首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The city of East St. Louis, IL, has a history of abundant industrial activities including smelters of ferrous and non-ferrous metals, a coal-fired power plant, companies that produce organic and inorganic chemicals, and petroleum refineries. A protocol for soil analysis was developed to produce sufficient information on the extent of heavy metal contamination in East St. Louis soils. Soil cores representing every borough of East St. Louis were analyzed for heavy metals--As, Cd, Cu, Cr, Hg, Ni, Pb, Sb, Sn, and Zn. The topsoil contained heavy metal concentrations as high as 12.5 ppm Cd, 14,400 ppm Cu, ppm quantities of Hg, 1860 ppm Pb, 40 ppm Sb, 1130 ppm Sn, and 10,360 ppm Zn. Concentrations of Sb, Cu, and Cd were well correlated with Zn concentrations, suggesting a similar primary industrial source. In a sandy loam soil from a vacated rail depot near the bank of the Mississippi River, the metals were evenly distributed down to a 38-cm depth. The clay soils within a half-mile downwind of the Zn smelter and Cu products company contained elevated Cd (81 ppm), Cu (340 ppm), Pb (700 ppm), and Zn (6000 ppm) and displayed a systematic drop in concentration of these metals with depth. This study demonstrates the often high concentration of heavy metals heterogeneously distributed in the soil and provides baseline data for continuing studies of heavy metal soil leachability.  相似文献   

2.
ABSTRACT

The city of East St. Louis, IL, has a history of abundant industrial activities including smelters of ferrous and non-ferrous metals, a coal-fired power plant, companies that produced organic and inorganic chemicals, and petroleum refineries. Following a gross assessment of heavy metals in the community soils (see Part I of this two-part series), leaching tests were performed on specific soils to elucidate heavy metal-associated mineral fractions and general leachability. Leaching experiments, including the Toxicity Characteristic Leaching Procedure (TLCP) and column tests, and sequential extractions, illustrated the low leachability of metals in East St. Louis soils. The column leachate results were modeled using a formulation developed for fly ash leaching. The importance of instantaneous dissolution was evident from the model. By incorporating desorption/adsorption terms into the source term, the model was adapted very well to the time-dependent heavy metal leachate concentrations. The results demonstrate the utility of a simple model to describe heavy metal leaching from contaminated soils.  相似文献   

3.
Heavy metal pollution in China: Origin,pattern and control   总被引:21,自引:2,他引:21  
GOAL, SCOPE AND BACKGROUND: Heavy metal is among one of the pollutants, which cause severe threats to humans and the environment in China. The aim of the present review is to make information on the source of heavy metal pollution, distribution of heavy metals in the environment, and measures of pollution control accessible internationally, which are mostly published in Chinese. METHODS: Information from scientific journals, university journals and governmental releases are compiled focusing mainly on Cd, Cu, Pb and Zn. Partly Al, As, Cr, Fe, Hg, Mn and Ni a included also in part as well. RESULTS AND DISCUSSION: In soil, the average contents of Cd, Cu, Pb and Zn are 0.097, 22.6, 26.0 and 74.2 mg/kg, respectively. In the water of the Yangtze River Basin, the concentrations of Cd, Cu, Pb and Zn are 0.080, 7.91, 15.7 and 18.7 microg/L, respectively. In reference to human activities, the heavy metal pollution comes from three sources: industrial emission, wastewater and solid waste. The environment such as soil, water and air were polluted by heavy metals in some cases. The contents of Cd, Cu, Pb and Zn even reach 3.16, 99.3, 84.1 and 147 mg/kg, respectively, in the soils of a wastewater irrigation zone. These contaminants pollute drinking water and food, and threaten human health. Some diseases resulting from pollution of geological and environmental origin, were observed with long-term and non-reversible effects. CONCLUSIONS: In China, the geological background level of heavy metal is low, but with the activity of humans, soil, water, air, and plants are polluted by heavy metals in some cases and even affect human health through the food chain. RECOMMENDATIONS AND OUTLOOK: To remediate and improve environmental quality is a long strategy for the polluted area to keep humans and animals healthy. Phytoremediation would be an effective technique to remediate the heavy metal pollutions.  相似文献   

