首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In developing countries, high levels of particle pollution from the use of coal and biomass fuels for household cooking and heating are a major cause of ill health and premature mortality. The cost and complexity of existing monitoring equipment, combined with the need to sample many locations, make routine quantification of household particle pollution levels difficult. Recent advances in technology, however, have enabled the development of a small, portable, data-logging particle monitor modified from commercial smoke alarm technology that can meet the needs of surveys in the developing world at reasonable cost. Laboratory comparisons of a prototype particle monitor developed at the University of California at Berkeley (UCB) with gravimetric filters, a tapered element oscillating microbalance, and a TSI DustTrak to quantify the UCB particle monitor response as a function of both concentration and particle size and to examine sensor response in relation to changes in temperature, relative humidity, and elevation are presented here. UCB particle monitors showed good linearity in response to different concentrations of laboratory-generated oleic acid aerosols with a coarse (mass median diameter, 2.1 microm) and fine (mass median diameter, 0.27-0.42 microm) size distributions (average r2 = 0.997 +/- 0.005). The photoelectric and ionization chamber showed a wide range of responses based on particle size and, thus, require calibration with the aerosol of interest. The ionization chamber was five times more sensitive to fine rather than coarse particles, whereas the photoelectric chamber was five times more sensitive to coarse than fine. The ratio of the response between the two sensors has the potential for mass calibration of individual data points based on estimated parameters of the size distribution. The results demonstrate the significant potential of this monitor, which will facilitate the evaluation of interventions (improved fuels, stoves, and ventilation) on indoor air pollution levels and research on the impacts of indoor particle levels on health in developing countries.  相似文献   

2.
An indoor air quality model was used to predict dynamic particle mass concentrations based on homogeneous chemical mechanisms and partitioning of semi-volatile products to particles. The ozone–limonene reaction mechanism was combined with gas-phase chemistry of common atmospheric organic and inorganic compounds and incorporated into the indoor air quality model. Experiments were conducted in an environmental chamber to investigate secondary particle formation resulting from ozone/limonene reactions. Experimental results indicate that significant fine particle growth occurs due to the interaction of ozone and limonene and subsequent intermediate by-products. Secondary particle mass concentrations were estimated from the measured particle size distribution. Predicted particle mass concentrations were in good agreement with experimental results—generally within ∼25% at steady-state conditions. Both experimental and predicted results suggest that air exchange rate plays a significant role in determining secondary fine particle levels in indoor environments. Secondary particle mass concentrations are predicted to increase substantially with lower air exchange rates, an interesting result given a continuing trend toward more energy efficient buildings. Lower air exchange rates also shifted the particle size distribution toward larger particle diameters. Secondary particle mass concentrations are also predicted to increase with higher outdoor ozone concentrations, higher outdoor particle concentrations, higher indoor limonene emission rates, and lower indoor temperatures.  相似文献   

3.
Abstract

A real-time monitoring methodology to determine diesel fine particles in diesel emissions has been evaluated. The range of particle size captured by the monitor was ~0.1 μm to 1 μm. DustTrak real-time monitors were connected to the dilution tunnel of the vehicle exhaust to measure the emissions during the vehicle tests under both dynamic and steady-state driving conditions, and concentration data were recorded every 5 sec. Test variation of the real-time monitoring among different test days was similar to that measured by traditional filter-based gravi-metric method, whereas the repeatability of the monitor data within the same-day tests was better than that of gravimetric method. Correlations between the two methods were established for different fuels tested on a single light duty vehicle. When the emissions from the reference fuel was used to convert the monitor’s response to diesel fuels, the levels determined by the real-time monitor were consistent with those measured by gravimetric method among different fuels tested. Use of the real-time monitor could provide information on the levels of fine particles that is more relevant to the public health than the total particles.  相似文献   

