首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.

Background, aims, and scope

Preschool indoor air quality (IAQ) is believed to be different from elementary school or higher school IAQ and preschool is the first place for social activity. Younger children are more susceptible than higher-grade children and spend more time indoors. The purpose of this study was to compare the indoor air quality by investigating the concentrations of airborne particulates and gaseous materials at preschools in urban and rural locations in Korea.

Methods

We investigated the concentrations of airborne particulates and gaseous materials in 71 classrooms at 17 Korean preschools. For comparison, outdoor air was sampled simultaneously with indoor air samples. Airborne concentrations of total suspended particulates, respirable particulates, lead, asbestos, total volatile organic compounds and components, formaldehyde, and CO2 were measured with National Institute for Occupational Safety and Health and/or Environmental Protection Agency analytical methods.

Results

The concentration profiles of the investigated pollutants in indoor and urban settings were higher than those in outdoor and rural areas, respectively. The ratios of indoor/outdoor concentrations (I/O) of particulates and gaseous pollutants were characterized in urban and rural preschools. Total dust concentration was highest in urban indoor settings followed by urban outdoor, rural indoor, and rural outdoor locations with an I/O ratio of 1.37 in urban and 1.35 in rural areas. Although I/O ratios of lead were close to 1, lead concentrations were much higher in urban than in rural areas. The I/O ratio of total VOCs was 2.29 in urban and 2.52 in rural areas, with the highest level in urban indoor settings. The I/O ratio of formaldehyde concentrations was higher in rural than in urban areas because the outdoor rural level was much lower than the urban concentration. Since an I/O ratio higher than 1 implies the presence of indoor sources, we concluded that there are many indoor sources in preschools.

Conclusions

We confirmed that pollutants in indoor and urban settings were higher than those in outdoor and rural areas, respectively. Preschool children are expected to spend more time inside preschool facilities and therefore to be more exposed to pollutants. As far as we know, preschool IAQ is different from elementary school or higher school IAQ. Also, they are more vulnerable than higher-grade children. We found that the indoor and urban concentration profiles of the studied pollutants in preschools were higher than those in outdoor and rural areas. We believe that our findings may be useful for understanding the potential health effects of exposure and intervention studies in preschools.  相似文献   

2.
As part of a larger program to investigate indoor sources of air pollution, an indoor/outdoor sampling program was carried out for NO, NO2, and CO In four private houses which had gas stoves. The four houses chosen for study represented different surrounding land use, life styles, and house age and layout. The pollutant gases were measured essentially simultaneously at three indoor locations and one outdoor location. The results of the program showed that indoor levels of NO and NO2 are directly related to stove use in the homes tested. Furthermore, these stoves often produced more NO2 than NO. In some instances, the levels of NO2 and CO in the kitchen exceeded the air quality standards for these pollutants if such outdoor standards were to be applied to indoors and the data for the sampling periods were typical of an entire year. A diffusion experiment conducted in one of the houses showed that the half-life for NO2 was less than one-third that for either NO or CO. Oxidation of NO to NO2 (based upon comparing the half-life of NO to CO) does not appear to occur to a significant degree indoors.  相似文献   

3.
A manual method for measuring reduced sulfur compounds in kraft pulp mill and sulfur recovery plant emissions was evaluated. The method involves removing SO2 from the gas stream (if present) with a citric acid-potassium citrate buffer that passes reduced sulfur compounds; thermal oxidation of all reduced sulfur compounds to SO2; collection of the SO2 in H2O2; and a titrimetric analysis of the H2O2 for SO4 2?. A heated filter removes alkaline particulate matter that would produce a negative interference if absorbed by the buffer. When used at kraft pulp mills, the method agrees closely with Reference Method 16, provided that nonregulated reduced sulfur compounds, such as carbonyl sulfide, are not present in the emissions. At sulfur recovery plants, nonregulated reduced sulfur compounds, such as thiophene, are likely to be present in the emissions and will produce a positive bias in the results obtained with this method. The precision of the method ranges from 1 to 7 percent relative standard deviation.  相似文献   

