首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
The use of activated carbon fiber (ACF) filters for the capture of particulate matter and elemental Hg is demonstrated. The pressure drop and particle collection efficiency characteristics of the ACF filters were established at two different face velocities and for two different aerosols: spherical NaCl and combustion-generated silica particles. The clean ACF filter specific resistance was 153 kg m-2 sec-1. The experimental specific resistance for cake filtration was 1.6 x 10(6) sec-1 and 2.4 x 10(5) sec-1 for 0.5- and 1.5-micron mass median diameter particles, respectively. The resistance factor R was approximately 2, similar to that for the high-efficiency particulate air filters. There was a discrepancy in the measured particle collection efficiencies and those predicted by theory. The use of the ACF filter for elemental Hg capture was illustrated, and the breakthrough characteristic was established. The capacity of the ACF filter for Hg capture was similar to other powdered activated carbons.  相似文献   

2.
Final design, calibration, and field testing have been completed for a new 1.13 m3/min (40 cfm) High-volume Virtual Impactor (HVVI). Field tests have demonstrated that the new classifier/collector works well as an accessory to the existing PM10 Size Selective Inlet high-volume samplers. The HVVI provides two fractions of PM10 mass, both of which are collected by filtration. The fine fraction (0-2.5 μm aero. dia.) Is collected on the standard 20.3 × 25.4 cm (8- × 10-in) high-volume filter; the coarse fraction (2.5-10 μm aero. dia.) is collected on a 5.1 × 15.2 cm (2- × 6-in) filter. Coarse flow through the receiver tubes is limited to 0.057 m3/min (2 cfm), 5 percent of the total flow.

The operating pressure drop across the HVVI stages Is sufficiently high to make changes In pressure across the collection filters Insignificant. The HVVI filter holder assembly facilitates loading/ unloading samples in the laboratory, thus eliminating damage due to handling filters in the field. Size separation characteristics of the HVVI agree well with those for the 16.7 L/min commercially available dichotomous sampler with the 50 percent effectiveness (cut-point) occurring at 2.5 μm. Applying laboratory-determined particle losses to the typical ambient particle mass size distribution described In Federal Register 49, 40 CFR, Part 53, Table D-3, the HVVI fine fraction total mass loss is less than 0.8 percent for liquid particles and less than 0.1 percent for solid particles; coarse fraction total mass loss is less than 2.5 percent for liquid particles, and less than 0.2 percent for solid particles.  相似文献   

3.
This study performed a workplace evaluation of emission control using available air sampling filters and characterized the emitted particles captured in filters. Characterized particles were contained in the exhaust gas released from carbon nanotube (CNT) synthesis using chemical vapor deposition (CVD). Emitted nanoparticles were collected on grids to be analyzed using transmission electron microscopy (TEM). CNT clusters in the exhaust gas were collected on filters for investigation. Three types of filters, including Nalgene surfactant-free cellulose acetate (SFCA), Pall A/E glass fiber, and Whatman QMA quartz filters, were evaluated as emission control measures, and particles deposited in the filters were characterized using scanning transmission electron microscopy (STEM) to further understand the nature of particles emitted from this CNT production. STEM analysis for collected particles on filters found that particles deposited on filter fibers had a similar morphology on all three filters, that is, hydrophobic agglomerates forming circular beaded clusters on hydrophilic filter fibers on the collecting side of the filter. CNT agglomerates were found trapped underneath the filter surface. The particle agglomerates consisted mostly of elemental carbon regardless of the shapes. Most particles were trapped in filters and no particles were found in the exhaust downstream from A/E and quartz filters, while a few nanometer-sized and submicrometer-sized individual particles and filament agglomerates were found downstream from the SFCA filter. The number concentration of particles with diameters from 5 nm to 20 µm was measured while collecting particles on grids at the exhaust piping. Total number concentration was reduced from an average of 88,500 to 700 particle/cm3 for the lowest found for all filters used. Overall, the quartz filter showed the most consistent and highest particle reduction control, and exhaust particles containing nanotubes were successfully collected and trapped inside this filter.