4.
Heavy metals in agricultural soils of the Pearl River Delta,South China   总被引:49,自引:0,他引:49  
There is a growing public concern over the potential accumulation of heavy metals in agricultural soils in China owing to rapid urban and industrial development and increasing reliance on agrochemicals in the last several decades. Excessive accumulation of heavy metals in agricultural soils may not only result in environmental contamination, but elevated heavy metal uptake by crops may also affect food quality and safety. The present study is aimed at studying heavy metal concentrations of crop, paddy and natural soils in the Pearl River Delta, one of the most developed regions in China. In addition, some selected soil samples were analyzed for chemical partitioning of Co, Cu, Pb and Zn. The Pb isotopic composition of the extracted solutions was also determined. The analytical results indicated that the crop, paddy and natural soils in many sampling sites were enriched with Cd and Pb. Furthermore, heavy metal enrichment was most significant in the crop soils, which might be attributed to the use of agrochemicals. Flooding of the paddy soils and subsequent dissolution of Mn oxides may cause the loss of Cd and Co through leaching and percolation, resulting in low Cd and Co concentrations of the paddy soils. The chemical partitioning patterns of Pb, Zn and Cu indicated that Pb was largely associated with the Fe-Mn oxide and residual fractions, while Zn was predominantly found in the residual phase. A significant percent fraction of Cu was bound in the organic/sulphide and residual phases. Based on the 206Pb/207Pb ratios of the five fractions, it was evident that some of the soils were enriched with anthropogenic Pb, such as industrial and automobile Pb. The strong associations between anthropogenic Pb and the Fe-Mn oxide and organic/sulphide phases suggested that anthropogenic Pb was relatively stable after deposition in soils.  相似文献   

5.
Anthropogenic activities could result in increasing concentrations of heavy metals in soil and deteriorating in soil environmental quality. Topsoil samples from a typical industrial area, Shiting River Valley, Sichuan, Southwest China, were collected and determined for the concentrations of Cu, Zn, Cr, Cd, As, and Hg. The mean concentrations of these metals were lower than the national threshold values, but were slightly higher than their corresponding background values, indicating enrichment of these metals in soils in the valley, especially for Cu, Zn, and Hg. The topsoils in this area demonstrated moderate pollution and low potential ecological risk. Principal component analysis coupled with cluster analysis was applied to analyze the data and identified possible sources of these heavy metals; the results showed that soil Cd, Hg, As, Cu, and Zn were predominantly controlled by human activities, whereas Cr was mainly from the parent material. The spatial distribution of the heavy metals varied distinctly and was closely correlated to local anthropogenic activities. Furthermore, the concentrations of heavy metals in the industrial land demonstrated relatively higher levels than those of other land use patterns. Soil metal concentrations decreased with the distance increase from the traffic highway (0–1.0 km) and water system (0–2.0 km). Additionally, soil properties, especially pH and soil organic matter, were found to be important factors in the distribution and composition of metals.  相似文献   

6.
某矿区土壤和地下水重金属污染调查与评价   总被引:3,自引:0,他引:3  
为了解湘南某矿区土壤和地下水重金属污染状况,对该矿区东河流域附近重金属污染源进行了调查,同时,对地下水和土壤样品进行了采样分析,结果表明:(1)该矿区东河流域附近的主要污染源有18个,其中有色金属选厂、尾矿库、采矿场和冶炼厂是排放重金属较多的污染源;(2)20个采样点中土壤重金属Pb、Cd、Zn、As和Hg大部分超过国家土壤环境质量标准(GB15618-1995),综合污染指数P综〉1,该矿区主要的重金属污染元素为Cd、As和Hg,且土壤中Cd、Zn和As的含量两两之间存在着极显著的正线性相关关系;(3)重金属元素在土壤中的纵向迁移不明显,该矿区附近20个采样点的地下水并未受到污染,综合污染指数P综〈1。20个采样点地下水Pb、Cd、Zn、As、Hg浓度均能达到地下水质量标准(GB/T14848.9)中的Ⅲ类标准。  相似文献   