4.
Subway systems are considered as main public transportation facility in developed countries. Time spent by people in indoors, such as underground spaces, subway stations, and indoor buildings, has gradually increased in the recent past. Especially, operators or old persons who stay in indoor environments more than 15 hr per day usually influenced a greater extent by indoor air pollutants. Hence, regulations on indoor air pollutants are needed to ensure good health of people. Therefore, in this study, a new cumulative calculation method for the estimation of total amounts of indoor air pollutants emitted inside the subway station is proposed by taking cumulative amounts of indoor air pollutants based on integration concept. Minimum concentration of individual air pollutants which naturally exist in indoor space is referred as base concentration of air pollutants and can be found from the data collected. After subtracting the value of base concentration from data point of each data set of indoor air pollutant, the primary quantity of emitted air pollutant is calculated. After integration is carried out with these values, adding the base concentration to the integration quantity gives the total amount of indoor air pollutant emitted. Moreover, the values of new index for cumulative indoor air quality obtained for 1 day are calculated using the values of cumulative air quality index (CAI). Cumulative comprehensive indoor air quality index (CCIAI) is also proposed to compare the values of cumulative concentrations of indoor air pollutants. From the results, it is clear that the cumulative assessment approach of indoor air quality (IAQ) is useful for monitoring the values of total amounts of indoor air pollutants emitted, in case of exposure to indoor air pollutants for a long time. Also, the values of CCIAI are influenced more by the values of concentration of NO2, which is released due to the use of air conditioners and combustion of the fuel. The results obtained in this study confirm that the proposed method can be applied to monitor total amounts of indoor air pollutants emitted, inside apartments and hospitals as well.

Implications: Nowadays, subway systems are considered as main public transportation facility in developed countries. Time spent by people in indoors, such as underground spaces, subway stations, and indoor buildings, has gradually increased in the recent past. Especially, operators or old persons who stay in the indoor environments more than 15 hr per day usually influenced a greater extent by indoor air pollutants. Hence, regulations on indoor air pollutants are needed to ensure good health of people. Therefore, this paper presents a new methodology for monitoring and assessing total amounts of indoor air pollutants emitted inside underground spaces and subway stations. A new methodology for the calculation of cumulative amounts of indoor air pollutants based on integration concept is proposed. The results suggest that the cumulative assessment approach of IAQ is useful for monitoring the values of total amounts of indoor air pollutants, if indoor air pollutants accumulated for a long time, especially NO2 pollutants. The results obtained here confirm that the proposed method can be applied to monitor total amounts of indoor air pollutants emitted, inside apartments and hospitals as well.  相似文献   

5.
A detailed chemical box model has been constructed based on a comprehensive chemical mechanism (the Master Chemical Mechanism) to investigate indoor air chemistry in a typical urban residence in the UK. Unlike previous modelling studies of indoor air chemistry, the mechanism adopted contains no simplifications such as lumping or the use of surrogate species, allowing more insight into indoor air chemistry than previously possible. The chemical mechanism, which has been modified to include the degradation reactions of key indoor air pollutants, contains around 15,400 reactions and 4700 species. The results show a predicted indoor OH radical concentration up to 4.0×105 molecule cm−3, only a factor of 10–20 less than typically observed outdoors and sufficient for significant chemical cycling to take place. Concentrations of PAN-type species and organic nitrates are found to be important indoors, reaching concentrations of a few ppb. Sensitivity tests highlight that the most crucial parameters for modelling the concentration of OH are the light-intensity levels and the air exchange rate. Outdoor concentrations of O3 and NOX are also important in determining radical concentrations indoors. The reactions of ozone with alkenes and monoterpenes play a major role in producing new radicals, unlike outdoors where photolysis reactions are pivotal radical initiators. In terms of radical propagation, the reaction of HO2 with NO has the most profound influence on OH concentrations indoors. Cycling between OH and RO2 is dominated by reaction with the monoterpene species, whilst alcohols play a major role in converting OH to HO2. Surprisingly, the absolute reaction rates are similar to those observed outdoors in a suburban environment in the UK during the summer. The results from this study highlight the importance of tailoring a model for its particular location and the need for future indoor air measurements of radical species, nitrated species such as PANs and organic nitrates, photolysis rates of key species over the range of wavelengths observed indoors and concurrent measurements of outdoor air pollutant concentrations.  相似文献   