Implications: As concern for the toxicity of engineered nanoparticles grows, there is a need to characterize emission from carbon nanotube synthesis processes and to investigate methods to prevent their environmental release. At this time, the particles emitted from synthesis were not well characterized when collected on filters, and limited information was available about filter performance to such emission. This field study used readily available sampling filters to collect nanoparticles from the exhaust gas of a carbon nanotube furnace. New agglomerates were found on filters from such emitted particles, and the performance of using the filters studied was encouraging in terms of capturing emissions from carbon nanotube synthesis.  相似文献   

4.
Abstract

A mathematical model based on simple cake filtration theory was coupled to a reviously developed two-stage mathematical model for mercury (Hg) removal using powdered activated carbon injection upstream of a bag-house filter. Values of the average permeability of the filter cake and the filter resistance extracted from the model were 4.4× 10?13 m2 and 2.5 ×10?4 m?1, respectively. The flow is redistributed during partial cleaning of the filter, with flows higher across the newly cleaned filter section. The calculated average Hg removal efficiency from the baghouse is lower because of the high mass flux of Hg exiting the filter in the newly cleaned section. The model shows that calculated average Hg removal is affected by permeability, filter resistance, fraction of the baghouse cleaned, and cleaning interval.  相似文献   

5.
Abstract

With the recent focus on fine particle matter (PM2.5),new, self-consistent data are needed to characterize emissions from combustion sources. Such data are necessary for health assessment and air quality modeling. To address this need, emissions data for gas-fired combustors are presented here, using dilution sampling as the reference.The dilution method allows for collection of emitted particles under conditions simulating cooling and dilution during entry from the stack into the air. The sampling and analysis of the collected particles in the presence of precursor gases, SO2, nitrogen oxide, volatile organic compound, and NH3 is discussed; the results include data from eight gas fired units, including a dual-fuel institutional boiler and a diesel engine powered electricity generator. These data are compared with results in the literature for heavy-duty diesel vehicles and stationary sources using coal or wood as fuels. The results show that the gas-fired combustors have very low PM2.5 mass emission rates in the range of ~10-4 lb/million Btu (MMBTU) compared with the diesel backup generator with particle filter, with ~5 × 10-3 lb/MMBTU. Even higher mass emission rates are found in coal-fired systems, with rates of ~0.07 lb/MMBTU for a bag-filter-controlled pilot unit burning eastern bituminous coal. The characterization of PM2.5 chemical composition from the gas-fired units indicates that much of the measured primary particle mass in PM2.5 samples is organic or elemental carbon and, to a much less extent, sulfate. Metal emissions are quite low compared with the diesel engines and the coal- or woodfueled combustors. The metals found in the gas-fired combustor particles are low in concentration, similar in concentration to ambient particles. The interpretation of the particulate carbon emissions is complicated by the fact that an approximately equal amount of particulate carbon (mainly organic carbon) is found on the particle collector and a backup filter. It is likely that measurement artifacts, mostly adsorption of volatile organic compounds on quartz filters, are positively biasing “true” particulate carbon emission results.  相似文献   

6.
7.
This paper presents an experimental investigation of the effects of impaction substrate designs and material in reducing particle bounce and reentrainment. Particle collection without coating by using combinations of different impaction substrate designs and surface materials was conducted using a personal particle sampler (PPS) developed by the University of Southern California. The PPS operates at flow rate of 4 l min-1 with a 50% cutpoint of approximately 0.9 μm in aerodynamic diameter. The laboratory results showed that the PPS collection efficiency for particles larger than 50% cutpoint is strikingly low (e.g., less than 50%) when an uncoated open cavity made of aluminum was used as an impaction substrate. The collection efficiency gradually increased when Teflon tape, Nuclepore, and glass fiber filters were used as impaction surfaces, respectively. Conical or partially enclosed cavity substrate designs increased collection efficiency of particles of 9 μm up to 80–90%. A conical cavity with glass fiber filter used as impaction surface was identified as the optimum configuration, resulting in a collection efficiency of 92% at Stokes numbers as high as 15.4 (corresponding to 9 μm in aerodynamic diameter). Particle losses were low (less than 10%) and relatively independent of particle size in any design with glass fiber filter. Losses seemed to increase slightly with particle size in all other configurations. Finally, outdoor PM1 concentrations obtained with the PPS (in its optimum configuration) and a modified micro-orifice uniform deposit impactor (MOUDI) with coated impaction stages were in excellent agreement. The mean ratio of the PPS-to-MOUDI concentration was 1.13(±0.17) with a correlation coefficient R2=0.95. Results from this investigation can be readily applied to design particle bounce-free impaction substrates without the use of coating. This is a very important feature of impactors, especially when chemical analysis of the collected particulate matter is desirable.  相似文献   

