首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 765 毫秒
1.
Visibility data collected from Kaohsiung City, Taiwan, for the past two decades indicated that the air pollutants have significantly degraded visibility in recent years. During our study period, the seasonal mean visibilities in spring, summer, fall, and winter were only 5.4, 9.1, 8.2, and 3.4 km, respectively. To ascertain how urban aerosols influence the visibility, we conducted concurrent visibility monitoring and aerosol sampling in 1999 to identify the principal causes of visibility impairments in the region. In this study, ambient aerosols were sampled and analyzed for 11 constituents, including water-soluble ions and carbon materials, to investigate the chemical composition of Kaohsiung aerosols. Stepwise regression method was used to correlate the impact of aerosol species on visibility impairments. Both seasonal and diurnal variation patterns were found from the monitoring of visibility. Our results showed that light scattering was attributed primarily to aerosols with sizes that range from 0.26 to 0.90 pm, corresponding with the wavelength region of visible light, which accounted for approximately 72% of the light scattering coefficient. Sulfate was a dominant component that affected both the light scattering coefficient and the visibility in the region. On average, (NH4)2SO4, NH4NO3, total carbon, and fine particulate matter (PM2.5)-remainder contributed 53%, 17%, 16%, and 14% to total light scattering, respectively. An empirical regression model of visibility based on sulfate, elemental carbon, and humidity was developed, and the comparison indicated that visibility in an urban area could be properly simulated by the equation derived herein.  相似文献   

2.
The light extinction and direct forcing properties of the atmospheric aerosol were investigated for a midwestern rural site (Bondville, IL) using field measurements, a semi-empirical light extinction model, and a radiative transfer code. Model inputs were based on the site measurements of the physical and chemical characteristics of atmospheric aerosol during the spring, summer, fall and winter of 1994. The light scattering and extinction coefficients were calculated and apportioned using the elastic light scattering interactive efficiency (ELSIE) model (Sloane and Wolff, 1985, Atmospheric Environment 19(4), 669–680). The average efficiencies calculated for organic carbon (OC, carbon measured as organic multiplied by 1.2) ranged from 3.81 m2/g OC at lower relative humidities (<63%) to 6.90 m2/g OC at higher relative humidities (>75%) while sulfate (assumed as ammonium sulfate) efficiencies ranged from 1.23 m2/g (NH4)2SO4 to 5.78 m2/g (NH4)2SO4 for the same range of relative humidities. Radiative transfer calculations showed that the rural aerosol at Bondville is most likely to have an overall negative (cooling) forcing effect on climate. Elemental carbon (EC), however, acts to counter sulfate forcing to a degree that has a significant seasonal variation, primarily due to the seasonal variation in the sulfate concentrations. Taking the loading to be the mean summer EC+ammonium sulfate loading and assuming [EC]/[(NH4)2SO4] to be zero in one case (i.e. no soot present) and 0.025 (summer mean at Bondville) in another leads to a 37% difference in calculated forcing.  相似文献   

3.
We use an inorganic aerosol thermodynamic equilibrium model in a three-dimensional chemical transport model to understand the roles of ammonia chemistry and natural aerosols on the global distribution of aerosols. The thermodynamic equilibrium model partitions gas-phase precursors among modeled aerosol species self-consistently with ambient relative humidity and natural and anthropogenic aerosol emissions during the 1990s.Model simulations show that accounting for aerosol inorganic thermodynamic equilibrium, ammonia chemistry and dust and sea-salt aerosols improve agreement with observed SO4, NO3, and NH4 aerosols especially at North American sites. This study shows that the presence of sea salt, dust aerosol and ammonia chemistry significantly increases sulfate over polluted continental regions. In all regions and seasons, representation of ammonia chemistry is required to obtain reasonable agreement between modeled and observed sulfate and nitrate concentrations. Observed and modeled correlations of sulfate and nitrate with ammonium confirm that the sulfate and nitrate are strongly coupled with ammonium. SO4 concentrations over East China peak in winter, while North American SO4 peaks in summer. Seasonal variations of NO3 and SO4 are the same in East China. In North America, the seasonal variation is much stronger for NO3 than SO4 and peaks in winter.Natural sea salt and dust aerosol significantly alter the regional distributions of other aerosols in three main ways. First, they increase sulfate formation by 10–70% in polluted areas. Second, they increase modeled nitrate over oceans and reduce nitrate over Northern hemisphere continents. Third, they reduce ammonium formation over oceans and increase ammonium over Northern Hemisphere continents. Comparisons of SO4, NO3 and NH4 deposition between pre-industrial, present, and year 2100 scenarios show that the present NO3 and NH4 deposition are twice pre-industrial deposition and present SO4 deposition is almost five times pre-industrial deposition.  相似文献   

