首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 570 毫秒
1.
Emission factors for selected volatile organic compounds (VOCs) and particulate emissions were developed while processing eight commercial grades of polycarbonate (PC) and one grade of a PC/acrylonitrile-butadiene-styrene (ABS) blend. A small commercial-type extruder was used, and the extrusion temperature was held constant at 304 degrees C. An emission factor was calculated for each substance measured and is reported as pounds released to the atmosphere/million pounds of polymer resin processed [ppm (wt/wt)]. Scaled to production volumes, these emission factors can be used by processors to estimate emission quantities from similar PC processing operations.  相似文献   

2.
ABSTRACT

Emission factors for selected volatile organic compounds (VOCs) and particulate material were developed during processing of commercial grades of polyamide 6, polyamide 66, and polyamide 66/6 resins. A small commercial-type extruder was used, and melt temperatures ranged from 475 to 550 °F. An emission factor was calculated for each substance measured and is reported as pounds released to the atmosphere per million pounds of polymer resin processed. Scaled to production volumes, these emission factors can be used by processors to estimate emission quantities from similar polyamide extrusion operations.  相似文献   

3.
Emission factors for selected volatile organic compounds (VOCs) and particulate material were developed during processing of commercial grades of polyamide 6, polyamide 66, and polyamide 66/6 resins. A small commercial-type extruder was used, and melt temperatures ranged from 475 to 550 degrees F. An emission factor was calculated for each substance measured and is reported as pounds released to the atmosphere per million pounds of polymer resin processed. Scaled to production volumes, these emission factors can be used by processors to estimate emission quantities from similar polyamide extrusion operations.  相似文献   

4.
A general procedure has been described that can be followed for estimating the cost of reducing air pollution emissions within a metropolitan region. The six step procedure examines emission inventories, regional trends, control trends, alternate control schemes, control costs, and optimum cost-effectiveness. The procedure is illustrated for one emission source in the Delaware Valley. By application of “feasible controls,” automobile emissions were shown to be reduced from 4.5 billion pounds per year in the Region during 1968 to 1.5 billion pounds in the year 2000. Annual control costs during the same period will increase from $30 million to over $300 million per year. This represents a cost increase from $15 per registered vehicle in 1968 to about $58 per vehicle per year in 2000. A method was illustrated for determining minimum cost to achieve any desired degree of emission reduction where alternate feasible control schemes are available. This method is especially useful where the allocation of scarce resources is involved. The general procedure is applicable to any number of pollutants and emission sources, and may be useful for calculations in any metropolitan area. The objectives of the present study are to apply this method to other sources within the Delaware Valley and to determine total regional costs for various levels of emission reduction. As one example of a practical application for this type of analysis, the economic impact of regulatory schemes can be evaluated on a cost-effectiveness basis  相似文献   

5.
ABSTRACT

In the spring of 2018, a 10-day field study was conducted in Colorado’s Denver-Julesburg oil and natural gas production basin to improve information on well pad pneumatic controller (PC) populations and identify PCs with potential maintenance issues (MIs) causing excess emissions through a novel optical gas imaging (OGI) survey approach. A total of 500 natural gas-emitting PCs servicing 102 wells (4.9 PCs/well) were surveyed at 31 facilities operated by seven different companies. The PCs were characterized by their designed operational function and applications, with 83% of the PC population identified as intermittent PCs (IPCs). An OGI inspection protocol was used to investigate emissions on 447 working PCs from this set. OGI detected continuous emissions from 11.3% of observed IPCs and these were classified as experiencing some level of MIs. OGI imaging modes were observed to have a significant effect on emission detectability with high sensitivity mode detection rates being approximately 2 times higher compared to auto mode. Fourteen snapshot emission measurements (not including actuations) were conducted on IPCs in this category using a high-volume sampling device with augmented quality assurance procedures with observed emissions rates ranging from 0.1 up to 31.3 scf/hr (mean = 2.8 scf/hr). For PCs with continuous depressurization type (CPC), 36.8% had continuous emissions observed by OGI. Four supporting emission measurements were conducted on CPCs with one unit exceeding the low bleed regulatory emission threshold with an emission rate of 9.9 scf/hr (mean = 4.2 scf/hr). Additional information was collected on PC actuation events, as observed with OGI, which showed a strong correlation between observed actuation events and facility production compared to observed continuous emissions caused by MIs which did not correlate with facility production.