8.
Abstract

A mobile exposure and air pollution measurement system was developed and used for on-freeway ultrafine particle health effects studies. A nine-passenger van was modified with a high-efficiency particulate air (HEPA) filtration system that can deliver filtered or unfiltered air to an exposure chamber inside the van. State-of-the-art instruments were used to measure concentration and size distribution of fine and ultrafine particles and the concentration of carbon monoxide (CO), black carbon (BC), particle-bound polycyclic aromatic hydrocarbons (PAHs), fine particulate matter (PM2.5) mass, and oxides of nitrogen (NOx) inside the exposure chamber. This paper presents the construction and technical details of the van and air pollutant concentrations collected in 32 2-hr runs on two major Los Angeles freeways, Interstate 405 (I-405; mostly gasoline traffic) and Interstate 710 (I-710; large proportion of heavy-duty diesel traffic). More than 97% of particles were removed when the flow through the filter box was switched from bypass mode to filter mode while the vehicle was driving on both freeways. The filtration system thus provides a great particulate matter exposure contrast while keeping gas-phase pollutant concentrations the same. Under bypass mode, average total particle number concentration observed inside the exposure chamber was around 8.4 × 104 and 1.3 × 105 particles cm-3 on the I-405 and the I-710 freeways, respectively. Bimodal size distributions were consistent and similar for both freeways with the first mode around 16–20 nm and the second mode around 50–55 nm. BC and particle-bound PAH concentrations were more than two times greater on the I-710 than on the I-405 freeway. Very weak correlations were observed between total particle number concentrations and other vehicular pollutants on the freeways.  相似文献   

9.
Entrained-flow adsorption of mercury using activated carbon   总被引:6,自引:0,他引:6  
Bench-scale experiments were conducted in a flow reactor to simulate entrained-flow capture of elemental mercury (Hg0) by activated carbon. Adsorption of Hg0 by several commercial activated carbons was examined at different C:Hg ratios (by weight) (350:1-29,000:1), particle sizes (4-44 microns), Hg0 concentrations (44, 86, and 124 ppb), and temperatures (23-250 degrees C). Increasing the C:Hg ratio from 2100:1 to 11,000:1 resulted in an increase in removal from 11 to 30% for particle sizes of 4-8 microns and a residence time of 6.5 sec. Mercury capture increased with a decrease in particle size. At 100 degrees C and an Hg0 concentration of 86 ppb, a 20% Hg0 reduction was obtained with 4- to 8-micron particles, compared with only a 7% reduction for 24- to 44-micron particles. Mercury uptake decreased with an increase in temperature over a range of 21-150 degrees C. Only a small amount of the Hg0 uptake capacity is being utilized (less than 1%) at such short residence times. Increasing the residence time over a range of 3.8-13 sec did not increase adsorption for a lignite-based carbon; however, increasing the time from 3.6 to 12 sec resulted in higher Hg0 removal for a bituminous-based carbon.  相似文献   