4.
Different aspects of visibility degradation problems in Brisbane were investigated through concurrent visibility monitoring and aerosol sampling programs carried out in 1995. The relationship between the light extinction coefficients and aerosol mass/composition was derived by using multiple linear regression techniques. The visibility properties at different sites in Brisbane were found to be correlated with each other on a daily basis, but not correlated with each other hour by hour. The cause of scattering of light by moisture (bsw) was due to sulphate particles which shift to a larger size under high-humidity conditions. The scattering of light by particulate matter (bsp) was found to be highly correlated with the mass of fine aerosols, in particular the mass of fine soot, sulphate and non-soil K. For the period studied, on average, the total light extinction coefficient (bext) at five sites in Brisbane was 0.65×10−4 m−1, considerably smaller than those values found in other Australian and overseas cities. On average, the major component of bext is bsp (49% of bext), followed by bap (the absorption of light, mainly by fine soot particles, 28%), bsg (Rayleigh scattering, 20%) and bsw (3%). The absorption of light by NO2 (bag) is expected to contribute less than 5% of bext. On average, the percentage contribution of the visibility degrading species to bext (excluding bag) were: soot (53%), sulphate (21%), Rayleigh scattering (20%), non-soil K (2%) and humidity (3%). In terms of visibility degrading sources, motor vehicles (including soot and the secondary products) are expected to contribute more than half of the bext (excluding bag) in Brisbane on average, followed by secondary sulphates (17%) and biomass burning (10%).  相似文献   

5.
The concentrations and characteristics of the major components in ambient fine particles in the urban city of Kaohsiung, Taiwan were measured and evaluated. PM2.5 samples were collected using a dichotomous sampler from November 1998 to April 1999 and analyzed for water-soluble ion species using ion chromatography and for carbonaceous species using an elemental analyzer. It was found that SO42−, NO3, and NH4+ dominated the identifiable components, and occupied 42.2% and 90.0% of PM2.5 mass and total dissolved ionic concentrations. Carbonaceous species (organic and elemental carbon) accounted for 20.8% of PM2.5. The secondary aerosol formed through the NO2/SO2 gas-to-particle conversion was estimated based on the sulfur/nitrogen oxidation ratio (SOR/NOR), i.e., sulfate sulfur/nitrate nitrogen to total sulfur/total nitrogen. The average SOR and NOR values were 0.25 and 0.07 for PM2.5. The high SOR and NOR values obtained in this study suggested that there existed a secondary formation of SO42− from SO2 along with NO3 from NO2 in the atmosphere. The secondary organic carbon formed through the volatile organic compound gas-to-particle conversion was estimated from the minimum ratio between organic and elemental carbon obtained in this study, and was found to constitute 40.0% of the total organic carbon for PM2.5 (6.6% of the particle mass). The results obtained in this study suggest that the formation of secondary aerosols due to conversion from gaseous precursors is significant and important in urban locations.  相似文献   