Implications: A novel survey approach of pneumatic controllers at oil and natural gas production facilities in the Denver-Julesburg basin, using optical gas imaging and supporting emission measurements, was demonstrated as an effective method to identify controllers with potential maintenance issues causing excess emissions. The results of the pneumatic controller and optical gas imaging surveys improved information on pneumatic controller populations within the basin and also demonstrated the significant effect optical gas imaging modes have on emission detections.  相似文献   

6.
Abstract

Variability refers to real differences in emissions among multiple emission sources at any given time or over time for any individual emission source. Variability in emissions can be attributed to variation in fuel or feedstock composition, ambient temperature, design, maintenance, or operation. Uncertainty refers to lack of knowledge regarding the true value of emissions. Sources of uncertainty include small sample sizes, bias or imprecision in measurements, nonrepresentativeness, or lack of data. Quantitative methods for characterizing both variability and uncertainty are demonstrated and applied to case studies of emission factors for lawn and garden (L&G) equipment engines. Variability was quantified using empirical and parametric distributions. Bootstrap simulation was used to characterize confidence intervals for the fitted distributions. The 95% confidence intervals for the mean grams per brake horsepower/hour (g/hp-hr) emission factors for two-stroke engine total hydrocarbon (THC) and NOx emissions were from -30 to +41% and from -45 to +75%, respectively. The confidence intervals for four-stroke engines were from -33 to +46% for THCs and from -27 to +35% for NOx. These quantitative measures of uncertainty convey information regarding the quality of the emission factors and serve as a basis for calculation of uncertainty in emission inventories (Els).  相似文献   

7.
ABSTRACT

Although modeling of gaseous emissions from motor vehicles is now quite advanced, prediction of particulate emissions is still at an unsophisticated stage. Emission factors for gasoline vehicles are not reliably available, since gasoline vehicles are not included in the European Union (EU) emission test procedure. Regarding diesel vehicles, emission factors are available for different driving cycles but give little information about change of emissions with speed or engine load. We have developed size-specific speed-dependent emission factors for gasoline and diesel vehicles. Other vehicle-generated emission factors are also considered and the empirical equation for re-entrained road dust is modified to include humidity effects. A methodology is proposed to calculate modal (accelerating, cruising, or idling) emission factors. The emission factors cover particle size ranges up to 10 um, either from published data or from user-defined size distributions.

A particulate matter emission factor model (PMFAC), which incorporates virtually all the available information on particulate emissions for European motor vehicles, has been developed. PMFAC calculates the emission factors for five particle size ranges [i.e., total suspended particulates (TSP), PM10, PM5, PM25, and PM1] from both vehicle exhaust and nonexhaust emissions, such as tire wear, brake wear, and re-entrained road dust. The model can be used for an unlimited number of roads and lanes, and to calculate emission factors near an intersection in user-defined elements of the lane. PMFAC can be used for a variety of fleet structures. Hot emission factors at the user-defined speed can be calculated for individual vehicles, along with relative cold-to-hot emission factors. The model accounts for the proportions of distance driven with cold engines as a function of ambient temperature and road type (i.e., urban, rural, or motorway).