4.
A real-time monitoring methodology to determine diesel fine particles in diesel emissions has been evaluated. The range of particle size captured by the monitor was approximately 0.1 microm to 1 microm. DustTrak real-time monitors were connected to the dilution tunnel of the vehicle exhaust to measure the emissions during the vehicle tests under both dynamic and steady-state driving conditions, and concentration data were recorded every 5 sec. Test variation of the real-time monitoring among different test days was similar to that measured by traditional filter-based gravimetric method, whereas the repeatability of the monitor data within the same-day tests was better than that of gravimetric method. Correlations between the two methods were established for different fuels tested on a single light duty vehicle. When the emissions from the reference fuel was used to convert the monitor's response to diesel fuels, the levels determined by the real-time monitor were consistent with those measured by gravimetric method among different fuels tested. Use of the real-time monitor could provide information on the levels of fine particles that is more relevant to the public health than the total particles.  相似文献   

5.
To evaluate the validity of fixed-site fine particle levels as exposure surrogates in air pollution epidemiology, we considered four indicator groups: (1) PM2.5 total mass concentrations, (2) sulfur and potassium for regional air pollution, (3) lead and bromine for traffic-related particles, and (4) calcium for crustal particles. Using data from the European EXPOLIS (Air Pollution Exposure Distribution within Adult Urban Populations in Europe) study, we assessed the associations between 48-hr personal exposures and home outdoor levels of the indicators. Furthermore, within-city variability of fine particle levels was evaluated. Personal exposures to PM2.5 mass were not correlated to corresponding home outdoor levels (n = 44, rSpearman (Sp) = 0.07). In the group reporting neither relevant indoor sources nor relevant activities, personal exposures and home outdoor levels of sulfur were highly correlated (n = 40, rSp = 0.85). In contrast, the associations were weaker for traffic (Pb: n = 44, rSp = 0.53; Br: n = 44, rSp = 0.21) and crustal (Ca: n = 44, rSp = 0.12) indicators. This contrast is consistent with spatially homogeneous regional pollution and higher spatial variability of traffic and crustal indicators observed in Basel, Switzerland. We conclude that for regional air pollution, fixed-site fine particle levels are valid exposure surrogates. For source-specific exposures, however, fixed-site data are probably not the optimal measure. Still, in air pollution epidemiology, ambient PM2.5 levels may be more appropriate exposure estimates than total personal PM2.5 exposure, since the latter reflects a mixture of indoor and outdoor sources.  相似文献   

6.
The distribution of air particulate mass and selected particle components (trace elements and polycyclic aromatic hydrocarbons (PAHs)) in the fine and the coarse size fractions was investigated at a traffic-impacted urban site in Thessaloniki, Greece. 76±6% on average of the total ambient aerosol mass was distributed in the fine size fraction. Fine-sized trace elemental fractions ranged between 51% for Fe and 95% for Zn, while those of PAHs were between 95% and 99%. A significant seasonal effect was observed for the size distribution of aerosol mass, with a shift to larger fine fractions in winter. Similar seasonal trend was exhibited by PAHs, whereas larger fine fractions in summer were shown by trace elements. The compositional signatures of fine and coarse particle fractions were compared to that of local paved-road dust. A strong correlation was found between coarse particles and road dust suggesting strong contribution of resuspended road dust to the coarse particles. A multivariate receptor model (multiple regression on absolute principal component scores) was applied on separate fine and coarse aerosol data for source identification and apportionment. Results demonstrated that the largest contribution to fine-sized aerosol is traffic (38%) followed by road dust (28%), while road dust clearly dominated the coarse size fraction (57%).  相似文献   

