首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Abstract

Materials that will be used to construct an in situ, on-line purging system for the cone penetrometer were evaluated. Transfer efficiencies for volatile organic compounds (VOCs) through stainless steel, nickel, aluminum, and Teflon® tubings were determined using a gas-phase mixture of VOCs containing trichloromethane, tetrachloromethane, 1,1,1- trichloroethane, tetrachloroethene, hexane, benzene, toluene, and 1,2-dimethylbenzene. The water content of the gas stream had an insignificant effect on the quantitative transfer of VOCs through Teflon® tubing but was critical to efficiently transfer the compounds through metal tubing, particularly nickel. Transfer efficiencies for all eight analytes in moist gas streams through stainless steel were greater than 95%. Toluene, tetrachloroethene, and 1,2-dimethylbenzene were transferred with 93%, 81%, and 80% efficiency, respectively, when they were drawn through Teflon® PFA (perfluoroalkoxy) tubing. In general, the retention of the VOCs by Teflon® increases with decreasing aqueous solubility of the analyte. The efficiencies at which VOCs were purged from aqueous standards in Teflon® PFA, Type 304 stainless steel, and glass vessels were similar. Stainless steel was superior to nickel, aluminum, and the Teflon® polymers as a material for an in situ, on-line purging system for the cone penetrometer.  相似文献   

2.
ABSTRACT

With the advances made in the past decade, catalytic incineration of volatile organic compounds (VOCs) has become the technology of choice in a wide range of pollution abatement strategies. In this study, a test was undertaken for the catalytic incineration, over a chromium oxide (Cr2O3) catalyst, of n-hexane, benzene, and an emission air/vapor mixture collected from an oil/water separator of a refinery. Reactions were carried out by controlling the feed stream to constant VOC concentrations and temperatures, in the ranges of 1300–14,700 mg/m3 and 240–400 ° C, respectively. The destruction efficiency for each of the three VOCs as a function of influent gas temperature and empty bed gas residence time was obtained.

Results indicate that n-hexane and the oil vapor with a composition of straight- and branch-chain aliphatic hydrocarbons exhibited similar catalytic incineration effects, while benzene required a higher incineration temperature or longer gas retention time to achieve comparable results.

In the range of the VOC concentrations studied, at a given gas residence time, increasing the operating temperature of the catalyst bed increased the destruction efficiency. However, the much higher temperatures required for a destruction efficiency of over 99% may be not cost-effective and are not suggested. A first-order kinetics with respect to VOC concentration and an Arrhenius temperature dependence of the kinetic constant appeared to be an adequate representation for the catalytic oxidation of these volatile organics. Activation energy and kinetic constants were estimated for each of the VOCs. Low-temperature destruction of the target volatile organics could be achieved by using the Cr2O3 catalyst.  相似文献   

3.
ABSTRACT

To test the possible use of composted food waste and wastewater sludge as biofilters to treat gas-phase volatile organic compounds (VOCs), batch experiments were conducted with an isolated strain that could degrade aromatic compounds under aerobic conditions. A benzene and trichloroethylene (TCE) mixture was used as the gas-phase pollutant in experiments with composted food waste, sludge, and soil. Under aerobic conditions, benzene was degraded as a primary substrate and TCE was degraded cometabolically, with water contents varying from 6 to 60% (volume of water added/volume of solid). Optimal water content for VOC removal was 12% for the soil, 36% for the composted food waste, and 48% for the sludge.