A preliminary evaluation of PMFAC with an available dispersion model to predict the airborne concentration in the urban environment is presented. The trial was on the A6 trunk road where it passes through Loughborough, a medium-size town in the English East Midlands. This evaluation for TSP and PM10 was carried out for a range of traffic fleet compositions, speeds, and meteorological conditions. Given the limited basis of the evaluation, encouraging agreement was shown between predicted and measured concentrations.  相似文献   

8.
ABSTRACT

The emission inventory of the city of Santiago, Chile, related to mobile sources was built up using constant emission factors extracted from international literature. To improve the estimate of mobile source emissions, an experimental program was designed, consisting of transient tests on a chassis dynamometer over a sample of about 166 vehicles, applying 9 local driving cycles with average speeds of 3-80 km/hr, and experimentally determined in previous research carried out by the authors. An analysis of the influence of fuel inlet technology, and a year time-length model over emissions, was undertaken. We proposed emission factors as a function of average speed and of CO, THC, and NOx for catalytic and noncatalytic light-duty gasoline vehicles, disaggregated on commercial and private cars. A comparative analysis with emission factors obtained for the application of the COPERT II and AP-42 models was also presented. Our current analysis gives solid evidence indicating that to obtain a reasonable accuracy on emission estimates and calculations, local emission factors must be used.  相似文献   

9.
ABSTRACT

Styrene is a designated hazardous air pollutant, per the 1990 Clean Air Act Amendments. It is also a tropospheric ozone precursor. Fiber-reinforced plastics (FRP) fabrication is the primary source of anthropogenic styrene emissions in the United States. This paper describes an empirical model designed to predict styrene emission factors for selected FRP fabrication processes. The model highlights 10 relevant parameters impacting styrene emission factors for FRP processes, and helps identify future areas of FRP pollution prevention (P2) research. In most cases, the number of these parameters with greatest impact on styrene emission factors can be limited to four or five. Seven different emission studies were evaluated and used as model inputs.  相似文献   

10.
Abstract

This study investigates the combustion kinetics and emission factors of 16 U.S. Environmental Protection Agency priority polycyclic aromatic hydrocarbons (PAHs) in polylactic acid (PLA) combustion. Experimentally, two reactions are involved in the PLA combustion process that potentially result in the release of lactide, acetaldehyde, and n-hexaldehyde. The products may continuously be oxidized to form carbon dioxide (CO2) and some PAHs produced because of incomplete combustion. The analytical results indicate that the emission factors for PAHs are in the range of not detectable to 98.04 μg/g. The emission factors are much lower than those of poly(ethylene terephalate) (PET) and other combustion of plastics. Results from this work suggest that combustion is a good choice for waste PLA disposal.  相似文献   

11.
Abstract

Probabilistic emission inventories were developed for 1,3-butadiene, mercury (Hg), arsenic (As), benzene, formaldehyde, and lead for Jacksonville, FL. To quantify inter-unit variability in empirical emission factor data, the Maximum Likelihood Estimation (MLE) method or the Method of Matching Moments was used to fit parametric distributions. For data sets that contain nondetected measurements, a method based upon MLE was used for parameter estimation. To quantify the uncertainty in urban air toxic emission factors, parametric bootstrap simulation and empirical bootstrap simulation were applied to uncensored and censored data, respectively. The probabilistic emission inventories were developed based on the product of the uncertainties in the emission factors and in the activity factors. The uncertainties in the urban air toxics emission inventories range from as small as –25 to +30% for Hg to as large as –83 to +243% for As. The key sources of uncertainty in the emission inventory for each toxic are identified based upon sensitivity analysis. Typically, uncertainty in the inventory of a given pollutant can be attributed primarily to a small number of source categories. Priorities for improving the inventories and for refining the probabilistic analysis are discussed.  相似文献   

12.
Abstract

The main objective of this study was to monitor the volatile organic compounds (VOCs) in the stack gas released from organic chemical industrial plants to determine emission factors. Samples from 52 stacks, with or without air pollution control devices (APCDs), from seven industrial processes were taken and VOCs measured using U.S. Environmental Protection Agency (EPA) Method 18. These 7 processes, including 26 plants, were the manufacturers of acrylonitrile–butadiene–styrene (ABS), polyvinyl chloride (PVC), polystyrene (PS), acrylic resin (ACR), vinyl chloride (VC), para–terephthalic acid (PTA), and synthetic fiber (SYF). The results clearly indicate significant variations of emission factors among the various industrial processes, particularly emission factors for those without APCDs. As expected, those with APCDs yield much less emission factors. Regardless of those with or without APCDs, the order of manufacturing processes with regard to VOC emission factors is SYF > ABS > PS > ACR > PTA > PVC > VC. The emission factors for some processes also differ from those in EPA–42 data file. The VOC profiles further indicate that some VOCs are not listed in the U.S. VOC/Particulate Matter Speciation Data System (SPECIATE). The potential O3 formation is determined from the total amount of VOC emitted for each of seven processes. The resultant O3 yield varied from 0.22 (ACR) to 2.33 g O3 g–1 VOC (PTA). The significance of this O3 yield is discussed.  相似文献   

