3. Cross-correlation analysis performed between 7Be and a number of meteorological and atmospheric parameters at the first three stations showed a strong negative correlation with relative humidity (−0.56, −0.51, −0.41) indicating the importance of wet scavenging as a controlling mechanism. Also, the positive correlation with the height of 3-days back-trajectories and tropopause height (+0.49/+0.43, +0.59/+0.36, +0.44/+0.38) shows that downward transport from the upper or middle to lower troposphere within anticyclonic conditions plays also an important role. Trajectory statistics showed that low 7Be concentrations typically originate from lower-altitude subtropical ocean areas, while high concentrations arrive from the north and high altitudes, as is characteristic for stratospheric intrusions. Although the 7Be activity concentrations are highly episodic, the monthly means indicate an annual cycle with a late-summer maximum at all stations. The correlation coefficients calculated for monthly means of the 7Be and atmospheric data suggest that the main predictor controlling the seasonality of the 7Be concentrations is tropopause height (+0.76, +0.56, +0.60), reflecting more vertical transport from upper tropospheric levels into the lower troposphere during the warm season than during the cold season.  相似文献   

5.
Causes for the unusually high and seasonally anomalous ozone concentrations at Summit, Greenland were investigated. Surface data from continuous monitoring, ozone sonde data, tethered balloon vertical profiling data, correlation of ozone with the radionuclide tracers 7Be and 210Pb, and synoptic transport analysis were used to identify processes that contribute to sources and sinks of ozone at Summit. Northern Hemisphere (NH) lower free troposphere ozone mixing ratios in the polar regions are ∼20 ppbv higher than in Antarctica. Ozone at Summit, which is at 3212 m above sea level, reflects its altitude location in the lower free troposphere. Transport events that bring high ozone and dry air, likely from lower stratospheric/higher tropospheric origin, were observed ∼40% of time during June 2000. Comparison of ozone enhancements with radionuclide tracer records shows a year-round correlation of ozone with the stratospheric tracer 7Be. Summit lacks the episodic, sunrise ozone depletion events, which were found to reduce the annual, median ozone at NH coastal sites by up to ∼3 ppbv. Synoptic trajectory analyses indicated that, under selected conditions, Summit encounters polluted continental air with increased ozone from central and western Europe. Low ozone surface deposition fluxes over long distances upwind of Summit reduce ozone deposition losses in comparison to other NH sites, particularly during the summer months. Surface-layer photochemical ozone production does not appear to have a noticeable influence on Summit's ozone levels.  相似文献   

6.
Abstract

The objective of this project is to demonstrate how the ambient air measurement record can be used to define the relationship between O3 (as a surrogate for photochemistry) and secondary particulate matter (PM) in urban air. The approach used is to develop a time-series transfer-function model describing the daily PM10 (PM with less than 10 μm aerodynamic diameter) concentration as a function of lagged PM and current and lagged O3, NO or NO2, CO, and SO2. Approximately 3 years of daily average PM10, daily maximum 8-hr average O3 and CO, daily 24-hr average SO2 and NO2, and daily 6:00 a.m.-9:00 a.m. average NO from the Aerometric Information Retrieval System (AIRS) air quality subsystem are used for this analysis. Urban areas modeled are Chicago, IL; Los Angeles, CA; Phoenix, AZ; Philadelphia, PA; Sacramento, CA; and Detroit, MI. Time-series analysis identified significant autocorrelation in the O3, PM10, NO, NO2,CO, and SO2 series. Cross correlations between PM10 (dependent variable) and gaseous pollutants (independent variables) show that all of the gases are significantly correlated with PM10 and that O3 is also significantly correlated lagged up to two previous days. Once a transfer-function model of current PM10 is defined for an urban location, the effect of an O3-control strategy on PM concentrations is estimated by calculating daily PM10 concentrations with reduced O3 concentrations. Forecasted summertime PM10 reductions resulting from a 5 percent decrease in ambient O3 range from 1.2 μg/m3 (3.03%) in Chicago to 3.9 μg/m3 (7.65%) in Phoenix.  相似文献   