7.
Heavy metal pollution of soils along North Shuna-Aqaba Highway, Jordan   总被引:1,自引:0,他引:1  
Attention to heavy metal contamination associated with highways or motorways has risen in the last decades because of the associated health hazards and risks. The present study analysed the metal content in soil samples of one of the main highways along the western part of the Jordanian border, the North Shuna–Dead Sea–Aqaba Highway. The metals analysed were Pb, Zn, Cd, Co and Ni. In the samples collected, the recorded average concentrations were as follows: 40 ppm for Ni, 5 ppm for Cd, 79 ppm for Zn, 79 ppm for Pb, and 25 ppm for Co. The average concentrations of Cd, Pb, and Co are higher than the average natural background values of heavy metals. The geo-accumulation index of these metals in the soils under study indicated that they are uncontaminated with Ni, Zn, and Co and moderately contaminated with Cd and Pb. In all of the investigated locations, the study found that concentrations decreased with depth. The cluster statistical analyses and pollution load index were used to relate pollution to land use or highway conditions. Two main trends were identified: (i) higher concentrations were located near intersections close to the urban areas in the Jordan Valley, in association with junctions controlled by traffic lights and check points; and (ii) lower concentrations were found to the southwest in areas of mainly barren landscape close to the Dead Sea and Aqaba.  相似文献   

8.
This paper presents results from a survey of the heavy metal distribution in sediments in the drainage basin and estuary of the Sado River (Portugal). In the drainage basin, heavy metals originate mostly from pyrite outcrop erosion and mining activities (Cd, Zn, Cu and locally Hg, Pg), and also from crust erosion (Sn, Ni, Ti, Zr). These sources are not correlated with the particulate organic carbon (POC) and so the metals are thought to be in inorganic forms in this area. Anthropogenic heavy metal sources (urban and industrial) are found in the lower estuary (Sn, Cd, Hg, Zn, Pb and Cu) along with high POC concentrations. In this zone, these metals are thought to be strongly adsorbed onto organic particles. Furthermore, organo-metallic species are likely to be present, as demonstrated in the case of Sn, since methyl- and butyl-tin species were detected in sediments from this area. This suggests the need for the detection of organo-metallic species to understand the heavy metal geochemical cycles. No long-term changes in metal concentrations are found in sediment cores, except in the middle estuary (Zn, Cu) due to the development of mining activities on an industrial scale in the 1860s.  相似文献   

9.
The city of East St. Louis, IL, has a history of abundant industrial activities including smelters of ferrous and non-ferrous metals, a coal-fired power plant, companies that produced organic and inorganic chemicals, and petroleum refineries. Following a gross assessment of heavy metals in the community soils (see Part I of this two-part series), leaching tests were performed on specific soils to elucidate heavy metal-associated mineral fractions and general leachability. Leaching experiments, including the Toxicity Characteristic Leaching Procedure (TLCP) and column tests, and sequential extractions, illustrated the low leachability of metals in East St. Louis soils. The column leachate results were modeled using a formulation developed for fly ash leaching. The importance of instantaneous dissolution was evident from the model. By incorporating desorption/adsorption terms into the source term, the model was adapted very well to the time-dependent heavy metal leachate concentrations. The results demonstrate the utility of a simple model to describe heavy metal leaching from contaminated soils.  相似文献   

10.
Huang SS  Liao QL  Hua M  Wu XM  Bi KS  Yan CY  Chen B  Zhang XY 《Chemosphere》2007,67(11):2148-2155
We investigated concentrations of Hg, Cd, Pb, Zn, Cu, As, Ni, and Cr in samples of soil, cereal, and vegetables from Yangzhong district, China. Compared to subsoils, the sampled topsoils are enriched in Hg, Cd, Cu, Pb, Zn, and As. High levels of Cd and Hg are observed in most agricultural soils. Concentrations of Cr and Ni show little spatial variation, and high Cu, Pb, and Zn contents correspond well to areas of urban development. High As contents are primarily recorded at the two ends of the sampled alluvion. The contents of Cd, Hg, and total organic carbon (TOC) increase gradually to maximum values in the upper parts of soil profiles, while Cr and Ni occur in low concentrations within sampled profiles. As, Pb, Cu, and Zn show patterns of slight enrichment within the surface layer. Compared to data obtained in 1990, Cd and Hg show increased concentrations in 2005; this is attributed to the long-term use of agrochemicals. Cr and Ni contents remained steady over this interval because they are derived from the weathering of parent material and subsequent pedogenesis. The measured As, Cu, Pb, and Zn contents show slight increases over time due to atmospheric deposition of material sourced from urban anthropogenic activity. Low concentrations of heavy metals are recorded in vegetables and cereals because the subalkaline environment of the soil limits their mobility. Although the heavy metal concentrations measured in this study do not pose a serious health risk, they do affect the quality of agricultural products.  相似文献   