The extent of VOC sorption and biodegradation at the optimal water content was different for each material. With the same initial VOC concentration, more VOCs were removed by sorption onto the composted food waste and the sludge, while less VOCs were biodegraded in comparison with the results using soil. The reason the biodegradation in the soil was greater may be partly attributed to the fact that, due to less sorption, the aqueous-phase concentration of VOCs, which microorganisms could utilize as a carbon source or cometabolize, was higher. We also speculate that the distribution of microorganisms in each medium affects the rate of biodegradation. A large number of microorganisms were attached to the composted food waste and sludge. Mass transfer of VOCs and oxygen to these microorganisms, which appear to have been heterogeneously distributed in clusters, may have been limited, resulting in hindered biodegradation.  相似文献   

4.
We developed a diffusive sampling device (DSD-voc) for volatile organic compounds (VOCs) which is suitable for collection of low level VOCs and analysis with thermal desorption. This sampling device is composed of two parts, an exposure part made of a porous polytetrafluoroethylene (PTFE) filter, and an analysis part made of stainless-steel tubing. The DSD-voc collects VOCs through the mechanism of molecular diffusion. Collection is controlled by moving the adsorbent from the exposure part to the analysis part by changing the posture of the DSD-voc. Adsorbates in the DSD-voc were analyzed by GC/MS with a thermal desorption cold trap injector (TCT). The TCT has the advantage of being able to accept the entire quantity of VOCs. We connected a condenser between the DSD-voc and the trap tube to prevent moisture from freezing in the trap tube when the sampler was packed with strong adsorbent. We also examined the desorption efficiency for VOCs from several types of adsorbents (CarboxenTM 1000, CarbosieveTM G, Carbosieve S III, CarbotrapTM B, and activated carbon) over a wide range of temperatures. Carboxen 1000 was suitable for the determination of VOCs with a low boiling point range, from CFC12 to hexane, while Carbotrap B was suitable for VOCs from hexane to 1,4-dichlorobenzene. The limits of detection with Carboxen 1000 and Carbotrap B were 0.036–0.046 and 0.0035–0.014 ppb, respectively, for a sampling duration of 24 h. Coefficients of variation for concentrations of major VOCs ranged from 3.8 to 14%. It is possible to estimate atmospheric VOCs at sub-parts per billion (sub-ppb), with high sensitivity, by using both adsorbents in combination.  相似文献   

5.
Abstract

EDB (ethylene dibromide) is of regulatory interest because it has cancer inducing properties and is a causative agent of aspermia. Methodology used in determining the extent of exposure of workers to EDB in a citrus fumigation facility was evaluated. The purpose of this effort was to develop and/or evaluate the methodology. A number of solid adsorbents were evaluated for trapping EDB. Charcoal was found to be the most efficient for this application. The influence of a number of factors, e.g., humidity, biphenyl concentration and solvents, on trapping and elution efficiency was determined. The level of sensitivity attained in these studies exceeds that necessary to monitor the proposed standard of a maximum of 1 mg/m3 for a 15 min occupational exposure.  相似文献   

6.
Abstract

The promulgation of odor control rules, increasing public concerns, and U.S. Environmental Protection Agency (EPA) air regulations in nonattainment zones necessitates the remediation of a wide range of volatile organic compounds (VOCs) generated by the rendering industry. Currently, wet scrubbers with oxidizing chemicals are used to treat VOCs; however, little information is available on scrubber efficiency for many of the VOCs generated within the rendering process. Portable gas chromatography/mass spectrometry (GC/MS) units were used to rapidly identify key VOCs on-site in process streams at two poultry byproduct rendering plants. On-site analysis was found to be important, given the significant reduction in peak areas if samples were held for 24 hr before analysis. Major compounds consistently identified in the emissions from the plant included dimethyl disulfide, methanethiol, octane, hexanal, 2-methylbutanal, and 3-methylbutanal. The two branched aldehydes, 2-methylbutanal and 3-methylbutanal, were by far the most consistent, appearing in every sample and typically the largest fraction of the VOC mixture.