6.
The U.S. Environmental Protection Agency (EPA) has proposed a new secondary standard based on visibility in urban areas. The proposed standard will be based on light extinction, calculated from 24-hr averaged measurements. It would be desirable to base the standard on a shorter averaging time to better represent human perception of visibility. This could be accomplished by either an estimation of extinction from semicontinuous particulate matter (PM) data or direct measurement of scattering and absorption. To this end we have compared 1-hr measurements of fine plus coarse particulate scattering using a nephelometer, along with an estimate of absorption from aethalometer measurements. The study took place in Lindon, UT, during February and March 2012. The nephelometer measurements were corrected for coarse particle scattering and compared to the Filter Dynamic Measurement System (FDMS) tapered element oscillating microbalance monitor (TEOM) PM2.5 measurements. The two measurements agreed with a mass scattering coefficient of 3.3 ± 0.3 m2/g at relative humidity below 80%. However, at higher humidity, the nephelometer gave higher scattering results due to water absorbed by ammonium nitrate and ammonium sulfate in the particles. This particle-associated water is not measured by the FDMS TEOM. The FDMS TEOM data could be corrected for this difference using appropriate IMPROVE protocols if the particle composition is known. However, a better approach may be to use a particle measurement system that allows for semicontinuous measurements but also measures particle bound water. Data are presented from a 2003 study in Rubidoux, CA, showing how this could be accomplished using a Grimm model 1100 aerosol spectrometer or comparable instrument.

Implications: Visibility is currently based on 24-hr averaged PM mass and composition. A metric that captures diurnal changes would better represent human perception. Furthermore, if the PM measurement included aerosol bound water, this would negate the need to know particulate composition and relative humidity (RH), which is currently used to estimate visibility. Methods are outlined that could accomplish both of these objectives based on use of a PM monitor that includes aerosol-bound water. It is recommended that these techniques, coupled with appropriate measurements of light scattering and absorption by aerosols, be evaluated for potential use in the visibility based secondary standard.  相似文献   

7.
Rural and background sites provide valuable information on the concentration and optical properties of organic, elemental, and water-soluble organic carbon (OC, EC, and WSOC), which are relevant for understanding the climate forcing potential of regional atmospheric aerosols. To quantify climate- and air quality-relevant characteristics of carbonaceous aerosol in the central United States, a regional background site in central Texas was chosen for long-term measurement. Back trajectory (BT) analysis, ambient OC, EC, and WSOC concentrations and absorption parameters are reported for the first 15 months of a long-term campaign (May 2011–August 2012). BT analysis indicates consistent north–south airflow connecting central Texas to the Central Plains. Central Texas aerosols exhibited seasonal trends with increased fine particulate matter (<2.5 μm aerodynamic diameter, PM2.5) and OC during the summer (PM2.5 = 10.9 μg m?3 and OC = 3.0 μg m?3) and elevated EC during the winter (0.22 μg m?3). When compared to measurements in Dallas and Houston, TX, central Texas OC appears to have mixed urban and rural sources. However, central Texas EC appears to be dominated by transport of urban emissions. WSOC averaged 63% of the annual OC, with little seasonal variability in this ratio. To monitor brown carbon (BrC), absorption was measured for the aqueous WSOC extracts. Light absorption coefficients for EC and BrC were highest during summer (EC MAC = 11 m2 g?1 and BRC MAE365 = 0.15 m2 g?1). Results from optical analysis indicate that regional aerosol absorption is mostly due to EC with summertime peaks in BrC attenuation. This study represents the first reported values of WSOC absorption, MAE365, for the central United States.
Implications:Background concentration and absorption measurements are essential in determining regional potential radiative forcing due to atmospheric aerosols. Back trajectory, chemical, and optical analysis of PM2.5 was used to determine climatic and air quality implications of urban outflow to a regional receptor site, representative of the central United States. Results indicate that central Texas organic carbon has mixed urban and rural sources, while elemental carbon is controlled by the transport of urban emissions. Analysis of aerosol absorption showed black carbon as the dominant absorber, with less brown carbon absorption than regional studies in California and the southeastern United States.  相似文献   