6.
Sources and concentrations of indoor air pollutants and aeroallergens were evaluated in the arid Southwest community of Tucson, Arizona. One major purpose was to appraise the interaction of indoor and outdoor human exposures. A rough time budget study showed that 74% of adults spent 75% or more of their time in some indoor environment. Outdoor and indoor concentrations of TSP, RSP, CO, O3 and aeroallergens were measured for 41 detached dwellings. Small area and basin monitoring occurred for TSP, CO, NO2, O3 and aeroallergens; ambient TSP frequently exceeds NAAQS and both CO and O3 do occasionally. Indoor TSP and RSP were lower than outdoors and were of a different composition. Outdoor infiltration falls rapidly for particles and pollen, related to distance Indoors. CO was low and O3 was very low indoors. TSP and RSP correlated significantly with tobacco smoking and CO correlated with gas stove usage. Temperature varied minimally indoors and relative humidity indoors was similar to outdoor readings In this climate. It was concluded that better particle characterization and better estimates of total exposure are required.  相似文献   

7.
Abstract

Consumer products can emit significant quantities of terpenes, which can react with ozone (O3). Resulting byproducts include compounds with low vapor pressures that contribute to the growth of secondary organic aerosols (SOAs). The focus of this study was to evaluate the potential for SOA growth, in the presence of O3, following the use of a lime-scented liquid air freshener, a pine-scented solid air freshener, a lemon-scented general-purpose cleaner, a wood floor cleaner, and a perfume. Two chamber experiments were performed for each of these five terpene-containing agents, one at an elevated O3 concentration and the other at a lower O3 concentration. Particle number and mass concentrations increased and O3 concentrations decreased during each experiment. Experiments with terpene-based air fresheners produced the highest increases in particle number and mass concentrations. The results of this study clearly demonstrate that homogeneous reactions between O3 and terpenes from various consumer products can lead to increases in fine particle mass concentrations when these products are used indoors. Particle increases can occur during periods of elevated outdoor O3 concentrations or indoor O3 generation, coupled with elevated terpene releases. Human exposure to fine particles can be reduced by minimizing indoor terpene concentrations or O3 concentrations.  相似文献   

8.
Determination of volatile organic compounds (VOCs) formed one part of the EU-EXPOLIS project in which the exposure of European urban populations to particles and gaseous pollutants was studied. The EXPOLIS study concentrated on 30 target VOCs selected on the basis of environmental and health significance and usability of the compounds as markers of pollution sources. In the project, 201 subjects in Helsinki, 50 in Athens, 50 in Basel, 50 in Milan and, 50 in Oxford and 50 in Prague were selected for the final exposure sample. The microenvironmental and personal exposure concentrations of VOCs were the lowest in Helsinki and Basel, while the highest concentrations were measured in Athens and Milan; Oxford and Prague were in between. In all cities, home indoor air was the most significant exposure agent. Workplace indoor air concentrations measured in this study were generally lower than the home indoor concentrations and home outdoor air played a minor role as an exposure agent. When estimating the measured personal exposure concentrations using the measured concentrations and time fractions spent at home indoors, at home outdoors, and at the workplace, it could be concluded that these three microenvironments do not fully explain the personal exposure. Other important sources for personal exposure must be encountered, the most important being traffic/transportation and other indoor environments not measured in this study.  相似文献   

9.
Simultaneous measurements were made of the concentrations of NO, NO2, and CO inside and outside of a building. The building is located in the Los Angeles area, which is heavily polluted by photochemical smog, and the experiments were conducted at a time of the year when the pollutants in question tend to be high. The results shows that there is a direct relationship between the inside and outside concentrations, and that the phase lag between the concentrations depends principally on the ratio of the building volume to the ventilation rate. Although the outside concentrations of the pollutants in question did not follow the same pattern every day, peak concentrations seemed to be related to “rush-hour” traffic. By reducing ventilation rates during these periods, it may be possible to reduce the concentration peaks inside of the building. The building involved in the current study was not located in the immediate vicinity of heavy traffic, and the indoor concentrations of NO, NO2, and CO did not appear to be very severe when compared to those defined by present air quality standards. Finally, the results support the belief that NO and O3 do not co-exist indoors except in very small quantities.  相似文献   

10.
Abstract

This paper describes systematic work undertaken in the field of atmospheric emissions from Portuguese Kraft pulp mills. The study led to the determination of emission factors from stationary sources, which proved to be an important tool for assessing the need for investment in air pollution abatement equipment, specifically for malodorous gases.  相似文献   