7.
Abstract

Analyses of ozone (O3) measurements in conjunction with photochemical modeling were used to assess the feasibility of attaining the federal 8-hr O3 standard in the eastern United States. Various combinations of volatile organic compound (VOC) and oxides of nitrogen (NOx) emission reductions were effective in lowering modeled peak 1-hr O3 concentrations. VOC emissions reductions alone had only a modest impact on modeled peak 8-hr O3 concentrations. Anthropogenic NOx emissions reductions of 46–86% of 1996 base case values were needed to reach the level of the 8-hr standard in some areas. As NOx emissions are reduced, O3 production efficiency increases, which accounts for the less than proportional response of calculated 8-hr O3 levels. Such increases in O3 production efficiency also were noted in previous modeling work for central California. O3 production in some urban core areas, such as New York City and Chicago, IL, was found to be VOC-limited. In these areas, moderate NOx emissions reductions may be accompanied by increases in peak 8-hr O3 levels. The findings help to explain differences in historical trends in 1- and 8-hr O3 levels and have serious implications for the feasibility of attaining the 8-hr O3 standard in several areas of the eastern United States.  相似文献   

8.
The activity of the natural radionuclide tracers 7Be and 210Pb has been determined in bulk aerosol samples collected over 2-day intervals for nearly five full years at Summit, Greenland. Year-round sampling was conducted in three campaigns; summer 1997 to summer 1998, summer 2000 to summer 2002, and summer 2003 to present. As in previous summer campaigns at Summit, and a year-round investigation at Dye 3, variations in the activities of the tracers on short time scales were strongly correlated despite the upper troposphere/lower stratosphere source of 7Be and the continental surface source of 222Rn (precursor of 210Pb). This behavior is attributed to boundary layer dynamics exerting the dominant control on activities in air just above the ice sheet. Aerosols and associated species are depleted from the boundary layer above the snow when a strong inversion limits exchange with the free troposphere. Episodic weakening of the inversion allows ventilation of the boundary layer. This cycle drives simultaneous decreases and increases in the radionuclide tracers. The correlation between 7Be and 210Pb on seasonal and annual bases was found to be stronger than at Dye 3, and the average activity of 7Be was lower at Summit despite the higher elevation (3.0 versus 2.5 km). These observations indicate that the boundary layer at Summit is more effectively isolated than at Dye 3. The activity of 7Be at Summit peaked in June or July all 5 years, closely following the seasonality of stratospheric injection of 7Be into the Arctic troposphere (based on seasonality of the 10Be/7Be ratio previously measured at Alert, NWT). This suggests that when the boundary layer at Summit is replenished by ventilation, it receives air reflecting the composition of the mid and upper troposphere.  相似文献   

9.
10.
Abstract

In many locations in Eastern Canada, ambient levels of fine particulate matter (PM2.5) and surface ozone (O3) depend on airflow direction and synoptic scale meteorological conditions. In this study, a cluster analysis was performed on 10 yr (1994 –2003) of back-trajectory data for 11 locations in Eastern Canada, resulting in the identification of 10 unique back-trajectory clusters (or airflows) for each location. The airflows were then used to characterize and identify spatial and temporal trends in the daily maximum 8-hr average O3 (dmax 8-hr O3) and the daily average PM2.5 levels. Results showed that airflows from the southwest passing over Michigan and Southern Ontario were associated, on average, with the highest O3 levels at most locations in Eastern Canada.For PM2.5, the highest levels occurred with airflows from the Eastern Ohio River Valley. At major urban locations in Ontario and Quebec, the warm season mean (May to September) dmax 8-hr O3 and the annual mean PM2.5 were, on average, 12 parts per billion and 7.6 μg/m3 higher, respectively, than airflows from the north. Elevated levels of O3 and PM2.5 also occurred under light airflows, and, on average, the levels under light airflows were higher than their nonlight counterparts. At several locations in Canada, including Toronto, Montreal, Quebec City, and Kejimkujik, the annual warm season mean dmax 8-hr O3 experienced a statistically significant (95% confidence) increasing trend over the 10-yr period. When airflow direction was considered, a number of locations experienced statistically significant upward trends in O3 for airflow from the north and northwest. Several locations also showed significant upward trends associated with airflow from the southwest passing over Michigan and Southwestern Ontario. Although there are no statistically significant downward trends, airflows from the southwest have shown a reduction in O3 levels in Southwestern Ontario in more recent years.  相似文献   

11.
Absorption spectroscopy, which is widely used for concentration measurements of tropospheric and stratospheric compounds, requires precise values of the absorption cross-sections of the measured species. NO2, O2 and its collision-induced absorption spectrum, and H2O absorption cross-sections have been measured at temperature and pressure conditions prevailing in the Earth’s atmosphere. Corrections to the generally accepted analysis procedures used to resolve the convolution problem are also proposed.  相似文献   