7.
Abstract

The associations between residential outdoor and ambient particle mass, fine particle absorbance, particle number (PN) concentrations, and residential and traffic determinants were investigated in four European urban areas (Helsinki, Athens, Amsterdam, and Birmingham). A total of 152 nonsmoking participants with respiratory diseases, not exposed to occupational pollution, were included in the study, which comprised a 7-day intensive exposure monitoring period of both indoor and home outdoor particle mass and number concentrations. The same pollutants were also continuously measured at ambient fixed sites centrally located to the studied areas (fixed ambient sites). Relationships between concentrations measured directly outside the homes (residential outdoor) and at the fixed ambient sites were pollutant-specific, with substantial variations among the urban areas. Differences were more pronounced for coarse particles due to resuspension of road dust and PN, which is strongly related to traffic emissions. Less significant outdoor-to-fixed variation for particle mass was observed for Amsterdam and Birmingham, predominantly due to regional secondary aerosol. On the contrary, a strong spatial variation was observed for Athens and to a lesser extent for Helsinki. This was attributed to the overwhelming and time-varied inputs from traffic and other local sources. The location of the residence and traffic volume and distance to street and traffic light were important determinants of residential outdoor particle concentrations. On average, particle mass levels in suburban areas were less than 30% of those measured for residences located in the city center. Residences located less than 10 m from a street experienced 133% higher PN concentrations than residences located further away. Overall, the findings of this multi-city study, indicated that (1) spatial variation was larger for PN than for fine particulate matter (PM) mass and varied between the cities, (2) vehicular emissions in the residential street and location in the center of the city were significant predictors of spatial variation, and (3) the impact of traffic and location in the city was much larger for PN than for fine particle mass.  相似文献   

8.
Continuous monitors were employed for 18 months in an occupied townhouse to measure ultrafine, fine, and coarse particles; air change rates; wind speed and direction; temperature; and relative humidity (RH). A main objective was to document short-term and long-term variation in indoor air concentrations of size-resolved particles (0.01-20 microm) caused by (1) diumal and seasonal variation of outdoor air concentrations and meteorological variables, (2) indoor sources such as cooking and using candles, and (3) activities affecting air change rates such as opening windows and using fans. A second objective was to test and compare available instruments for their suitability in providing real-time estimates of particle levels and ancillary variables. Despite different measuring principles, the instruments employed in this study agreed reasonably well for particles less than 10 microm in diameter. The three instruments measuring fine and coarse particles (aerodynamic diameter between 0.3 and 20 microm) agreed to within 30% in their overall estimates of total volume. Two of these instruments employed optical scattering, and the third used an aerodynamic acceleration principle. However, several lines of evidence indicated that the instrument employing aerodynamic acceleration overestimated concentrations for particle diameters greater than 10 microm. A fourth instrument measuring ultrafine and accumulation-mode particles (0.01-1 microm) was operated with two different inlets providing somewhat different particle size ranges. The two inlets agreed in the ultrafine region (< 0.1 microm) but diverged increasingly for larger particles (up to 0.445 microm). Indoor sources affecting ultrafine particle concentrations were observed 22% of the time, and sources affecting fine and coarse particle concentrations were observed 12 and 15% of the time, respectively. When an indoor source was operating, particle concentrations for different sizes ranged from 2 to 20 times the average concentrations when no indoor source was apparent. Indoor sources, such as cooking with natural gas, and simple physical activities, such as walking, accounted for a majority (50-90%) of the ultrafine and coarse particle concentrations, whereas outdoor sources were more important for accumulation-mode particles between 0.1 and 1 microm in diameter. Averaged for the entire year and including no periods when indoor sources were apparent, the number distribution was bimodal, with a peak at approximately 10 nm (possibly smaller), a shallow minimum at approximately 14 nm, and a second broad peak at approximately 68 nm. The volume distribution was also bimodal, with a broad peak at approximately 200 nm, a minimum at approximately 1.2 microm, and then an upward slope again through the remaining size fractions. A database was created on a 5-min averaging time basis. It contains more than 90,000 measurements by two of the instruments and approximately 30,000 by the two optical scattering instruments. About 4500 hour-long average air change rates were also calculated throughout the year using a dedicated gas chromatograph with electron capture detection (GC/ECD). At high air change rates [> 0.8 air changes per hour (hr(-1))], particle concentrations were either elevated (when no source was present) or depressed (when an indoor source was operating) by factors of up to 2 compared with low air change rates.  相似文献   