13.
ABSTRACT

This paper reports on the analysis of on-road vehicle speed, emission, and fuel consumption data collected by four instrumented vehicles. Time-, distance-, and fuel-based average fuel consumption, as well as CO, HC, NOx, and soot emission factors, were derived. The influences of instantaneous vehicle speed on emissions and fuel consumption were studied. It was found that the fuel-based emission factors varied much less than the time- and distance-based emission factors as instantaneous speed changed. The trends are similar to the results obtained from laboratory tests. The low driving speed contributed to a significant portion of the total emissions over a trip. Furthermore, the on-road data were analyzed using the modal approach. The four standard driving modes are acceleration, cruising, deceleration, and idling. It was found that the transient driving modes (i.e., acceleration and deceleration) were more polluting than the steady-speed driving modes (i.e., cruising and idling) in terms of g/km and g/ sec. These results indicated that the on-road emission measurement is feasible in deriving vehicle emissions and fuel consumption factors in urban driving conditions.  相似文献   

14.
Abstract

The evaluation of emissions of volatile organic compounds (VOCs) during processing of resins is of interest to resin manufacturers and resin processors. An accurate estimate of the VOCs emitted from resin processing has been difficult due to the wide variation in processing facilities. This study was designed to estimate the emissions in terms of mass of emitted VOC per mass of resin processed.

A collection and analysis method was developed and validated for the determination of VOCs present in the emissions of thermally processed acrylonitrile butadiene styrene (ABS) resins. Four composite resins were blended from automotive, general molding, pipe, and refrigeration grade ABS resins obtained from the manufacturers. Emission samples were collected in evacuated 6-L Summa canisters and then analyzed using gas chromatography/flame ionization detection/mass selective detection (GC/FID/MSD). Levels were determined for nine target analytes detected in canister samples, and for total VOCs detected by an inline GC/FID. The emissions evolved from the extrusion of each composite resin were expressed in terms of mass of VOCs per mass of processed resin. Styrene was the principal volatile emission from all the composite resins. VOCs analyzed from the pipe resin sample contained the highest level of styrene at 402 μg/g. An additional collection and detection method was used to determine the presence of aerosols in the emissions. This method involved collecting particulates on glass fiber filters, extracting them with solvents, and analyzing them using gas chromatography/mass spectrometry (GC/MS). No significant levels of any of the target analytes were detected on the filters.  相似文献   

15.
Abstract

This study characterized the emissions of polychlorinated dibenzo-p-dioxins (PCDDs) and polychlorinated dibenzofurans (PCDFs) from the stack flue gases of 17 industrial sources, which were classified into 10 categories. The results show that the mean PCDD/PCDF concentration of secondary zinc smelter (Zn-S) and secondary copper smelter (Cu-S) is 2.44 ng international toxic equivalent (I-TEQ)/Nm3 (N represents normal conditions at 0 °C, 760 mmHg), which was found to be significantly greater than that of industrial waste incinerators (mean concentration = 0.15 ng I-TEQ/Nm3). These results imply that the controlling of secondary metallurgical melting processes is more important than industrial waste incineration for the reduction of PCDD/PCDF emissions. The mean emission factors of cement production, Zn-S and Cu-S, are 0.052, 1.99, and 1.73 μg I-TEQ/t product, respectively. For industrial waste incineration, the mean emission factors of waste rubber, waste liquor, waste sludge, industrial waste solid (IWI)-1, IWI-2, IWI-3, and IWI-4 are 0.752, 0.435, 0.760, 6.64, 1.67, 2.38, and 0.094 μg I-TEQ/t feed, respectively. Most of the PCDD/PCDF emission factors established in this study are less than those reported in previous studies, which could be because of the more stringent regulations for PCDD/PCDF emissions in recent years.  相似文献   