A chlorinated hydrocarbon, methanesulfonyl chloride, was identified in the outlet of a high-intensity wet scrubber, and several VOCs and chlorinated compounds were identified in the scrubbing solution, but not on a consistent basis. Total VOC concentrations in noncondensable gas streams ranged from 4 to 91 ppmv. At the two plants, the odor-causing compound methanethiol ranged from 25 to 33% and 9.6% of the total VOCs (v/v). In one plant, wet scrubber analysis using chlorine dioxide (ClO2) as the oxidizing agent indicated that close to 100% of the methanethiol was removed from the gas phase, but removal efficiencies ranged from 20 to 80% for the aldehydes and hydrocarbons and from 23 to 64% for total VOCs. In the second plant, conversion efficiencies were much lower in a packed-bed wet scrubber, with a measurable removal of only dimethyl sulfide (20–100%).  相似文献   

7.
Abstract

The use of a honeycomb zeolite concentrator and an oxidation process is one of the most popular methods demonstrated to control volatile organic compound (VOCs) emissions from waste gases in semiconductor manufacturing plants. This study attempts to characterize the performance of a concentrator in terms of the removal efficiencies of semiconductor VOCs (isopropyl alcohol [IPA], acetone, propylene glycol methyl ether [PGME], and propylene glycol monomethyl ether acetate [PGMEA]) under several parameters that govern the actual operations. Experimental results indicated that at inlet temperatures of under 40 °C and a relative humidity of under 80%, the removal efficiency of a zeolite concentrator can be maintained well over 90%. The optimal rotation speed of the concentrator is between 3 and 4.5 rph in this study. The optimal rotation speed increases with the VOCs inlet concentration. Furthermore, reducing the concentration ratio helps to increase the removal efficiency, but it also increases the incineration cost. With reference to competitive adsorption, PGMEA and PGME are more easily adsorbed on a zeolite concentrator than are IPA and acetone because of their high boiling points and molecular weights.  相似文献   

8.
Abstract

An approach for measuring point-source emissions of volatile organic compounds (VOCs), acidic vapors, and other species is presented. The amount emitted is determined by directly measuring the actual weight gain of an adsorbent bed over a period of time, which is a cumulative rather than a grabbed sample. As a result, wide fluctuations of concentration and erratic flow behavior during sampling are accommodated with no apparent effect on the accuracy of the measured emission rate. The emission rate is determined by a mass balance including the mass change of the sorbent, as well as the influent and effluent humidities.

Validation tests used a known mass flow rate of vapor in a carrier gas, which was compared with the amount measured. The vapor was a single VOC, a mixture of VOCs, or a mixture of a VOC with water. Conditions studied were the compound or mixture of compounds, concentration, carrier gas, flow rate, and adsorbent. In some tests the VOC was admitted intermittently. The VOCs included n-hexane, acetone, toluene, vinyl acetate, and 1,1,1 trichloroethane. For 105 tests, the average absolute discrepancy of the delivered and measured emission rates was 6.8% and the standard deviation was 3.4%.  相似文献   

9.
Abstract

The effects of aeration recirculation on oxygen transfer and the fate of five volatile organic compounds (VOCs) commonly found in publicly owned treatment works (POTWs) influent are studied using various modeling approaches. The five compounds are benzene, chloroform, methylene chloride, toluene, and trichloroethylene. The models predict that the overall oxygen transfer efficiency can be increased by 96.7% at 50% aeration recirculation with only a 9.6% drop in oxygen transfer rate. The emission reductions and biodegradation improvements are compound specific; for the compounds investigated here, about 40% emission reductions and 16% biodegradation increases can be achieved at 50% aeration recirculation. The temperature effect on the VOC fate mechanisms is also investigated. Overall, the model predictions reveal that up to 50% aeration recirculation is effective in controlling VOC emissions.  相似文献   

10.
ABSTRACT

The emissions of odors and volatile organic compounds produced from a commercial composting operation have been studied using a laboratory-scale composting system. The composting activity of a typical commercial compost feed was followed by monitoring the composting temperature, as well as the respiratory rate. Using a controlled aeration system, the gaseous volatiles produced were tested for odors using the "dilution-to-threshold" method, as well as gas composition, as determined by gas chromatography-mass spectrometry.

The results indicated that while there may be a reasonable correlation between the release of volatile organic compounds (VOCs) and odors, care has to be taken when trying to identify offensive odors with specific chemical species. However, the data obtained suggests that offensive odors formed during commercial composting may be due to sulfurous and nitrogenous compounds, although their concentrations in the compost gases may not be very high.