9.
This review describes databases of small-scale spatial variations and indoor, outdoor and personal measurements of air pollutants with the main focus on suspended particulate matter, and to a lesser extent, nitrogen dioxide and photochemical pollutants. The basic definitions and concepts of an exposure measurement are introduced as well as some study design considerations and implications of imprecise exposure measurements. Suspended particulate matter is complex with respect to particle size distributions, the chemical composition and its sources. With respect to small-scale spatial variations in urban areas, largest variations occur in the ultrafine (<0.1 μm) and the coarse mode (PM10–2.5, resuspended dust). Secondary aerosols which contribute to the accumulation mode (0.1–2 μm) show quite homogenous spatial distribution. In general, small-scale spatial variations of PM2.5 were described to be smaller than the spatial variations of PM10. Recent studies in outdoor air show that ultrafine particle number counts have large spatial variations and that they are not well correlated to mass data. Sources of indoor particles are from outdoors and some specific indoor sources such as smoking and cooking for fine particles or moving of people (resuspension of dust) for coarse particles. The relationships between indoor, outdoor and personal levels are complex. The finer the particle size, the better becomes the correlation between indoor, outdoor and personal levels. Furthermore, correlations between these parameters are better in longitudinal analyses than in cross-sectional analyses. For NO2 and O3, the air chemistry is important. Both have considerable small-scale spatial variations within urban areas. In the absence of indoor sources such as gas appliances, NO2 indoor/outdoor relationships are strong. For ozone, indoor levels are quite small. The study hypothesis largely determines the choice of a specific concept in exposure assessment, i.e. whether personal sampling is needed or if ambient monitoring is sufficient. Careful evaluation of the validity and improvements in precision of an exposure measure reduce error in the measurements and bias in the exposure–effect relationship.  相似文献   

10.
The associations between residential outdoor and ambient particle mass, fine particle absorbance, particle number (PN) concentrations, and residential and traffic determinants were investigated in four European urban areas (Helsinki, Athens, Amsterdam, and Birmingham). A total of 152 nonsmoking participants with respiratory diseases, not exposed to occupational pollution, were included in the study, which comprised a 7-day intensive exposure monitoring period of both indoor and home outdoor particle mass and number concentrations. The same pollutants were also continuously measured at ambient fixed sites centrally located to the studied areas (fixed ambient sites). Relationships between concentrations measured directly outside the homes (residential outdoor) and at the fixed ambient sites were pollutant-specific, with substantial variations among the urban areas. Differences were more pronounced for coarse particles due to resuspension of road dust and PN, which is strongly related to traffic emissions. Less significant outdoor-to-fixed variation for particle mass was observed for Amsterdam and Birmingham, predominantly due to regional secondary aerosol. On the contrary, a strong spatial variation was observed for Athens and to a lesser extent for Helsinki. This was attributed to the overwhelming and time-varied inputs from traffic and other local sources. The location of the residence and traffic volume and distance to street and traffic light were important determinants of residential outdoor particle concentrations. On average, particle mass levels in suburban areas were less than 30% of those measured for residences located in the city center. Residences located less than 10 m from a street experienced 133% higher PN concentrations than residences located further away. Overall, the findings of this multi-city study, indicated that (1) spatial variation was larger for PN than for fine particulate matter (PM) mass and varied between the cities, (2) vehicular emissions in the residential street and location in the center of the city were significant predictors of spatial variation, and (3) the impact of traffic and location in the city was much larger for PN than for fine particle mass.  相似文献   

11.
ABSTRACT

To evaluate the validity of fixed-site fine particle levels as exposure surrogates in air pollution epidemiology, we considered four indicator groups: (1) PM25 total mass concentrations, (2) sulfur and potassium for regional air pollution, (3) lead and bromine for traffic-related particles, and (4) calcium for crustal particles. Using data from the European EXPOLIS (Air Pollution Exposure Distribution within Adult Urban Populations in Europe) study, we assessed the associations between 48-hr personal exposures and home outdoor levels of the indicators. Furthermore, within-city variability of fine particle levels was evaluated.