11.
Abstract

A detailed analysis of indoor/outdoor physicochemical aerosol properties has been performed. Aerosol measurements were taken at two dwellings, one in the city center and the other in the suburbs of the Oslo metropolitan area, during summer/fall and winter/spring periods of 2002–2003. In this paper, emphasis is placed on the chemical characteristics (water-soluble ions and carbonaceous components) of fine (PM2.5) and coarse (PM2.5–10) particles and their indoor/outdoor relationship. Results demonstrate that the carbonaceous species were dominant in all fractions of the PM10 particles (cut off size: 0.09–11.31 μm) during all measurement periods, except winter 2003, when increased concentrations of water-soluble inorganic ions were predominant because of sea salt transport. The concentration of organic carbon was higher in the fine and coarse PM10 fractions indoors, whereas elemental carbon was higher indoors only in the coarse fraction. In regards to the carbonaceous species, local traffic and secondary organic aerosol formation were, probably, the main sources outdoors, whereas indoors combustion activities such as preparation of food, burning of candles, and cigarette smoking were the main sources. In contrast, the concentrations of water-soluble inorganic ions were higher outdoors than indoors. The variability of water-soluble inorganic ion concentrations outdoors was related to changes in emissions from local anthropogenic sources, long-range transport of particles, sea salt emissions, and resuspension of roadside and soil dusts. In the indoor environment the infiltration of the outdoor air indoors was the major source of inorganic ions.  相似文献   

12.
Health risks from air pollutants are evaluated by comparing chronic (i.e., an average over 1 yr or greater) or acute (typically 1-hr) exposure estimates with chemical- and duration-specific reference values or standards. When estimating long-term pollutant concentrations via exposure modeling, facility-level annual average emission rates are readily available as model inputs for most air pollutants. In contrast, there are far fewer facility-level hour-by-hour emission rates available for many of these same pollutants. In this report, we first analyze hour-by-hour emission rates for total reduced sulfur (TRS) compounds from eight kraft pulp mill operations. This data set is used to demonstrate discrepancies between estimating exposure based on a single TRS emission rate that has been calculated as the mean of all operating hours of the year, as opposed to reported hourly emission rates. A similar analysis is then performed using reported hourly emission rates for sulfur dioxide (SO2) and oxides of nitrogen (NOx) from three power generating units from a U.S. power plant. Results demonstrate greater variability at kraft pulp mill operations, with ratios of reported hourly to average hourly TRS emissions ranging from less than 1 to greater than 160 during routine facility operations. Thus, if fluctuations in hourly emission rates are not accounted for, over- or underestimates of hourly exposure, and thus acute health risk, may occur. In addition to this analysis, we also demonstrate an additional challenge when assessing health risk based on hourly exposures: the lack of human health reference values based on 1-hr exposures.

Implications: Largely due to the lack of reported hourly emission rate data for many air pollutants, an hourly average emission rate (calculated from an annual emission rate) is often used when modeling the potential for acute health risk. We calculated ratios between reported hourly and hourly average emission rates from pulp and paper mills and a U.S. power plant to demonstrate that if not considered, hourly fluctuations in emissions could result in an over- or underestimation of exposure and risk. We also demonstrate the lack of 1-hr human health reference values meant to be protective of the general population, including children.  相似文献   


13.
Indoor air pollution caused by volatile organic compounds (VOCs) may affect the health and well-being of inhabitants. Uptake and release of these compounds by and from indoor materials alter their concentrations in indoor air: uptake will lower peak concentrations, whereas subsequent (slow) release at lower concentration levels will prolong the presence of VOCs in indoor air. An experimental set-up has been implemented where indoor materials are placed as a “membrane” separating two air compartments. Both compartments – consisting of Field and Laboratory Emission Cells FLECs – are constantly flushed with air, one air stream containing a mixture of 20 VOCs, and concentrations in both compartments are measured after 1 h. Ten materials usually covering extensive surfaces indoors were consecutively exposed to the vapour mixture at concentration levels typically found in indoor environments. Under the chosen experimental conditions, five of these materials exhibited a permeability high enough that VOCs could be detected on the other side. Mass transport of VOCs into and through indoor materials has therefore been confirmed by experiment. The set-up allows for a quick screening of indoor materials with respect to their sorption capacity and permeability.  相似文献   