8.
Abstract

Organic carbon has been found to be a significant component of aerosols that impair visibility in remote areas across the country. Organic aerosols are particularly important in western areas of the United States and contribute roughly equally with sulfate aerosols and dust in the total extinction budget. Potential visibility enhancement resulting from various future energy management options that reduce volatile organic carbon and particulate material emissions from fossil-energy-related processes hinges on the relative contribution of the fossil-fuel-derived organic component to the extinction budget. Thus, additional studies are needed to quantify the partitioning of organic carbon between biogenic and fossil sources. Relative humidity (RH) also plays an important role in visibility impairment. It is well known that water soluble aerosol species, such as sulfate and nitrate, can increase light-scattering efficiencies of fine particles by more than an order of magnitude as RH is increased from 20-30% to 90-95%. Organic carbon aerosol has been found to be a mixture of more soluble and less soluble components, but few studies have been performed to evaluate the RH response function of aerosols composed of these components, either separately or in combination, especially at high relative humidities. The purpose of this paper is to describe some experiments that could address the major uncertainties of biogenic and fossil carbon contributions to the fine particle extinction budget and visibility impairment.  相似文献   

9.
To better understand the origins of aerosol nitrogen, we measured concentrations of total nitrogen (TN) and its isotope ratios (δ15N) in tropical Indian aerosols (PM10) collected from Chennai (13.04°N; 80.17°E) on day- and night-time basis in winter and summer 2007. We found high δ15N values (+15.7 to +31.2‰) of aerosol N (0.3–3.8 μg m?3), in which NH4+ is the major species (78%) with lesser contribution from NO3? (6%). Based on the comparison of δ15N in Chennai aerosols with those reported for atmospheric aerosols from mid-latitudes and for the particles emitted from point sources (including a laboratory study), as well as the δ15N ratios of cow-dung samples (this study), we found that the atmospheric aerosol N in Chennai has two major sources; animal excreta and bio-fuel/biomass burning from South and Southeast Asia. We demonstrate that a gas-to-particle conversion of NH3 to NH4HSO4 and (NH4)2SO4 and the subsequent exchange reaction between NH3 and NH4+ are responsible for the isotopic enrichment of 15N in aerosol nitrogen.  相似文献   

10.
The aerosol samples were collected from a high elevation mountain site, Nainital, in India (1958 m asl) during September 2006 to June 2007 and were analyzed for water-soluble inorganic species, total carbon, nitrogen, and their isotopic composition (δ13C and δ15N, respectively). The chemical and isotopic composition of aerosols revealed significant anthropogenic influence over this remote free-troposphere site. The amount of total carbon and nitrogen and their isotopic composition suggest a considerable contribution of biomass burning to the aerosols during winter. On the other hand, fossil fuel combustion sources are found to be dominant during summer. The carbon aerosol in winter is characterized by greater isotope ratios (av. ?24.0?‰), mostly originated from biomass burning of C4 plants. On the contrary, the aerosols in summer showed smaller δ13C values (?26.0?‰), indicating that they are originated from vascular plants (mostly of C3 plants). The secondary ions (i.e., SO4 2?, NH4 +, and NO3 ?) were abundant due to the atmospheric reactions during long-range transport in both seasons. The water-soluble organic and inorganic compositions revealed that they are aged in winter but comparatively fresh in summer. This study validates that the pollutants generated from far distant sources could reach high altitudes over the Himalayan region under favorable meteorological conditions.  相似文献   

11.
The effects of (NH4)2SO4, NH4NO3, NaCl, NH4Cl, and Na2SO4 aerosols on the kinetics of 1-propanol oxidation in the presence of the hydroxyl radical have been investigated using the relative rate technique. p-Xylene was used as a reference compound. Two different aerosol concentrations that are typical of polluted urban conditions were tested. The total surface areas of aerosols were 1400 (condition I) and 3400 μm2 cm−3 (condition II). Results indicate that aerosols promote the oxidation of 1-propanol, and the extents of the promoting effects depend on the aerosol composition and concentration. Increases in the relative rates of the 1-propanol/OH reaction vs. the p-xylene/OH reaction were only observed for (NH4)2SO4 aerosol conditions I and II, NH4NO3 aerosol condition II, and NH4Cl aerosol condition II. These results indicate that NH4+ is the species promoting the oxidation of 1-propanol, and suggests the possibility of a strong interaction between NH4+ and 1-propanol that can change the activation energy of the initial OH attack. These results have profound implications on the use of air quality models for the assessment of air pollution control strategies.  相似文献   