Personal exposures to PM2.5 mass were not correlated to corresponding home outdoor levels (n = 44, rS (S) =r o v ' Spearman (Sp) 0.07). In the group reporting neither relevant indoor sources nor relevant activities, personal exposures and home outdoor levels of sulfur were highly correlated (n = 40, rSp = 0.85). In contrast, the associations were weaker for traffic (Pb: n = 44, rSp = 0.53; Br: n = 44, rSp = 0.21) and crustal (Ca: n = 44, rSp = 0.12) indicators. This contrast is consistent with spatially homogeneous regional pollution and higher spatial variability of traffic and crustal indicators observed in Basel, Switzerland.

We conclude that for regional air pollution, fixed-site fine particle levels are valid exposure surrogates. For source-specific exposures, however, fixed-site data are probably not the optimal measure. Still, in air pollution epidemiology, ambient PM2.5 levels may be more appropriate exposure estimates than total personal PM2.5 exposure, since the latter reflects a mixture of indoor and outdoor sources.  相似文献   

12.
Abstract

Continuous monitors were employed for 18 months in an occupied townhouse to measure ultrafine, fine, and coarse particles; air change rates; wind speed and direction; temperature; and relative humidity (RH). A main objective was to document short-term and long-term variation in indoor air concentrations of size-resolved particles (0.01-20 μm) caused by (1) diurnal and seasonal variation of outdoor air concentrations and meteorological variables, (2) indoor sources such as cooking and using candles, and (3) activities affecting air change rates such as opening windows and using fans. A second objective was to test and compare available instruments for their suitability in providing real-time estimates of particle levels and ancillary variables.

Despite different measuring principles, the instruments employed in this study agreed reasonably well for particles less than 10 μm in diameter. The three instruments measuring fine and coarse particles (aerodynamic diameter between 0.3 and 20 μm) agreed to within 30% in their overall estimates of total volume. Two of these instruments employed optical scattering, and the third used an aerodynamic acceleration principle. However, several lines of evidence indicated that the instrument employing aerodynamic acceleration overestimated concentrations for particle diameters greater than 10 μm. A fourth instrument measuring ultrafine and accumulation-mode particles (0.01-1 μm) was operated with two different inlets providing somewhat different particle size ranges. The two inlets agreed in the ultrafine region (<0.1 μm) but diverged increasingly for larger particles (up to 0.445 μm).

Indoor sources affecting ultrafine particle concentrations were observed 22% of the time, and sources affecting fine and coarse particle concentrations were observed 12 and 15% of the time, respectively. When an indoor source was operating, particle concentrations for different sizes ranged from 2 to 20 times the average concentrations when no indoor source was apparent. Indoor sources, such as cooking with natural gas, and simple physical activities, such as walking, accounted for a majority (50-90%) of the ultrafine and coarse particle concentrations, whereas outdoor sources were more important for accumulation-mode particles between 0.1 and 1 um in diameter. Averaged for the entire year and including no periods when indoor sources were apparent, the number distribution was bimodal, with a peak at ~10 nm (possibly smaller), a shallow minimum at ~14 nm, and a second broad peak at ~68 nm. The volume distribution was also bimodal, with a broad peak at ~200 nm, a minimum at ~1.2 μm, and then an upward slope again through the remaining size fractions.

A database was created on a 5-min averaging time basis. It contains more than 90,000 measurements by two of the instruments and approximately 30,000 by the two optical scattering instruments. About 4500 hour-long average air change rates were also calculated throughout the year using a dedicated gas chromatograph with electron capture detection (GC/ECD). At high air change rates [>0.8 air changes per hour (hr?1)], particle concentrations were either elevated (when no source was present) or depressed (when an indoor source was operating) by factors of up to 2 compared with low air change rates.  相似文献   