The major release of VOCs occurred during the first two weeks of composting, after which the gaseous releases fell dramatically as the composting process proceeded and temperatures started to fall.  相似文献   

11.
Abstract

A badge-type passive monitor was used to evaluate the effectiveness of four ozone trapping reagents for measuring O3 concentrations in the air. These were sodium nitrite (NaNO2), 3-methyl-2-benzothiazolinone acetone azine (MBTH), p-acetamidophenol (p-ATP), and indigo carmine. Experiments in an exposure chamber showed that only NaNO2 and MBTH monitors gave sensitive and linear responses over realistic ranges of O3 concentrations. When tested in ambient air, NaNO2 and MBTH monitors with a single-layer diffusion barrier overestimated O3 concentrations by a significant amount. This was largely canceled out in the NaNO2 monitor by using a multi-layered diffusion barrier to combat wind turbulence effects. However it had almost no effect on the MBTH monitor, and it was found that NO2 was a source of serious interference. We concluded that using the NaNO2 monitor with an effective diffusion barrier can measure O3 in ambient air with an accuracy of ±16%.  相似文献   

12.
ABSTRACT

Air biofiltration is now under active consideration for the removal of the volatile organic compounds (VOCs) from polluted airstreams. To optimize this emerging environmental technology and to understand compound removal mechanisms, a biofilter packed with peat was developed to treat a complex mixture of VOCs: oxygenated, aromatic, and chlorinated compounds. The removal efficiency of this process was high. The maximum elimination capacity (ECmax) obtained was ~120 g VOCs/m3 peat/hr. Referring to each of the mixture's components, the ECmax showed the limits in terms of biodegradability of VOCs, especially for the halogenated compounds and xylene.

A stratification of biodegradation was observed in the reactor. The oxygenated compounds were metabolized before the aromatic and halogenated ones. Two assumptions are suggested. There was a competition between bacterial communities. Different communities colonized the peat-based biofilter, one specialized for the elimination of oxygenated compounds, the others more specialized for elimination of aromatic and halogenated compounds. There was also substrate competition. Bacterial communities were the same over the height of the column, but the more easily biodegradable compounds were used first for the microorganism metabolism when they were present in the gaseous effluent.  相似文献   

13.
Abstract

Volatile organlcs compounds (VOCs) are ubiquitous in the air we breathe. The use of passive samplers to measure these concentrations can be an effective technique. When exposed for long durations, a passive sampler may be a good tool for investigating chronic exposures to chemicals in the environment. A passive sampler that was designed for occupational exposures can be used as such a tool. Laboratory validation under as many conditions as possible needs to be accomplished so as to characterize the sampler with known parameters. This paper describes the methods and results of an investigation into the validity of using a passive monitor to sample VOCs for a three-week period. Two concentration levels, two relative humidities, and five VOCs were studied. Results indicate that the samplers work best under conditions of high concentration with low relative humidity and low concentration with high relative humidity. For the passive sampler, excluding chloroform, percent deviations from the predicted values varied between ?41 and +22 percent; while the values between the passive and the active samplers varied between ?27 and +24 percent. Benzene, heptane, and perchloroethylene were sampled with equal precision and accuracy.  相似文献   

14.
Interactions between volatile organic compounds (VOCs) and vinyl flooring (VF), a relatively homogenous, diffusion-controlled building material, were characterized. The sorption/desorption behavior of VF was investigated using single-component and binary systems of seven common VOCs ranging in molecular weight from n-butanol to n-pentadecane. The simultaneous sorption of VOCs and water vapor by VF was also investigated. Rapid determination of the material/air partition coefficient (K) and the material-phase diffusion coefficient (D) for each VOC was achieved by placing thin VF slabs in a dynamic microbalance and subjecting them to controlled sorption/desorption cycles. K and D are shown to be independent of concentration for all of the VOCs and water vapor. For the four alkane VOCs studied, K correlates well with vapor pressure and D correlates well with molecular weight, providing a means to estimate these parameters for other alkane VOCs. While the simultaneous sorption of a binary mixture of VOCs is non-competitive, the presence of water vapor increases the uptake of VOCs by VF. This approach can be applied to other diffusion-controlled materials and should facilitate the prediction of their source/sink behavior using physically-based models.  相似文献   