12.
Under the auspices of Project METROMEX, studies of visibility de-teoration downwind of St. Louis were conducted during July-August 1974-1975. Estimates of horizontal visual range, standard meteorological data, and aerosol characteristics within the mixing layer were acquired upwind, over, and downwind of the metropolitan area by means of airborne transects. Aerosol number, surface, and volume distributions for particles between 0.025-2.5 µm were generated from the airborne measurement of Aitken nucleus concentrations, cloud condensation nuclei, and aerosols detected in situ with optical probes. Visibility reduction amounting to 50% of prevailing regional upwind visibilities consistently occurs at a distance corresponding to 2-3 hours travel time downwind for an air parcel moving with the mean transport wind. The regions of visibility minimum do not coincide with locations of maximum Aitken nucleus concentrations, but rather correspond in space and time to increased values of cloud condensation nuclei and increased numbers of particles in the 0.1-2.5 µm diameter range. Comparisons of observed aerosol evolution with similar laboratory studies suggest that most of the light scattering aerosols are of secondary origin.  相似文献   

13.
Our objectives are to evaluate inter-continental source-receptor relationships for fine aerosols and to identify the regions whose emissions have dominant influence on receptor continents. We simulate sulfate, black carbon (BC), organic carbon (OC), and mineral dust aerosols using a global coupled chemistry-aerosol model (MOZART-2) driven with NCEP/NCAR reanalysis meteorology for 1997–2003 and emissions approximately representing year 2000. The concentrations of simulated aerosol species in general agree within a factor of 2 with observations, except that the model tends to overestimate sulfate over Europe in summer, underestimate BC and OC over the western and southeastern (SE) U.S. and Europe, and underestimate dust over the SE U.S. By tagging emissions from ten continental regions, we quantify the contribution of each region's emissions on surface aerosol concentrations (relevant for air quality) and aerosol optical depth (AOD, relevant for visibility and climate) globally. We find that domestic emissions contribute substantially to surface aerosol concentrations (57–95%) over all regions, but are responsible for a smaller fraction of AOD (26–76%). We define “background” aerosols as those aerosols over a region that result from inter-continental transport, DMS oxidation, and emissions from ships or volcanoes. Transport from other continental source regions accounts for a substantial portion of background aerosol concentrations: 36–97% for surface concentrations and 38–89% for AOD. We identify the Region of Primary Influence (RPI) as the source region with the largest contribution to the receptor's background aerosol concentrations (or AOD). We find that for dust Africa is the RPI for both aerosol concentrations and AOD over all other receptor regions. For non-dust aerosols (particularly for sulfate and BC), the RPIs for aerosol concentrations and AOD are identical for most receptor regions. These findings indicate that the reduction of the emission of non-dust aerosols and their precursors from an RPI will simultaneously improve both air quality and visibility over a receptor region.  相似文献   

14.
ABSTRACT

The eastern United States national parks experience some of the worst visibility conditions in the nation. To study these conditions, the Southeastern Aerosol and Visibility Study (SEAVS) was undertaken to characterize the size-dependent composition, thermodynamic properties, and optical characteristics of the ambient atmospheric particles. It is a cooperative three-year study that is sponsored by the National Park Service and the Electric Power Research Institute and its member utilities. The field portion of the study was carried out from July 15 to August 25, 1995.