12.
In the May and June of 1998, field measurements were taken at a site near the Usery Pass Recreation Area, ∼27 miles from the downtown Phoenix area, overlooking Phoenix and Mesa, Arizona. This site was selected to examine the impacts of the Phoenix urban plume on the Usery Pass Recreation Area and surrounding regions. Data were obtained for ultraviolet-B (UVB) radiation, nitrogen dioxide (NO2), peroxyacetyl nitrate (PAN), ozone (O3), and carbon monoxide (CO). Nocturnal plumes of NO2 (in tens of ppb), observed near midnight, were correlated with CO and anti-correlated with O3. This behavior was consistent with the titration of locally generated NO by boundary layer O3 to form the nighttime NO2 plumes that were subsequently transported into the Usery Pass Recreation area. Nitrate radical (NO3) production rates were calculated to be very high on the edges of these nocturnal plumes. Examination of O3 and PAN data also indicates that Phoenix is being affected by long-range transport of pollutants from the Los Angeles to San Diego areas. A regional smoke episode was observed in May, accompanied by a decrease in UVB of factor of two and a decrease in O3 and an increase in methyl chloride. Low level back trajectories and chemical evidence confirm that the smoke event originated in northern Mexico and that the reduced O3 levels observed at Usery Pass could be partially due to reduced photolysis rates caused by carbonaceous soot aerosols transported in the smoke plume. The results are discussed with regard to potential effects of local pollution transport from the Phoenix air basin as well as an assessment of the contributions from long-range transport of pollutants to the background levels in the Phoenix-Usery Pass area.  相似文献   

13.
Abstract

A national analysis of weekday/weekend ozone (O3) differences demonstrates significant variation across the country. Weekend 1-hr or 8-hr maximum O3 varies from 15% lower than weekday levels to 30% higher. The weekend O3 increases are primarily found in and around large coastal cities in California and large cities in the Midwest and Northeast Corridor. Both the average and the 95th percentile of the daily 1-hr and 8-hr maxima exhibit the same general pattern. Many sites that have elevated O3 also have higher O3 on weekends even though traffic and O3 precursor levels are substantially reduced on weekends. Detailed studies of this phenomenon indicate that the primary cause of the higher O3 on weekends is the reduction in oxides of nitrogen (NOx) emissions on weekends in a volatile organic compound (VOC)-limited chemical regime. In contrast, the lower O3 on weekends in other locations is probably a result of NOx reductions in a NOx-limited regime. The NOx reduction explanation is supported by a wide range of ambient analyses and several photochemical modeling studies. Changes in the timing and location of emissions and meteorological factors play smaller roles in weekend O3 behavior. Weekday/weekend temperature differences do not explain the weekend effect but may modify it.  相似文献   

14.
Boundary layer ozone and carbon monoxide were measured at a savannah site in the Orinoco river basin, during the dry and wet seasons. CO and O3 concentrations recorded around noontime show a good linear correlation, suggesting that the higher ozone levels observed during the dry season are photochemically produced during the oxidation of reactive hydrocarbons in the presence of NOx both emitted by biomass burning. The rate of photochemical ozone production in the boundary layer ozone by biomass burning calculated from the production ratio ΔO3/ΔCO (0.17±0.01 v : v) and the amount of CO produced by fires (0.26–1.3 mole m−2 dry season−1), ranges from 0.6 to 2.6 ppbv h−1 for 8 h of daylight. This O3 production rate is in fairly good agreement with the value derived from RO2 radical measurements made in the Venezuelan savannah during the dry season. The net boundary layer production of O3 from all tropical America savannah fires is estimated to range between 0.28 and 0.36 Tmol O3 per year, which is about 3 times higher than the O3 produced from pollution sources in the eastern United States during the summer. An extrapolation to all of the world's savannah would indicate a net boundary layer ozone production of about 1.2 Tmol yr−1. This is discussed in the context of the overall global budget of tropospheric ozone.  相似文献   