15.
Bioprocesses, such as biofiltration, are commonly used to treat industrial effluents containing volatile organic compounds (VOCs) at low concentrations. Nevertheless, the use of biofiltration for indoor air pollution (IAP) treatment requires adjustments depending on specific indoor environments. Therefore, this study focuses on the convenience of a hybrid biological process for IAP treatment. A biofiltration reactor using a green waste compost was combined with an adsorption column filled with activated carbon (AC). This system treated a toluene-micropolluted effluent (concentration between 17 and 52 µg/m3), exhibiting concentration peaks close to 733 µg/m3 for a few hours per day. High removal efficiency was obtained despite changes in toluene inlet load (from 4.2 × 10?3 to 0.20 g/m3/hr), which proves the hybrid system’s effectiveness. In fact, during unexpected concentration changes, the efficiency of the biofilter is greatly decreased, but the adsorption column maintains the high efficiency of the entire process (removal efficiency [RE] close to 100%). Moreover, the adsorption column after biofiltration is able to deal with the problem of the emission of particles and/or microorganisms from the biofilter.
ImplicationsIndoor air pollution is nowadays recognized as a major environmental and health issue. This original study investigates the performance of a hybrid biological process combining a biofilter and an adsorption column for removal of indoor VOCs, specifically toluene.  相似文献   

16.
ABSTRACT

The initial solid-phase concentration of volatile organic compounds (VOCs) is a key parameter influencing the emission characteristics of many indoor materials. Solid-phase measurements are typically made using solvent extraction or thermal headspace analysis. The high temperatures and chemical solvents associated with these methods can modify the physical structure of polymeric materials and, consequently, affect mass transfer characteristics.

To measure solid-phase concentrations under conditions resembling those in which the material would be installed in an indoor environment, a new technique was developed for measuring VOC concentrations in vinyl flooring (VF) and similar materials. A 0.09-m2 section of new VF was punched randomly to produce ~200 0.78-cm2 disks. The disks were milled to a powder at -140 °C to simultaneously homogenize the material and reduce the diffusion path length without loss of VOCs. VOCs were extracted from the VF particles at room temperature by fluidized-bed desorption (FBD) and by direct thermal desorption (DTD) at elevated temperatures. The VOCs in the extraction gas from FBD and DTD were collected on sorbent tubes and analyzed by gas chromatog-raphy/mass spectrometry (GC/MS). Seven VOCs emitted by VF were quantified. Concentration measurements by FBD ranged from 5.1 |ig/g VF for n-hexadecane to 130 |Jg/g VF for phenol. Concentrations measured by DTD were higher than concentrations measured by FBD. Differences between FBD and DTD results may be explained using free-volume and dual-mobility sorption theory, but further research is necessary to more completely characterize the complex nature of a diffusant in a polymer matrix.  相似文献   

17.
ABSTRACT

The CHA Corporation has completed the U.S. Air Force Phase II Small Business Innovation Research program to investigate the feasibility of using a novel microwave-based process for the removal and destruction of volatile organic compounds (VOCs) in effluents from noncombustion sources, such as paint booth ventilation streams. Removal of solvents by adsorption, followed by the regeneration of saturated granular activated carbon (GAC) by microwave energy, was achieved in a single fixed-bed reactor. Microwave regeneration of the fixed-bed-saturated carbon restored the original GAC adsorption capacity. After 20 adsorption/regeneration cycles, the adsorption capacity dropped from 13.5 g methyl ethyl ketone (MEK)/100 g GAC to 12.5 g MEK/100 g GAC. During microwave regeneration of the GAC fixed bed, the concentrated desorbed paint solvent was oxidized by passing the solvent mixture through a fixed bed of an oxidation catalyst mixed with silicon carbide in a microwave reactor. A 98% oxidation efficiency was consistently achieved from the oxidation of VOCs in the microwave catalytic reactor.  相似文献   