11.
- DOI: http://dx.doi.org/10.1065/espr2006.01.006 Background The use of vegetal organisms as indicators of contamination of the environment is partially replacing traditional monitoring techniques. Amongst the vegetal organisms available, mosses appear to be good bioindicators and are used for monitoring anthropogenic and natural fall-out on soils. This study has two objectives: the evaluation of the concentrations of heavy metals in soils and mosses of the Sicily Region, in Italy and the identification of the origin of fall-out of heavy metals. Methods Mosses and the surface soil were sampled at 28 sites, only the youngest segments of Hylocomium splendens and Hypnum cupressiforme, corresponding to the plant tissues produced during the last 3 years, were taken. The elements Cd, Cu, Ni, Pb and Zn were analysed by ICP-MS and Hg by AAS. Statistical analysis was by PCA and spatial representation by GIS. Results and Discussion In the mosses sampled in Sicily, the highest concentrations of Cd were found around the cities of Palermo and Messina. The highest concentrations of Hg were recorded in the northern part of the island between Trapani and Messina, similar to the distribution of Cu. Different areas with the highest concentrations of Ni were found near the south coast, in the vicinity of Palermo and around the Volcano Etna. The highest concentrations of Pb were found in the south-west coast near Agrigento, where important chemical plants and petroleum refineries are located. Except for a few locations, Zn fall-out was found to be evenly distributed throughout Sicily. Conclusion The sites where the concentrations of heavy metals cause greatest concern have been revealed by the PCA analysis and portrayed using GIS. Also of some concern is the diffuse and anthropogenic origin of Hg and Cd. The combined approach of using soil and mosses, together with pedological interpretation and application of multivariate statistical techniques has provided valuable insight into the environmental aspects of heavy metal deposition in a region of southern Europe. Recommendations and Outlook Further insight into the deposition of heavy metals will require more detailed sampling of soils and mosses in both new and previous study areas. This needs to be complemented by detailed pedological investigations in the study areas. Future research programmes will address these issues.  相似文献   

12.
The concentrations of Cd, Co, Cu, Ni, Pb, Zn, Fe and Mn in different inorganic fertilizers (urea, calcium superphosphate, iron sulphate and copper sulphate) and in pesticides (two herbicides and one fungicide) are evaluated together with the contribution of these metals in soils from their use. The study was made in rice farming areas to the north of Albufera Natural Park (Valencia, Spain). The results obtained show that superphosphate is the fertilizer that contains the highest concentrations of Cd, Co, Cu and Zn as impurities. Copper sulphate and iron sulphate have the most significant concentrations of Pb, and are the only fertilizers in which Ni was detected. The three pesticides analysed show similar Cd contents and the highest levels of Fe, Mn, Zn, Pb and Ni are found in the herbicides. The most significant additions of heavy metals as impurities that soil receives from agricultural practices, are Mn, Zn, Co and Pb. Three contamination indexes have been applied to provide a basis for comparison of potential heavy metal toxicity. These results denote the potential toxicity of heavy metals in the studied soils.  相似文献   

13.
Bose S  Bhattacharyya AK 《Chemosphere》2008,70(7):1264-1272
The concentrations of different forms of Zn, Cu, Mn, Ni, Cd, Cr, Pb and Fe metals were determined for the roadside sludge collected from pickling-rolling and electroplating industrial area. In sludge the relative abundance of total heavy metals were Fe>Mn>Cr>Ni>Cu>Pb>Zn>Cd and DTPA-extractable metals were in the order--Fe>Ni>Mn>Cr>Cu>Zn>Pb>Cd. Pot-culture experiment was conducted in soils amended with sludge (0%, 10%, 20%, 30%), pretreated with lime (0%, 0.5% and 1%). The soils were alkaline in nature (pH>8.3) with organic carbon contents were 0.34% and 0.72%. The most abundant total and bio-available metal was Fe. Two wheat seedlings were grown in each pot containing 3kg sludge-amended or control soil and the experiment was conducted till harvesting. Application of sludge increased both total and bio-available forms of metals in the soils, while lime application decreased the bioavailability of heavy metals in sludge-amended soils. The content of organic carbon showed positive correlation with all metals except Zn, Cr and Pb. CEC also showed a strong positive correlation (R2>0.7) with Fe, Mn, Cu, Ni and Cd. Though wheat plants are not accumulators, the translocation efficiency was appreciably high. The translocation factor from shoot to grain was found smaller than that of root to shoot of wheat plants. This makes an implication that the heavy metal accumulation was proportionally lesser in grain than in shoot. In, 10% sludge with 0.5% lime-amended soils; each of these toxic heavy metals was found to be within permissible range (USEPA). Hence, on the basis of present study, the best possible treatment may be recommended.  相似文献   