10.
ABSTRACT

Correct assessment of fine particulate carbonaceous material as a function of particle size is, in part, dependent on the determination of semi-volatile compounds, which can be lost from particles during sampling. This study gives results obtained for the collection of fine particulate carbonaceous material at three eastern U.S. sampling sites [Philadelphia, PA; Shenandoah National Park, VA; and Research Triangle Park (RTP), NC] using diffusion denuder technology. The diffusion denuder samplers allow for the determination of fine particulate organic material with no artifacts, due to the loss of semi-volatile organic particulate compounds, or collection of gas-phase organic compounds by the quartz filter during sampling. The results show that an average of 41, 43, and 59% of fine particulate organic material was lost as volatilized semi-volatile organic material during collection of particles on a filter at Philadelphia, RTP, and Shenandoah, respectively. The particle size distribution of carbonaceous material retained by a filter and lost from a filter during sampling was obtained for the samples collected at Philadelphia and Shenandoah. The carbonaceous material retained by the particles during sampling was found predominantly in particles smaller than 0.4 μm in aerodynamic diameter. In contrast, the semi-volatile organic material lost from the particles during sampling had a mass median diameter of ~0.5 μm.  相似文献   

11.
Absorption of sunlight by sub-micron particles is an important factor in calculations of the radiation balance of the earth and thus in climate modelling. Carbon-containing particles are generally considered as the most important in this respect. Major sources of these particles are generally considered to be bio-mass burning and vehicle exhaust. In order to characterise size fractionated particulate matter in a rural village in Botswana with respect to light absorption and elemental content experiments were performed, in which simultaneous sampling was made with a dichotomous impactor and a laboratory-made sampler, made compatible with black carbon analysis by reflectometry. The dichotomous impactor was equipped with Teflon filters and the other sampler with glass fibre filters. Energy dispersive X-ray fluorescence was used for elemental analysis of both kinds of filters. It appeared that Teflon filters were the most suitable for the combination of mass-, elemental- and black carbon measurements. The black carbon content in coarse (2.5–10 μm) and fine (<2.5 μm) particles was determined separately and related to elemental content and emission source. The results show that the fine particle fraction in the aerosol has a much higher contribution of black particles than the coarse particle fraction. This observation is valid for the village in Botswana as well as for a typical industrialised city in Sweden, used as a reference location.  相似文献   

12.
During the past two years, the Chicago Department of Environmental Control chemistry laboratory has developed a prototype sensor for measuring low levels of mercury found in the free or ambient atmosphere. Earlier studies of mercury in the Chicago area postulated that most of the mercury in the atmosphere should condense onto particulates and be collectable on filters. The results of the work presented here show that this may not occur. Analysis of composites of Chicago high volume particulate filters results in an average of 4 nanograms/m3 (range 2-10 nanograms/m3). This compared with a typical average of elemental mercury measurements of 22 nanograms/m3 (range 5-60 nanograms/m3). Thus, it is obvious that particulate borne mercury, at least as analyzed from a high volume filter paper, is not as significant as the total or elemental mercury existing in the metropolitan area. A direct method for collecting mercury and measuring in a flameless atomic absorption unit yields very good results.  相似文献   

13.
Abstract

As part of a major study to investigate the indoor air quality in residential houses in Singapore, intensive aerosol measurements were made in an apartment in a multistory building for several consecutive days in 2004. The purpose of this work was to identify the major indoor sources of fine airborne particles and to assess their impact on indoor air quality for a typical residential home in an urban area in a densely populated country. Particle number and mass concentrations were measured in three rooms of the home using a real-time particle counter and a low-volume particulate sampler, respectively. Particle number concentrations were found to be elevated on several occasions during the measurements. All of the events of elevated particle concentrations were linked to indoor activities based on house occupant log entries. This enabled identification of the indoor sources that contributed to indoor particle concentrations. Activities such as cooking elevated particle number concentrations ≤2.05 × 105 particles/cm3. The fine particles collected on Teflon filter substrates were analyzed for selected ions, trace elements, and metals, as well as elemental and organic carbon (OC) contents. To compare the quality of air between the indoors of the home and the outdoors, measurements were also made outside the home to obtain outdoor samples. The chemical composition of both outdoor and indoor particles was determined. Indoor/outdoor (I/O) ratios suggest that certain chemical constituents of indoor particles, such as chloride, sodium, aluminum, cobalt, copper, iron, manganese, titanium, vanadium, zinc, and elemental carbon, were derived through migration of outdoor particles (I/O<1 or ≈1), whereas the levels of others, such as nitrite, nitrate, sul-fate, ammonium, cadmium, chromium, nickel, lead, and OC, were largely influenced by the presence of indoor sources (I/O >1).  相似文献   