18.
ABSTRACT

The concentrations of contaminants in the supply air of mechanically ventilated buildings may be altered by pollutant emissions from and interactions with duct materials. We measured the emission rate of volatile organic compounds (VOCs) and aldehydes from materials typically found in ventilation ducts. The emission rate of VOCs per exposed surface area of materials was found to be low for some duct liners, but high for duct sealing caulk and a neo-prene gasket. For a typical duct, the contribution to VOC concentrations is predicted to be only a few percent of common indoor levels. We exposed selected materials to ~100-ppb ozone and measured VOC emissions. Exposure to ozone increased the emission rates of aldehydes from a duct liner, duct sealing caulk, and neoprene gasket. The emission of aldehydes from these materials could increase indoor air concentrations by amounts that are as much as 20% of odor thresholds. We also measured the rate of ozone uptake on duct liners and galvanized sheet metal to predict how much ozone might be removed by a typical duct in ventilation systems. For exposure to a constant ozone mol fraction of 37 ppb, a lined duct would initially remove ~9% of the ozone, but over a period of 10 days the ozone removal efficiency would diminish to less than 4%. In an unlined duct, in which only galvanized sheet metal is exposed to the air-stream, the removal efficiency would be much lower, ~0.02%. Therefore, ducts in ventilation systems are unlikely to be a major sink for ozone.  相似文献   

19.
Abstract

Nowadays, the heating, ventilation, and air conditioning (HVAC) system has been an important facility for maintaining indoor air quality. However, the primary function of typical HVAC systems is to control the temperature and humidity of the supply air. Most indoor air pollutants, such as volatile organic compounds (VOCs), cannot be removed by typical HVAC systems. Thus, some air handling units for removing VOCs should be added in typical HVAC systems. Among all of the air cleaning techniques used to remove indoor VOCs, photocatalytic oxidation is an attractive alternative technique for indoor air purification and deodorization. The objective of this research is to investigate the VOC removal efficiency of the photocatalytic filter in a HVAC system. Toluene and formaldehyde were chosen as the target pollutants. The experiments were conducted in a stainless steel chamber equipped with a simplified HVAC system. A mechanical filter coated with Degussa P25 titania photocatalyst and two commercial photocatalytic filters were used as the photo-catalytic filters in this simplified HVAC system. The total air change rates were controlled at 0.5, 0.75, 1, 1.25, and 1.5 hr?1, and the relative humidity (RH) was controlled at 30%, 50%, and 70%. The ultraviolet lamp used was a 4-W, ultraviolet-C (central wavelength at 254 nm) strip light bulb. The first-order decay constant of toluene and form-aldehyde found in this study ranged from 0.381 to 1.01 hr?1 under different total air change rates, from 0.34 to 0.433 hr?1 under different RH, and from 0.381 to 0.433 hr?1 for different photocatalytic filters.  相似文献   

20.
ABSTRACT

This study compared the first-order frequencies for OH associated with volatile organic compounds (VOCs) and CO (hereafter called OH reactivity with VOCs or CO), the product of the VOC or CO concentration, and their respective kOH value, on an average weekday with that on an average weekend day at a core urban site in Baltimore, MD. The average daytime concentrations were calculated for each of the 55 available Photochemical Assessment Monitoring Station (PAMS) VOCs using data from the Baltimore site. The data were sorted in descending order to highlight the important species based on concentration. The OH reactivity with VOCs was sorted in descending order to identify the important species based on the magnitude of the OH reactivity. A similar process was followed for the OH reactivity with CO. The contribution of the significant species to the weekday/weekend difference in OH reactivity was examined.

The OH reactivity with C5H8 was the largest among the OH reactivity with the PAMS' VOCs and was the same on the weekday and weekend. The weekday/weekend difference in OH reactivity with VOCs was entirely due to differences in concentrations of the anthropogenic VOCs. The OH reactivity with VOCs was 11% larger on the weekday. When OH reactivity with CO was included, the OH reactivity was 13% larger on the weekday.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号