14.
The urban soils suffered seriously from heavy metal pollutions with rapid industrialization and urbanization in China. In this study, 54 urban soil samples were collected from Changsha, a mine-impacted city located in Southern China. The concentrations of heavy metals (As, Cd, Co, Cu, Mn, Ni, Pb, and Zn) were determined by ICP-MS. The pollution sources of heavy metals were discriminated and identified by the combination of multivariate statistical and geostatistical methods. Four main sources were identified according to the results of hierarchical cluster analysis (HCA), principal component analysis (PCA), and spatial distribution patterns. Co and Mn were primarily derived from soil parent material. Cu, Pb, and Zn with significant positive relationships were associated with mining activities and traffic emissions. Cd and Ni might be affected by commercial activities and industrial discharges. As isolated into a single group was considered to have correlation with coal combustion and waste incineration. Risk assessment of heavy metals in urban soils indicated an overall moderate potential ecological risk in the urban region of Changsha.  相似文献   

15.
Leaching of heavy metals from contaminated soils using EDTA   总被引:40,自引:0,他引:40  
Ethylenediaminetetraacetic acid (EDTA) extraction of Zn, Cd, Cu and Pb from four contaminated soils was studied using batch and column leaching experiments. In the batch experiment, the heavy metals extracted were virtually all as 1:1 metal-EDTA complexes. The ratios of Zn, Cd, Cu and Pb of the extracted were similar to those in the soils, suggesting that EDTA extracted the four heavy metals with similar efficiency. In contrast, different elution patterns were obtained for Zn, Cd, Cu and Pb in the column leaching experiment using 0.01 M EDTA. Cu was either the most mobile or among the most mobile of the four heavy metals, and its peak concentration corresponded with the arrival of full strength EDTA in the leachate. The mobility of Zn and Cd was usually slightly lower than that of Cu. Pb was the least mobile, and its elution increased after the peaks of Cu and Zn. Sequential fractionations of leached and un-leached soils showed that heavy metals in various operationally defined fractions contributed to the removal by EDTA. Considerable mobilisation of Fe occurred in two of the four soils during EDTA leaching. Decreases in the Fe and Mn oxide fraction of heavy metals after EDTA leaching occurred in both soils, as well as in a third soil that showed little Fe mobilisation. The results suggest that the lability of metals in soil, the kinetics of metal desorption/dissolution and the mode of EDTA addition were the main factors controlling the behaviour of metal leaching with EDTA.  相似文献   

16.
Heavy metals in the surface soils from lands of six different use types in one of the world’s most densely populated regions, which is also a major global manufacturing base, were analyzed to assess the impact of urbanization and industrialization on soil pollution. A total of 227 surface soil samples were collected and analyzed for major heavy metals (As, Cd, Co, Cr, Cu, Fe, Hg, Mn, Ni, Pb, and Zn) by using microwave-assisted acid digestion and inductively coupled plasma–mass spectrometry (ICP-MS). Multivariate analysis combined with enrichment factors showed that surface soils from the region (>7.2?×?104 km2) had mean Cd, Cu, Zn, and As concentrations that were over two times higher than the background values, with Cd, Cu, and Zn clearly contributed by anthropogenic sources. Soil pollution by Pb was more widespread than the other heavy metals, which was contributed mostly by anthropogenic sources. The results also indicate that Mn, Co, Fe, Cr, and Ni in the surface soils were primarily derived from lithogenic sources, while Hg and As contents in the surface soils were controlled by both natural and anthropogenic sources. The pollution level and potential ecological risk of the surface soils both decreased in the order of: urban areas?>?waste disposal/treatment sites?~?industrial areas?>?agricultural lands?~?forest lands?>?water source protection areas. These results indicate the significant need for the development of pollution prevention and reduction strategies to reduce heavy metal pollution for regions undergoing fast industrialization and urbanization.  相似文献   

17.