14.
Abstract

In-service diesel engines are a significant source of particulate matter (PM) emissions, and they have been subjected to increasingly strict emissions standards. Consequently, the wide-scale use of some type of particulate filter is expected. This study evaluated the effect of an Engelhard catalyzed soot filter (CSF) and a Rypos electrically heated soot filter on the emissions from in-service diesel engines in terms of PM mass, black carbon concentration, particle-bound polycyclic aromatic hydrocarbon concentration, and size distribution. Both filters capture PM. The CSF relies on the engine's exhaust to reach the catalyst regeneration temperature and oxidize soot, whereas the electrically heated filter contains a heating element to oxidize soot. The filters were installed on several military diesel engines. Particle concentrations and compositions were measured before and after installation of the filter and again after several months of operation. Generally, the CSF removed at least 90% of total PM, and the removal efficiency improved or remained constant after several months of operation. In contrast, the electrical filters removed 44-69% of PM mass. In addition to evaluating the soot filters, the sampling team also compared the results of several real-time particle measurement instruments to traditional filter measurements of total mass.  相似文献   

15.
Abstract

A two-stage mathematical model for Hg removal using powdered activated carbon injection upstream of a bag-house filter was developed, with the first stage accounting for removal in the ductwork and the second stage accounting for additional removal caused by the retention of carbon particles on the filter. The model shows that removal in the ductwork is minimal, and the additional carbon detention time from the entrapment of the carbon particles in the fabric filter enhances the Hg removal from the gas phase. A sensitivity analysis on the model shows that Hg removal is dependent on the isotherm parameters, the carbon pore radius and tortuosity, the C/Hg ratio, and the carbon particle radius.  相似文献   

16.
With the recent focus on fine particle matter (PM2.5), new, self-consistent data are needed to characterize emissions from combustion sources. Such data are necessary for health assessment and air quality modeling. To address this need, emissions data for gas-fired combustors are presented here, using dilution sampling as the reference. The dilution method allows for collection of emitted particles under conditions simulating cooling and dilution during entry from the stack into the air. The sampling and analysis of the collected particles in the presence of precursor gases, SO2 nitrogen oxide, volatile organic compound, and NH3 is discussed; the results include data from eight gas fired units, including a dual-fuel institutional boiler and a diesel engine powered electricity generator. These data are compared with results in the literature for heavy-duty diesel vehicles and stationary sources using coal or wood as fuels. The results show that the gas-fired combustors have very low PM2.5 mass emission rates in the range of approximately 10(-4) lb/million Btu (MMBTU) compared with the diesel backup generator with particle filter, with approximately 5 x 10(-3) lb/MMBTU. Even higher mass emission rates are found in coal-fired systems, with rates of approximately 0.07 lb/MMBTU for a bag-filter-controlled pilot unit burning eastern bituminous coal. The characterization of PM2.5 chemical composition from the gas-fired units indicates that much of the measured primary particle mass in PM2.5 samples is organic or elemental carbon and, to a much less extent, sulfate. Metal emissions are quite low compared with the diesel engines and the coal- or wood-fueled combustors. The metals found in the gas-fired combustor particles are low in concentration, similar in concentration to ambient particles. The interpretation of the particulate carbon emissions is complicated by the fact that an approximately equal amount of particulate carbon (mainly organic carbon) is found on the particle collector and a backup filter. It is likely that measurement artifacts, mostly adsorption of volatile organic compounds on quartz filters, are positively biasing "true" particulate carbon emission results.  相似文献   