16.
ABSTRACT

Fuel-based emission factors for 143 light-duty gasoline vehicles (LDGVs) and 93 heavy-duty diesel trucks (HDDTs) were measured in Wilmington, CA using a zero-emission mobile measurement platform (MMP). The frequency distributions of emission factors of carbon monoxide (CO), nitrogen oxides (NOx), and particle mass with aerodynamic diameter below 2.5 μm (PM2.5) varied widely, whereas the average of the individual vehicle emission factors were comparable to those reported in previous tunnel and remote sensing studies as well as the predictions by Emission Factors (EMFAC) 2007 mobile source emission model for Los Angeles County. Variation in emissions due to different driving modes (idle, low- and high-speed acceleration, low- and high-speed cruise) was found to be relatively small in comparison to intervehicle variability and did not appear to interfere with the identification of high emitters, defined as the vehicles whose emissions were more than 5 times the fleet-average values. Using this definition, approximately 5% of the LDGVs and HDDTs measured were high emitters. Among the 143 LDGVs, the average emission factors of NOx, black carbon (BC), PM2.5, and ultrafine particle (UFP) would be reduced by 34%, 39%, 44%, and 31%, respectively, by removing the highest 5% of emitting vehicles, whereas CO emission factor would be reduced by 50%. The emission distributions of the 93 HDDTs measured were even more skewed: approximately half of the NOx and CO fleet-average emission factors and more than 60% of PM2.5, UFP, and BC fleet-average emission factors would be reduced by eliminating the highest-emitting 5% HDDTs. Furthermore, high emissions of BC, PM2.5, and NOx tended to cluster among the same vehicles.

IMPLICATIONS This study presents the characterization of on-road vehicle emissions in Wilmington, CA, by sampling individual vehicle plumes. Approximately 5% of the vehicles were high emitters, whose emissions were more than 5 times the fleet-average values. These high emitters were responsible for 30% and more than 50% of the average emission factors of LDGVs and HDDVs, respectively. It is likely that as the overall fleet becomes cleaner due to more stringent regulations, a small fraction of the fleet may contribute a growing and disproportionate share of the overall emissions. Therefore, long-term changes in on-road emissions need to be monitored.  相似文献   

17.
Abstract

A huge amount of inorganic acids can be produced and emitted with waste gases from integrated circuit manufacturing processes such as cleaning and etching. Emission of inorganic acids from selected semiconductor factories was measured in this study. The sampling of the inorganic acids was based on the porous metal denuders, and samples were then analyzed by ion chromatography. The amount of chemical usage was adopted from the data that were reported to the Environmental Protection Bureau in Hsin-chu County according to the Taiwan Environmental Protection Agency regulation. The emission factor is defined as the emission rate (kg/month) divided by the amount of chemical usage (L/month). Emission factors of three inorganic acids (i.e., hydrofluoric acid [HF], hydrochloric acid [HQ], and sulfuric acid [H2SO4]) were estimated by the same method. The emission factors of HF and HCl were determined to be 0.0075 kg/L (coefficient of variation [CV] = 60.7%, n = 80) and 0.0096 kg/L (CV = 68.2%, n = 91), respectively. Linear regression equations are proposed to fit the data with correlation coefficient square (R2) = 0.82 and 0.9, respectively. The emission factor of H2SO4, which is in the droplet form, was determined to be 0.0016 kg/L (CV = 99.2%, n = 107), and its R2 was 0.84. The emission profiles of gaseous inorganic acids show that HF is the dominant chemical in most of the fabricators.  相似文献   