13.
Outdoor and indoor fine particulate species were measured at the Lindon Elementary School in Lindon, Utah, to determine which components of ambient fine particles have strong indoor and outdoor concentration correlations. PM2.5 mass concentrations were measured using tapered element oscillating microbalance (TEOM) monitors and by gravimetric analysis of Teflon filter samples. Gas-phase HNO3, sulfur dioxide, particulate nitrate, strong acid, and particulate sulfate were measured using annular denuder samplers. Soot was measured using quartz filters in filter packs. Total particulate number was measured with a condensation nucleus counter (CNC). Total particulate number and fine particulate sulfate and soot were correlated for ambient and indoor measurements. Indoor PM2.5 mass showed a low correlation with outdoor PM2.5 mass because of the influence of coarse material from student activities on indoor PM2.5. Fine particle acidity and the potentiation of biological oxidative mechanisms by iron were not correlated indoors and outdoors.  相似文献   

14.
Emissions from the combustion of biomass and fossil fuels result in generation of a large number of particle and gaseous products in outdoor and/or indoor air, which create health and environmental risks. Of particular importance are the very small particles that are emitted in large quantities from all the combustion sources, and that could be potentially more significant in terms of their impact on health and the environment than larger particles. It is important to quantify particle emissions from combustion sources for regulatory and control purposes in relation to air quality. This paper is a review of particle characteristics that are used as source signatures, their general advantages and limitations, as well as a review of source signatures of the most common combustion pollution sources including road transport, industrial facilities, small household combustion devices, environmental tobacco smoke, and vegetation burning. The current methods for measuring particle physical characteristics (mass and number concentrations) and principles of methodologies for measuring emission factors are discussed in the paper as well. Finally, the paper presents the recommendations for the future techniques for measurements of combustion products.  相似文献   

15.
An indoor size-dependent particulate matter (PM) transport approach is developed to investigate coarse PM (PM10), fine PM (PM2.5), and very fine PM (PM1) removal behaviors in a ventilated partitioned indoor environment. The approach adopts the Eulerian large eddy simulation of turbulent flow and the Lagrangian particle trajectory tracking to solve the continuous airflow phase and the discrete particle phase, respectively. Model verification, including sensitivity tests of grid resolution and particle numbers, is conducted by comparison with the full-size experiments conducted previously. Good agreement with the measured mass concentrations is found. Numerical scenario simulations of the effect of ventilation patterns on PM removal are performed by using three common ventilation patterns (piston displacement, mixing, and cross-flow displacement ventilation) with a measured indoor PM10 profile in the Taipei metropolis as the initial condition. The temporal variations of suspended PM10, PM2.5, and PM1 mass concentrations and particle removal mechanisms are discussed. The simulated results show that for all the of the three ventilation patterns, PM2.5 and PM1 are much more difficult to remove than PM10. From the purpose of health protection for indoor occupants, it is not enough to only use the PM10 level as the indoor PM index. Indoor PM2.5 and PM1 levels should be also considered. Cross-flow displacement ventilation is more effective to remove all PM10, PM2.5, and PM1 than the other ventilation patterns. Displacement ventilation would result in more escaped particles and less deposited particles than mixing ventilation.  相似文献   

16.
Exposure to suspended particulate matter and carbon monoxide from indoor kitchen air can have significant effects on respiratory health as demonstrated by statistical modelling. Chronic respiratory illnesses and respiratory symptoms are modelled using the techniques of principal component analysis and binary logistic regression. Estimated models are generated from a cross-sectional household survey data conducted in Nepal with 168 respondents who cook for daily meals. The models show that individuals exposed to high levels of indoor air pollution particularly associated with unprocessed solid biomass fuels along with aging, tobacco smoking and living in poorly constructed houses mainly with mud are vulnerable to respiratory disorders.  相似文献   

17.
Zhang JJ  Morawska L 《Chemosphere》2002,49(9):1059-1074
Emissions from the combustion of biomass and fossil fuels are a significant source of particulate matter (PM) in ambient outdoor and/or indoor air. It is important to quantify PM emissions from combustion sources for regulatory and control purposes in relation to air quality. In this paper, we review emission factors for several types of important combustion sources: road transport, industrial facilities, small household combustion devices, environmental tobacco smoke, and vegetation burning. We also review current methods for measuring particle physical characteristics (mass and number concentrations) and principles of methodologies for measuring emission factors. The emission factors can be measured on a fuel-mass basis and/or a task basis. Fuel-mass based emission factors (e.g., g/kg of fuel) can be readily used for the development of emission inventories when the amount of fuels consumed are known. Task-based emission factors (g/mile driven, g/MJ generated) are more appropriate when used to conduct comparisons of air pollution potentials of different combustion devices. Finally, we discuss major shortcomings and limitations of current methods for measuring particle emissions and present recommendations for development of future measurement techniques.  相似文献   