The study design, instrumental configuration, and estimation of aerosol types from particle measurements is presented in a companion paper. In the companion paper, we compare measurements of scattering at ambient conditions and as functions of relative humidity to theoretical predictions of scattering. In this paper, we make similar comparisons, but using statistical techniques. Statistically derived specific scattering associated with sulfates suggest that a reasonable estimate of sulfate scattering can be arrived at by assuming nominal dry specific scattering and treating the aerosols as an external mixture with ammoniation of sulfate accounted for and by the use of Tang's growth curves to predict water absorption. However, the regressions suggest that the sulfate scattering may be underestimated by about 10%. Regression coefficients on organics, to within the statistical uncertainty of the model, suggest that a reasonable estimate of organic scattering is about 4.0 m2/g.

A new analysis technique is presented, which does not rely on comparing measured to model estimates of scattering to evoke an understanding of ambient aerosol growth properties, but rather relies on measurements of scattering as a function of relative humidity to develop actual estimates of f(RH) curves. The estimates of the study average f(RH) curve for sulfates compares favorably with the theoretical f(RH) curve for ammonium bisulfate, which is in turn consistent with the study average sulfate am-moniation corresponding to a molar ratio of NH4/SO4 of approximately one. The f(RH) curve for organics is not significantly different from one, suggesting that organics are weakly to nonhygroscopic.  相似文献   

15.
Laboratory experiments suggest that strong acids promote formation of enhanced levels of secondary organic aerosol (SOA), and organic aerosols may contribute to the health impacts of fine PM. We report results from examining hourly speciated fine particle data for evidence of ambient aerosol acidity-catalyzed SOA formation, as indicated by larger increases in the concentrations of organic aerosol mass occurring on days and in locations where more acidic aerosol (lower NH4+/SO4= molar ratios) exists. Data sets from the southeastern U.S. were examined for which hourly acidity of PM2.5 aerosols could be estimated, and for which hourly organic carbon (OC) content had been measured simultaneously. Within-day organic aerosol changes during selected periods were statistically related to concurrent aerosol acidity levels estimated from nitrate-corrected ammonium-to-sulfate ratios. Data from the Look Rock, TN, TVA/IMPROVE site for mid-July to mid-August 2004 showed average compositions frequently as acidic as NH4HSO4, however, no apparent increases in OC levels with increasing aerosol acidity were observed, even when [OC] changes were compared with time-delayed aerosol acidity estimates. SEARCH network data (2003–2004) for rural Centreville, AL (CTR) and Yorkville, GA (YRK) sites were also examined. Warm-season acidity levels were higher at CTR than at YRK, and daytime levels exceeded those at night at both sites. At the YRK site no consistent positive correlations were found between changes in OC or TC levels and aerosol acidity, even with time lags up to 6 h. Aerosol acidity at this site, however, is relatively low due to nearby agricultural sources of NH3. In contrast, during selected periods from April to October 2004, at CTR, 6-h lagged OC changes were weakly correlated with daytime, nitrate-corrected NH4+/SO4= molar ratios, but distinguishing this apparent relationship from meteorological effects on measured OC levels is challenging.  相似文献   

16.
This work presents a gas chromatographic method that uses a thermal conductivity detector (GC-TCD) to measure the liquid water mass (LWM) of collected aerosols. The method is a modification of the previously developed EA-TCD method (Journal of Aerosol Science 29, 827). A microcomputer was incorporated into the system to control the analytical procedures, improve the measurement precision, and make possible a continuous operation. To validate the method, the aerosol LWMs of NaCl, Na2SO4, NH4NO3, (NH4)2SO4, NH4Cl, and Na2CO3 were measured at room temperature under relative humidities (RHs) varying between 20% and 90%, in both humidifying and dehumidifying conditions. Estimates of aerosol LWMs for varying aerosol chemical compositions and RHs by various measurement methods and predictive models are comprehensively compared. The comparison shows that the GC-TCD measurements agree closely with those of the other methods. The GC-TCD measurements are closer to the ISORROPIA model predictions than those of the AIM2 model. Most notably, our method determines, for the first time, the hygroscopic behavior of Na2CO3 aerosol yielding the deliquescence relative humidity and crystallization relative humidity at 78% and 39% RH, respectively. The hygroscopic characteristics of various NaCl mole fractions in mixed NaCl–Na2SO4 aerosols, determined by GC-TCD, are used to show the discrepancy between the measurements and the model's prediction.  相似文献   