15.
The behaviour of ozone (O3) and two important precursors, nitrogen dioxide (NO2) and formaldehyde (HCHO), over the East Mediterranean in spring from 1996 to 2002 is studied in order to characterise the buildup of tropospheric O3. The vertical distribution of O3 observed over Crete during the Photochemical Activity and Solar Ultraviolet Radiation (PAUR II) campaign in May 1999 has been used for validation of satellite-derived data. Retrievals of O3 columns from measurements of backscattered radiation by Global Ozone Monitoring Experiment (GOME) are compared with Total Ozone Mapping Spectrometer (TOMS), balloon, Systeme d’Analyse par Observation Zenithale (SAOZ) and LIDAR observations. The total O3 vertical columns vary between 270 and 402 DU and correlate well with changes in air circulation patterns. The total observed variability in tropospheric O3 is about 25 DU. Chemical box model calculations associate the GOME-observed NO2 and HCHO tropospheric columns with a potential of daily photochemical enhancement in the tropospheric O3 columns of about 0.8–1 DU over Crete and estimate the daily potential of regional photochemical buildup within upwind polluted air masses at about 2–8 DU. A Langrangian analysis attributes at most 10–20 DU of tropospheric O3 to stratosphere–troposphere exchange (STE). The remainder is attributed to long-range transport of O3 from industrial regions in Central Europe. From 1996 to 2002, in May no significant inter-annual variation in the tropospheric NO2 and HCHO columns over Crete has been observed by GOME suggesting no detectable increase in regionally produced tropospheric O3.  相似文献   

16.
ABSTRACT

Several ozone modeling approaches were investigated to determine if uncertainties in the meteorological data would be sufficiently large to limit the application of physically realistic ozone (O3) forecast models. Three diagnostic schemes were evaluated for the period of May through September 1997 for Houston, TX. Correlations between measured daily maximum and model calculated O3 air concentrations were found to be 0.70 using a linear regression model, 0.65 using a non-advective box model, and 0.49 using a three-dimensional (3-D) transport and dispersion model. Although the regression model had the highest correlation, it showed substantial underestimates of the highest concentrations. The box model results were the most similar to the regression model and did not show as much underestimation. The more complex 3-D modeling approach yielded the worst results, likely resulting from O3 maxima that were driven by local factors rather than by the transport of pollutants from outside of the Houston domain. The highest O3 concentrations at Houston were associated with light winds and meandering trajectories. A comparison of the gridded meteorological data used by the 3-D model to the observations showed that the wind direction and speed values at Houston differed most on those days on which the O3 underestima-tions were the greatest. These periods also tended to correspond with poor precipitation and temperature estimates. It is concluded that better results are not just obtained through additional modeling complexity, but there needs to be a comparable increase in the accuracy of the meteorological data.  相似文献   

17.
Closing Remarks     
Considerable attention has been paid in recent years to photochemical smog pollution close to the earth's surface and to stratospheric ozone depletion. There is reason to suspect that the next round of scientific concern will be devoted to the perturbations in the “free troposphere.” Tropospheric ozone has been building up in many regions of the northern hemisphere. Ozone changes in the upper troposphere will exert a considerable impact on global warming. This could affect moisture levels, cloud amount and distribution, precipitation, and atmospheric dynamics on different scales.

This paper analyzes: (1) the physical and chemical processes contributing to changes in tropospheric ozone concentration; (2) the observational evidence of previous ozone change; and (3) results drawn from computer modelling of past and future radiative forcing caused by rising ozone concentrations in the upper troposphere.

The solar and longwave radiative model developed by Wang et al. (1991) was used for calculating the change in radiative forcing to the troposphere-surface system that can be ascribed to changing concentrations in ozone and other greenhouse gases. Nitric oxide emission from aircraft are a prime suspect for the observed increases in upper tropospheric ozone. The inference can be drawn that a radiative forcing of 0.2 to 0.35 Wm-2 will result from a doubling of aircraft emissions over the next two decades. This will amount to 10 to 25 percent of the radiative forcing attributable to CO2 alone for the same period. The effect of doubling aircraft emissions will increase as stratospheric ozone concentrations recover from the recent buildup of harmful chlorofluorocarbons. A large fraction of the radiative forcing that occurred during the 1970 to 1990 period can be attributed to increases in tropospheric ozone as opposed to increases in other greenhouse gases.  相似文献   