18.
ABSTRACT

Recently developed models and data describing the interactions of gas-phase semi-volatile organic compounds with indoor surfaces are employed to examine the effects of sorption on nicotine's suitability as an environmental tobacco smoke (ETS) marker. Using parameters from our studies of nicotine sorption on carpet, painted wallboard, and stainless steel and previously published data on ETS particle deposition, the dynamic behavior of nicotine was modeled in two different indoor environments: a house and a stainless steel chamber. The results show that apparently contradictory observations of nicotine's behavior in indoor air can be understood by considering the effects of sorption under different experimental conditions. In indoor environments in which smoking has occurred regularly for an extended period, the sorbed mass of nicotine is very large relative to the mass emitted by a single cigarette. The importance of nicotine adsorption relative to ventilation as a gas-phase removal mechanism is reduced. Where smoking occurs less regularly or the indoor surfaces are cleaned prior to smoking (as in a laboratory chamber), nicotine deposition is more significant. Nicotine concentrations closely track the levels of other ETS constituents in environments with habitual smoking if the data are averaged over a period significantly longer than the period between cigarette combustion episodes. However, nicotine is not a suitable tracer for predicting ETS exposures at fine time scales or in settings where smoking occurs infrequently and irregularly.  相似文献   

19.
ABSTRACT

In this paper, we describe the development and laboratory and field evaluation of a continuous coarse (2.5-10 um) particle mass (PM) monitor that can provide reliable measurements of the coarse mass (CM) concentrations in time intervals as short as 5-10 min. The operating principle of the monitor is based on enriching CM concentrations by a factor of ~25 by means of a 2.5-um cut point round nozzle virtual impactor while maintaining fine mass (FM)—that is, the mass of PM2 5 at ambient concentrations. The aerosol mixture is subsequently drawn through a standard tapered element oscillating microbalance (TEOM), the response of which is dominated by the contributions of the CM, due to concentration enrichment. Findings from the field study ascertain that a TEOM coupled with a PM10 inlet followed by a 2.5-um cut point round nozzle virtual impactor can be used successfully for continuous CM concentration measurements. The average concentration-enriched CM concentrations measured by the TEOM were 26-27 times higher than those measured by the time-integrated PM10 samplers [the micro-orifice uniform deposit  相似文献   

20.
Abstract

In this investigation, the collection efficiency of particulate emission control devices (PECDs), particulate matter (PM) emissions, and PM size distribution were determined experimentally at the inlet and outlet of PECDs at five coal-fired power plants. Different boilers, coals, and PECDs are used in these power plants. Measurement in situ was performed by an electrical low-pressure impactor with a sampling system, which consisted of an isokinetic sampler probe, precut cyclone, and two-stage dilution system with a sample line to the instruments. The size distribution was measured over a range from 0.03 to 10 µm. Before and after all of the PECDs, the particle number size distributions display a bimodal distribution. The PM2.5 fraction emitted to atmosphere includes a significant amount of the mass from the coarse particle mode. The controlled and uncontrolled emission factors of total PM, inhalable PM (PM10), and fine PM P(M2.5) were obtained. Electrostatic precipitator (ESP) and baghouse total collection efficiencies are 96.38–99.89% and 99.94%, respectively. The minimum collection efficiency of the ESP and the baghouse both appear in the particle size range of 0.1–1 µm. In this size range, ESP and baghouse collection efficiencies are 85.79–98.6% and 99.54%. Real-time measurement shows that the mass and number concentration of PM10 will be greatly affected by the operating conditions of the PECDs. The number of emitted particles increases with increasing boiler load level because of higher combustion temperature. During test run periods, the data reproducibility is satisfactory.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号