17.
For continuous monitoring of atmospheric visibility in the city of Kwangju, Korea, a transmissometer system consisting of a transmitter and a receiver was installed at a distance of 1.91 km across the downtown Kwangju, Korea. At the transmitter site a nephelometer and an aethalometer were also installed to measure the scattering and absorption coefficients of the atmosphere, respectively. Unusually high number of Yellow Sand events had occurred in the Northeast Asia during the spring of 2000. Visibility in Kwangju under such conditions was greatly impaired over large area for a few days. In order to investigate the effects of Yellow Sand on visibility impairment, chemical and elemental analyses of aerosol samples were performed along with the optical measurement of visibility. Hourly averaged visual range decreased from 61.7 to 1.9 km when hourly averaged concentration of PM10 varied from 32.9 to 601.8 μg/m3 during Yellow Sand periods. Fine particulate (<2.5 μm) concentrations were relatively lower than coarse particulate matters. Results of the data analyses show that mineral dusts originated from continental sources were simultaneously transported along with anthropogenic sulfate aerosols and marine aerosols. Total light extinction coefficient, bext, proposed by the IMPROVE network showed poor correlation with bext measured by transmissometer. Coarse mass scattering efficiency was classified into three categories; ENHSOc, Emineral, and Esea-salt, which were determined as ammonium sulfate combined with nss-sulfate of 1.0, sea-salt of 0.4, and mineral of 0.77 m2/g, respectively. Mass fraction of NHSOc, sea-salt, and mineral dust was 0.20, 0.14, and 0.66, respectively.  相似文献   

18.
A total of 134 aerosol samples (dp < 2.5 μm) were collected at one rural site and one urban site in Texas from November 2005 to July 2006 to investigate the different sources that contribute to the ambient levels of different compounds. In particular, saccharide compounds were studied as potential tracers to track aerosols of biologically derived origin. The ambient concentration, seasonal variation, and urban/rural comparison of major saccharides and other organic compounds including normal alkanes, hopanes, and carboxylic acids were determined and analyzed relative to characterizing sources of PM2.5. Saccharides, together with other known molecular markers, were analyzed by a positive matrix factorization model and eight source factors were isolated that provide meaningful interpretation of aerosol sources. Three isolated factors were characterized by the dominance of different saccharide compounds and were attributed to wood smoke, sucrose rich bio-aerosols, and fungal spore derived bio-aerosols. It was estimated that wood smoke and primary biologically derived carbon sources contributed 22% and 14% to the measured ambient PM2.5 mass at San Augustine and 16% and 5% to the measured ambient PM2.5 mass at Dallas. The relative PM contribution from other resolved sources were also calculated.  相似文献   

19.
20.
Brown carbon aerosols were recently found to be ubiquitous and effectively absorb solar radiation. We use a 3-D global chemical transport model (GEOS-Chem) together with aircraft and ground based observations from the TRACE-P and the ACE-Asia campaigns to examine the contribution of brown carbon aerosol to the aerosol light absorption and its climatic implication over East Asia in spring 2001. We estimated brown carbon aerosol concentrations in the model using the mass ratio of brown carbon to black carbon (BC) aerosols based on measurements in China and Europe. The comparison of simulated versus observed aerosol light absorption showed that the model accounting for brown carbon aerosol resulted in a better agreement with the observations in East Asian-Pacific outflow. We then used the model results to compute the radiative forcing of brown carbon, which amounts up to ?2.4 W m?2 and 0.24 W m?2 at the surface and at the top of the atmosphere (TOA), respectively, over East Asia. Mean radiative forcing of brown carbon aerosol is ?0.43 W m?2 and 0.05 W m?2 at the surface and at the TOA, accounting for about 15% of total radiative forcing (?2.2 W m?2 and 0.33 W m?2) by absorbing aerosols (BC + brown carbon aerosol), having a significant climatic implication in East Asia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号