The effect of industrial activities on trace metals in farmland of rapidly industrializing regions in developing countries has increasingly been a concern to the public. Here, soils were collected from 13 greenhouse vegetable production (GVP) farms or bases near industrial areas in the Yangtze River Delta of China to investigate the occurrence, speciation, and risks of Cr, Cu, Zn, Cd, Ni, and Pb in GVP soil. The results revealed that the main metal elements causing GVP soil pollution were Cd, Zn, Ni, and Cu, of which contamination levels were generally unpolluted to moderately polluted. Zinc pollution was mainly attributed to heavy fertilization, while Cd, Ni, and Cu pollution may be greatly ascribed to industrial effluents and coal combustion. Metal speciation studies showed that most of Cr, Ni, Cu, and Zn was present in residual fraction while more than half of Cd and Pb was present in non-residual fractions. Additionally, pollution of Cd, Cu, Ni, and Zn in GVP soil increased their corresponding mobile fractions. Risk assessment using potential ecological risk index and risk assessment code showed that Cd was the major risk contributor. Specifically, Cd generally posed moderate or considerable ecological risk as well as displayed medium or high mobility risk in GVP soil. Thus, great attention should be paid to the contribution of both industrial discharges and intensive farming to soil pollution by trace metals, especially Cd, because of its high mobility risk.

  相似文献   

18.
Heavy metal pollution in sediments of the Pasvik River drainage   总被引:15,自引:0,他引:15  
The purpose of this paper is to study the regional impacts of heavy metals (Ni, Cu, Co, Zn, Cd, Pb, Hg) on the watershed of the Pasvik River. On the basis of sediment investigations at 27 stations of the watershed, background concentrations of the heavy metals, vertical distribution of heavy metals in sediments, heavy metal concentrations in surface sediments, contamination degree, and risk index were determined. The atmospheric emissions of Ni, Cu, Co, Zn, Cd and Hg from the smelters and waste waters from tailing dams and mines of the Pechenganickel Company are likely to be the main sources of increasing concentrations observed in recent sediments of the lower river reaches. Lead showed a different pattern from the other heavy metals--increasing Pb concentrations in the upper sediment layers towards the Norwegian side.  相似文献   

19.
The effectiveness of phosphate treatment for Cd, Cu, Pb, and Zn immobilization in mine waste soils was examined using batch conditions. Application of synthetic hydroxyapatite (HA) and natural phosphate rock (FAP) effectively reduced the heavy metal water solubility generally by about 84-99%. The results showed that HA was slightly superior to FAP for immobilizing heavy metals. The possible mechanisms for heavy metal immobilization in the soil involve both surface complexation of the metal ions on the phosphate grains and partial dissolution of the phosphate amendments and precipitation of heavy metal-containing phosphates. HA and FAP could significantly reduce Cd, Cu, Pb, and Zn availability in terms of water solubility in contaminated soils while minimizing soil acidification and potential risk of eutrophication associated with the application of highly soluble phosphate sources.  相似文献   

20.
Previous research showed a regional Cu enrichment of 6 mg kg−1 in the top soil of the Ypres war zone (Belgium), caused by corrosion of WWI shell fragments. Further research was required since in addition to Cu, also As, Pb, and Zn were used during the manufacturing of ammunition. Therefore, an additional data collection was conducted in which the initial Cu data set was tripled to 731 data points and extended to eight heavy metals (As, Cd, Cr, Cu, Hg, Ni, Pb, and Zn) which permitted (1) to evaluate the environmental impact of the heavy metals at a regional scale and (2) to assess their regional spatial occurrence by performing an optimized geostatistical modeling. The results showed no pollution at a regional scale, but sometimes locally concentrations exceeded the soil sanitation threshold, especially for Cu, Pb, and Zn. The spatial patterns of Ni and Cr were related to variations in soil texture whereas the occurrences of Cu and Pb were clearly linked to WWI activities. This difference in spatial behavior was confirmed by an analysis of coregionalization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号