14.
Salthammer T  Mentese S 《Chemosphere》2008,73(8):1351-1356
The level of carbonyl compounds in indoor air is crucial due to possible health effects and the high prevalence of their potential sources. Therefore, selecting a convenient and rapid analytical technique for the reliable detection of carbonyl compound concentrations is important. The acetyl acetone (acac) method is a widely used standard procedure for detecting gaseous formaldehyde. For measuring formaldehyde along with other carbonyl compounds, the DNPH-method is commonly applied. The recommended procedure for measuring volatile organic compounds (VOCs) is sampling on Tenax TA, followed by thermal desorption and GC/MS analysis. In this study, different analytical techniques for the quantification of formaldehyde, pentanal, and hexanal are critically compared. It was found that the acac- and DNPH-method are in very good agreement for formaldehyde. In contrast, the DNPH-method significantly underestimates indoor air concentrations of the higher aldehydes in comparison to sampling on Tenax TA, although both methods are strongly correlated. The reported results are part of the EURIMA-WKI study on levels of indoor air pollutants resulting from construction, building materials and interior decoration.  相似文献   

15.
ABSTRACT

A lab-scale study was conducted to determine the rate and extent of decomposition of three biofilter media materials—compost, hog fuel, and a mixture of the two in 1:1 ratio—used in biofiltration applied to removal of reduced sulfur odorous compounds from pulp mill air emissions. The rate of carbon mineralization, as a measure of biofilter media degradation, was determined by monitoring respiratory CO2 evolution and measuring the changes in carbon and nitrogen fractions of the biofilter materials over a period of 127 days. Both ambient air and air containing reduced sulfur (RS) compounds were used, and the results were compared. After 127 days of incubation with ambient air, about 17% of the media carbon was evolved as CO2 from compost as compared to 6 and 12% from hog fuel and the mixture, respectively. The decomposition showed sequential breakdown of carbon moieties, and three distinct stages were observed for each of the biofilter media. First-order rate kinetics were used to describe the decomposition stages. Decomposition rates in the initial stages were at least twice those of the following stages. Carbon mineralization showed close dependence on the C/N ratio of the biofilter material. Media decomposition was enhanced in the presence of RS gases as a result of increased bioactivity by sulfur-oxidizing bacteria and other microorganisms, thus reducing the media half-life by more than 50%. At higher concentrations of RS gases, the CO2 evolution rates were proportionally lower than those at the low concentrations because of the limited acid buffering capacity of the biofilter materials.  相似文献   

16.
Indoor air quality (IAQ) in schools is a matter of concern because children are most vulnerable and sensitive to pollutant exposure. Conservation of energy at the expense of ventilation in heating, ventilation, and air conditioning (HVAC) systems adversely affects IAQ. Extensive use of new materials in building, fitting, and refurbishing emit various pollutants such that the indoor environment creates its own discomfort and health risks. Various schools in Kuwait were selected to assess their IAQ. Comprehensive measurements of volatile organic compounds (VOCs) consisting of 72 organic compounds consisting of aliphatic (C3–C6), aromatic (C6–C9), halogenated (C1–C7), and oxygenated (C2–C9) functional groups in indoor air were made for the first time in schools in Kuwait. The concentrations of indoor air pollutants revealed hot spots (science preparation rooms, science laboratories, arts and crafts classes/paint rooms, and woodworking shops/decoration rooms where local sources contributed to the buildup of pollutants in each school. The most abundant VOC pollutant was chlorodifluoromethane (R22; ClF2CH), which leaked from air conditioning (AC) systems due to improper operation and maintenance. The other copious VOCs were alcohols and acetone at different locations due to improper handling of the chemicals and their excessive uses as solvents. Indoor carbon dioxide (CO2) levels were measured, and these levels reflected the performance of HVAC systems; a specific rate or lack of ventilation affected the IAQ. Recommendations are proposed to mitigate the buildup of indoor air pollutants at school sites.