17.
Abstract

Bench-scale testing of elemental mercury (Hg0) sorption on selected activated carbon sorbents was conducted to develop a better understanding of the interaction among the sorbent, flue gas constituents, and Hg0. The results of the fixed-bed testing under simulated lignite combustion flue gas composition for activated carbons showed some initial breakthrough followed by increased mercury (Hg) capture for up to ~4.8 hr. After breakthrough, the Hg in the effluent stream was primarily in an oxidized form (>90%). Aliquots of selected activated carbons were exposed to simulated flue gas containing Hg0 vapor for varying time intervals to explore surface chemistry changes as the initial breakthrough, Hg capture, and oxidation occurred. The samples were analyzed by X-ray photoelectron spectroscopy to determine changes in the abundance and forms of sulfur, chlorine, oxygen, and nitrogen moieties as a result of interactions of flue gas components on the activated carbon surface during the sorption process. The data are best explained by a competition between the bound hydrogen chloride (HCl) and increasing sulfur [S(VI)] for a basic carbon binding site. Because loss of HCl is also coincident with Hg breakthrough or loss of the divalent Hg ion (Hg2+), the competition of Hg2+ with S(VI) on the basic carbon site is also implied. Thus, the role of the acid gases in Hg capture and release can be explained.  相似文献   

18.
ABSTRACT

Because the Federal Reference Method for PM25 specifies the collection of ambient particles on Teflon filters, we have examined the loss of a known volatile species, particulate nitrate, during sampling. Data are presented from two studies in southern California for which parallel samples were collected by different methods. Differences in collected nitrate are modeled using an evaporation model based on the work of Zhang and McMurry. The average nitrate obtained from sampling with Teflon filters was 28% lower on average than that measured by denuded nylon filters. In contrast, cascade impactor samples were within 5% of the denuded nylon filter on average. A simple model is presented that accounts for the particulate nitrate loss from Teflon filters either by scavenging nitric acid and ammonia in the sampler inlet or by heating the filter substrate during sampling. The observed magnitude of loss is explained by any of the following situations: (1) 100% nitric acid and ammonia vapor loss in the inlet, (2) 5 °C heating of the filter substrate above ambient temperature during sampling, or (3) a combination of these factors, such as 50% vapor loss in the inlet and 3 °C heating of the filter.  相似文献   

19.
Correct assessment of fine particulate carbonaceous material as a function of particle size is, in part, dependent on the determination of semi-volatile compounds, which can be lost from particles during sampling. This study gives results obtained for the collection of fine particulate carbonaceous material at three eastern U.S. sampling sites [Philadelphia, PA; Shenandoah National Park, VA; and Research Triangle Park (RTP), NC] using diffusion denuder technology. The diffusion denuder samplers allow for the determination of fine particulate organic material with no artifacts, due to the loss of semi-volatile organic particulate compounds, or collection of gas-phase organic compounds by the quartz filter during sampling. The results show that an average of 41, 43, and 59% of fine particulate organic material was lost as volatilized semi-volatile organic material during collection of particles on a filter at Philadelphia, RTP, and Shenandoah, respectively. The particle size distribution of carbonaceous material retained by a filter and lost from a filter during sampling was obtained for the samples collected at Philadelphia and Shenandoah. The carbonaceous material retained by the particles during sampling was found predominantly in particles smaller than 0.4 microm in aerodynamic diameter. In contrast, the semi-volatile organic material lost from the particles during sampling had a mass median diameter of approximately 0.5 microm.  相似文献   

20.
Abstract

The extent of mass loss on Teflon filters caused by ammonium nitrate volatilization can be a substantial fraction of the measured particulate matter with an aerodynamic diameter less than 2.5 μm (PM2.5)or 10 μm (PM10) mass and depends on where and when it was collected. There is no straightforward method to correct for the mass loss using routine monitoring data. In southern California during the California Acid Deposition Monitoring Program, 30-40% of the gravimetric PM2.5 mass was lost during summer daytime. Lower mass losses occurred at more remote locations. The estimated potential mass loss in the Interagency Monitoring of Protected Visual Environments network was consistent with the measured loss observed in California. The biased mass measurement implies that use of Federal Reference Method data for fine particles may lead to control strategies that are biased toward sources of fugitive dust, other primary particle emission sources, and stable secondary particles (e.g., sulfates). This analysis clearly supports the need for speciated analysis of samples collected in a manner that preserves volatile species. Finally, although there is loss of volatile nitrate (NO3 ?) from Teflon filters during sampling, the NO3 ? remaining after collection is quite stable. We found little loss of NO3 ? from Teflon filters after 2 hr under vacuum and 1 min of heating by a cyclotron proton beam.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号