18.
Abstract

Air quality is degraded by many factors, among which the emissions from on‐road vehicles play a significant role. Timely and accurate estimate of such emissions becomes very important for policy‐making and effective control measures. However, lack of traffic data and outdated emission software make this task difficult. This research has demonstrated a new method that facilitates the vehicular emission inventories at the local level by using shorter-time Highway Performance Monitoring System (HPMS) traffic data along with the latest U.S. Environment Protection Agency (EPA) emission modeling software, MOBILE6. The conversion methodology was developed for converting readily available HPMS traffic volume data into EPA MOBILE-based traffic classifications, and a corresponding software program was written for automating the process. EPA MOBILE6 model was used to obtain emissions of nitrogen oxides (NOx), volatile organic compound (VOC), and cabon monoxide (CO) emitted by the parent traffic and subsampled traffic data, and these emissions were additionally compared. The case study has shown that the difference of the magnitude between the emission estimates produced by certain subsampled and parent traffic data are minor, indicating that subsampled HPMS data can be used for reporting parent traffic emissions. It was also observed that traffic emissions follow a Weibull distribution, and NOx emissions were more sensitive to the traffic data composition than VOC and CO. Lastly, use of average emission values of 20 or 30 consecutive minutes appears to be valid for representing hourly emissions.  相似文献   

19.
ABSTRACT

Pollutant measurements in traffic tunnels have been used to estimate motor-vehicle emissions for several decades. The objective in this type of study is to use the traffic tunnel as a tool for characterizing motor vehicles rather than seeking a tunnel design with acceptably low pollutant concentrations. In the past, very simple aerodynamic models have been used to relate measured concentrations to vehicle emissions. Typically, it is assumed that velocities and concentrations are uniform across the tunnel cross section. In the present work, a vehicle emitting a known amount of sulfur hexafluoride (SF6) was driven repeatedly through a 730-m-long traffic tunnel in Vancouver, Canada. Comparing the measured SF6 concentrations to the known emission rates, it is possible to directly assess the accuracy of the simple tunnel aerodynamic models typically used to interpret tunnel data. Correction factors derived from this procedure were then applied to measurements of carbon monoxide and other pollutants to obtain gram-per-kilometer emission factors for vehicles. Although the specific correction factors measured here are valid only for the tunnel tested, the magnitude of the factors (up to two or more) suggests that the phenomena observed here should be considered when interpreting data from other tunnels.  相似文献   

20.
Large petrochemical flares, common in the Houston Ship Channel (the Ship Channel) and other industrialized areas in the Gulf of Mexico region, emit hundreds to thousands of pounds per hour of highly reactive volatile organic compounds (HRVOCs). We employed fine horizontal resolution (200 m?×?200 m) in a three-dimensional (3D) Eulerian chemical transport model to simulate two historical Ship Channel flares. The model reasonably reproduced the observed ozone rise at the nearest monitoring stations downwind of the flares. The larger of the two flares had an olefin emission rate exceeding 1400 lb/hr. In this case, the model simulated a rate of increase in peak ozone greater than 40 ppb/hr over a 12 km?×?12 km horizontal domain without any unusual meteorological conditions. In this larger flare, formaldehyde emissions typically neglected in official inventories enhanced peak ozone by as much as 16 ppb and contributed over 10 ppb to ambient formaldehyde up to ~8 km downwind of the flare. The intense horizontal gradients in large flare plumes cannot be simulated by coarse models typically used to demonstrate ozone attainment. Moreover, even the relatively dense monitoring network in the Ship Channel may not be able to detect many transient high ozone events (THOEs) caused by industrial flare emissions in the absence of stagnant air recirculation or stalled sea breeze fronts, even though such conditions are unnecessary for the occurrence of THOEs.

Implications: Flare minimization may be an important strategy to attain the U.S. federal ozone standard in industrialized areas, and to avoid inordinate exposure to formaldehyde in neighborhoods surrounding petrochemical facilities. Moreover, air quality monitoring networks, emission inventories, and chemical transport models with higher spatial and temporal resolution and more refined speciation of HRVOCs are needed to better account for the near-source air quality impacts of large olefin flares.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号