Implications: Indoor air quality in elementary schools has been a subject of extreme importance due to susceptibility and sensibility of children to air pollutants. The schools were selected based on their surrounding environment especially downwind direction from the highly industrialized zone in Kuwait. Extensive sampling from different sites in four schools for comprehensive VOCs and CO2 were completed for an extended period of over a year. Different hot spots were identified where leaked refrigerant and inadequate handling of laboratory solvents contributed to the high VOCs in the respective locations. CO2 levels reflected HVAC performance and poor ventilation. A list of recommendations has been proposed to eradicate these high levels of air pollution.  相似文献   


17.
Outdoor and indoor environments are profitably viewed as parts of a whole connected through various physical and chemical interactions. This paper examines four phenomena that share a dependence on vapor pressure—the extent to which an organic compound in the gas phase sorbs on airborne particles, sorbs on surfaces, sorbs on particles collected on a filter or activates trigeminal nerve receptors. It also defines a new equilibrium coefficient for the partitioning of organic compounds between an airstream and particles collected by a filter in that airstream. Gas/particle partitioning has been studied extensively outdoors, but sparingly indoors. Gas/surface partitioning occurs primarily indoors while gas/filter partitioning occurs at the interface between outdoors and indoors. Activation of trigeminal nerve receptors occurs at the human interface. The logarithm of an organic compound's saturation vapor pressure correlates in a linear fashion with the logarithms of equilibrium coefficients characteristic of each of these four phenomena. Since, to a rough approximation, the log of an organic compound's vapor pressure scales with its molecular weight, molecular weight can be used to make first estimates of the above processes. For typical indoor conditions, only larger compounds with lower-saturation vapor pressures (e.g., tetracosane, pentacosane, or di-2-ethylhexyl phthalate) have airborne particle concentrations comparable to or larger than gas phase concentrations. Regardless of a compound's vapor pressure, the total mass sorbed on indoor airborne particles is quite small compared to the total sorbed on indoor surfaces, reflecting the large difference in surface areas between particles within a room and surfaces within a room. If the actual surface areas are considered, accounting for roughness and porosity, the surface concentration of organics sorbed on typical airborne particles appears to be comparable to the surface concentration of organics sorbed on indoor carpets, walls and other materials (based on data from several studies in the literature). Mirroring the importance of phase distributions outdoors, an organic compound's indoor lifetime, fate and even health impacts depend on its distribution between phases and among surfaces.  相似文献   

18.
ABSTRACT

A speciated, hourly, and gridded air pollutants emission modeling system (SHEMS) was developed and applied in predicting hourly nitrogen dioxide (NO2) and ozone (O3) levels in the Seoul Metropolitan Area (SMA). The primary goal of the SHEMS was to produce a systemized emission inventory for air pollutants including ozone precursors for modeling air quality in urban areas.

The SHEMS is principally composed of three parts: (1) a pre-processor to process emission factors, activity levels, and spatial and temporal information using a geographical information system; (2) an emission model for each source type; and (3) a post-processor to produce report and input data for air quality models through database modeling. The source categories in SHEMS are point, area, mobile, natural, and other sources such as fugitive emissions. The emission database produced by SHEMS contains 22 inventoried compounds: sulfur dioxide, NO2, carbon monoxide, and 19 speciated volatile organic compounds. To validate SHEMS, the emission data were tested with the Urban Airshed Model to predict NO2 and O3 concentrations in the SMA during selected episode days in 1994. The results turned out to be reliable in describing temporal variation and spatial distribution of those pollutants.  相似文献   

19.
20.
Abstract

A high-efficiency particulate air (HEPA)-carbon filtration system was developed by the Access Business Group, LLC, to reduce the indoor levels of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs). The HEPA filter removes the particle-bound PCDD/Fs, and the carbon filter removes the gaseous fraction. Because of the toxicity of PCDD/Fs, it is very difficult to handle them in the laboratory. In this study, mathematical modeling was performed to evaluate the performance of the HEPA-carbon filtration system for PCDD/Fs removal and to optimize its design and operation. The model was calibrated with experimental data conducted with toluene in a sealed room. Model simulations with four selected congeners demonstrated that it takes ~1 hr for the indoor air treatment system to reach the maximum removal efficiency and that the carbon air filter has a life time of 107 yr for dioxin removal. Given a zero emission from the HEPA filter, the overall removal efficiency is 78.7% for 2,3,7,8-tetrachloro dibenzo-p-dioxins, 89.8% for octa-chlorodibenzodioxin, 78% for tetra-chlorodibenzofuran, and 89.8% for octachlorodibenzofuran. The larger the mass emission from the HEPA filter, the lower the overall removal efficiency, and the larger the ratio of the filter flow rate (Qf) to the room flow rate (Q), the higher the overall removal efficiency. When the ratio of Qf/Q is 15, an overall removal efficiency of 90% can be reached for all four of the selected compounds. The removal of the four selected compounds does not change as the relative humidity increases ≤90%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号