18.
A unique dataset of airborne in situ observations of HCl, O3, HNO3, H2O, CO, CO2 and CH3Cl has been made in and near the tropical tropopause layer (TTL). A total of 16 profiles across the tropopause were obtained at latitudes between 10°N and 3°S from the NASA WB-57F high-altitude aircraft flying from Costa Rica. Few in situ measurements of these gases, particularly HCl and HNO3, have been reported for the TTL. The general features of the trace gas vertical profiles are consistent with the concept of the TTL as distinct from the lower troposphere and lower stratosphere. A combination of the tracer profiles and correlations with O3 is used to show that a measurable amount of stratospheric air is mixed into this region. The HCl measurements offer an important constraint on stratospheric mixing into the TTL because once the contribution from halocarbon decomposition is quantified, the remaining HCl (>60% in this study) must have a stratospheric source. Stratospheric HCl in the TTL brings with it a proportional amount of stratospheric O3. Quantifying the sources of O3 in the TTL is important because O3 is particularly effective as a greenhouse gas in the tropopause region.  相似文献   

19.
Abstract

Air quality data collected in the California Regional PM10/PM2.5 Air Quality Study (CRPAQS) are analyzed to qualitatively assess the processes affecting secondary aerosol formation in the San Joaquin Valley (SJV). This region experiences some of the highest fine particulate matter (PM2.5) mass concentrations in California (≤188 μg/m3 24-hr average), and secondary aerosol components (as a group) frequently constitute over half of the fine aerosol mass in winter. The analyses are based on 15 days of high-frequency filter and canister measurements and several months of wintertime continuous gas and aerosol measurements. The phase-partitioning of nitrogen oxide (NOx)-related nitrogen species and carbonaceous species shows that concentrations of gaseous precursor species are far more abundant than measured secondary aerosol nitrate or estimated secondary organic aerosols. Comparisons of ammonia and nitric acid concentrations indicate that ammonium nitrate formation is limited by the availability of nitric acid rather than ammonia. Time-resolved aerosol nitrate data collected at the surface and on a 90-m tower suggest that both the daytime and nighttime nitric acid formation pathways are active, and entrainment of aerosol nitrate formed aloft at night may explain the spatial homogeneity of nitrate in the SJV. NOx and volatile organic compound (VOC) emissions plus background O3 levels are expected to determine NOx oxidation and nitric acid production rates, which currently control the ammonium nitrate levels in the SJV. Secondary organic aerosol formation is significant in winter, especially in the Fresno urban area. Formation of secondary organic aerosol is more likely limited by the rate of VOC oxidation than the availability of VOC precursors in winter.  相似文献   

20.
With the promulgation of the National Ambient Air Quality Standards (NAAQS or standard) for 8-hr ozone (O3), the U.S. Environmental Protection Agency (EPA) issued modeling guidance that advocated the use of results from photochemical air quality models in a relative sense. In doing so, the EPA provided guidance on how to calculate relative response factors (RRFs) that can project current design value (DV) mixing ratios into the future for the purpose of determining the attainment status with respect to the O3 standard. The RRFs recommended by the EPA represent the average response of the photochemical model over a broad range of O3 mixing ratios above a specified cutoff threshold. However, it is known that O3 response to emission reductions of limiting precursors (i.e., NOx and/or VOC) is greater on days with higher O3 mixing ratios compared to days with lower mixing ratios. In this study, we present a segmented RRF concept termed band-RRF, which takes into account the different model responses at different O3 mixing ratios. The new band-RRF concept is demonstrated in the San Joaquin Valley (SJV) region of California for the 1-hr and 8-hr O3 standards. The 1-hr O3 analysis is relevant to work done in support of the SJV O3 State Implementation Plan (SIP) submitted to the EPA in 2013. The 8-hr example for the future year of 2019 is presented for illustrative purposes only. Further work will be conducted with attainment deadline of 2032 as part of upcoming SIPs for the 0.075 parts per million (ppm) 8-hr O3 standard. The applicability of the band-RRF concept to the particulate matter (PM2.5) standards is also discussed.
Implications:Results of photochemical models are used in regulatory applications in a relative sense using relative response factors (RRFs), which represent the impacts of emissions reductions over a wide range of ozone (O3) values. It is possible to extend the concept of RRFs to account for the fact that higher O3 mixing ratios (both 1-hr and 8-hr) respond more to emissions controls of limiting precursors than do lower O3 mixing ratios. We demonstrate this extended concept, termed band-RRF, for the 1-hr and 8-hr O3 National Ambient Air Quality Standard (NAAQS or standard) in the San Joaquin Valley of California. This extension can also be made applicable to the 24-hr PM2.5 and annual PM2.5 standards.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号