首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
The CO2 and N2O soil emissions at a rice paddy in Mase, Japan, were measured by enclosures during a fallow winter season. The Mase site, one of the AsiaFlux Network sites in Japan, has been monitored for moisture, heat, and CO2 fluxes since August 1999. The paddy soil was found to be a source of both CO2 and N2O flux from this experiment. The CO2 and N2O fluxes ranged from -27.6 to 160.4 microg CO2/m2/sec (average of 49.1 +/- 42.7 microg CO2/m2/sec) and from -4.4 to 129.5 ng N2O/m2/sec (average of 40.3 +/- 35.6 ng N2O/m2/ sec), respectively. A bimodal trend, which has a sub-peak in the morning around 10:00 a.m. and a primary peak between 2:00 and 3:00 p.m., was observed. Gas fluxes increased with soil temperature, but this temperature dependency seemed to occur only on the calm days. Average CO2 and N2O fluxes were 27.7 microg CO2/m2/sec and 13.4 ng N2O/m2/sec, with relatively small fluctuation during windy days, while averages of 69.3 microg CO2/m2/sec and 65.8 ng N2O/m2/sec were measured during calm days. This relationship was thought to be a result of strong surface winds, which enhance gas exchange between the soil surface and the atmosphere, thus reducing the gas emissions from soil surfaces.  相似文献   

2.
Land use conversion and fertilization have been widely reported to be important managements affecting the exchanges of greenhouse gases between soil and atmosphere. For comprehensive assessment of methane (CH4) and nitrous oxide (N2O) fluxes from hilly red soil induced by land use conversion and fertilization, a 14-month continuous field measurement was conducted on the newly converted citrus orchard plots with fertilization (OF) and without fertilization (ONF) and the conventional paddy plots with fertilization (PF) and without fertilization (PNF). Our results showed that land use conversion from paddy to orchard reduced the CH4 fluxes at the expense of increasing the N2O fluxes. Furthermore, fertilization significantly decreased the CH4 fluxes from paddy soils in the second stage after conversion, but it failed to affect the CH4 fluxes from orchard soils, whereas fertilizer applied to orchard and paddy increased soil N2O emissions by 68 and 113.9 %, respectively. Thus, cumulative CH4 emissions from the OF were 100 % lower, and N2O emissions were 421 % higher than those from the PF. Although cumulative N2O emissions were stimulated in the newly converted orchard, the strong reduction of CH4 led to lower global warming potentials (GWPs) as compared to the paddy. Besides, fertilization in orchard increased GWPs but decreased GWPs of paddy soils. In addition, measurement of soil moisture, temperature, dissolved carbon contents (DOCs), and ammonia (NH4 +-N) and nitrate (NO3 ?-N) contents indicated a significant variation in soil properties and contributed to variations in soil CH4 and N2O fluxes. Results of this study suggest that land use conversion from paddy to orchard would benefit for reconciling greenhouse gas mitigation and citrus orchard cultivation would be a better agricultural system in the hilly red soils in terms of greenhouse gas emission. Moreover, selected fertilizer rate applied to paddy would lead to lower GWPs of CH4 and N2O. Nevertheless, more field measurements from newly converted orchard are highly needed to gain an insight into national and global accounting of CH4 and N2O emissions.  相似文献   

3.
Micrometeorological flux-gradient and nocturnal boundary layer methods were combined with Fourier transform infrared (FTIR) spectroscopy for high-precision trace gas analysis to measure fluxes of the trace gases CO2, CH4 and N2O between agricultural fields and the atmosphere. The FTIR measurements were fully automated and routinely obtained a precision of 0.1–0.2% for several weeks during a measurement campaign in October 1995. In flux-gradient measurements, vertical profiles of the trace gases were measured every 30 min from the ground to 22 m. When combined with independent micrometeorological measurements of water vapour fluxes, trace gas fluxes from the underlying surface could be determined. In the nocturnal boundary layer method the rate of change in mass storage in the 0–22 m layer was combined with fluxes measured at 22 m to estimate surface fluxes. Daytime fluxes for CO2 were −0.78±0.40 (1σ) mg CO2 m−2 s−1. Daytime fluxes of N2O and CH4 were very small and difficult to measure reliably using the flux-gradient technique, despite the high precision of the concentration measurements. Mean daytime flux for N2O was 17±48 ng N m−2 s−1, while the corresponding flux for CH4 was 47±410 ng CH4 m−2 s−1. The mean nighttime flux of CO2 estimated using the nocturnal boundary layer method was +0.15±0.05 mg CO2 m−2 s−1, in good agreement with chamber measurements of respiration rates. Nighttime fluxes of CH4 and N2O from the nocturnal boundary layer method were 109±69 ng CH4 m−2 s−1 and 2±3.2 ng N m−2 s−1, respectively, in good agreement with chamber measurements and inventory estimates based on the sheep and cattle stocking rates in the region. The suitability of FTIR-based methods for long term monitoring of spatially and temporally averaged flux measurements is discussed.  相似文献   

4.
Biochar has been recently proposed as a management strategy to improve crop productivity and global warming mitigation. However, the effect of such approach on soil greenhouse gas fluxes is highly uncertain and few data from field experiments are available. In a field trial, cultivated with wheat, biochar was added to the soil (3 or 6 kg m−2) in two growing seasons (2008/2009 and 2009/2010) so to monitor the effect of treatments on microbial parameters 3 months and 14 months after char addition. N2O, CH4 and CO2 fluxes were measured in the field during the first year after char addition. Biochar incorporation into the soil increased soil pH (from 5.2 to 6.7) and the rates of net N mineralization, soil microbial respiration and denitrification activity in the first 3 months, but after 14 months treated and control plots did not differ significantly. No changes in total microbial biomass and net nitrification rate were observed. In char treated plots, soil N2O fluxes were from 26% to 79% lower than N2O fluxes in control plots, excluding four sampling dates after the last fertilization with urea, when N2O emissions were higher in char treated plots. However, due to the high spatial variability, the observed differences were rarely significant. No significant differences of CH4 fluxes and field soil respiration were observed among different treatments, with just few exceptions. Overall the char treatments showed a minimal impact on microbial parameters and GHG fluxes over the first 14 months after biochar incorporation.  相似文献   

5.
Chamber techniques can easily be applied to field trials with multiple small plots measuring carbon- and nitrogen-trace gas fluxes. Nevertheless, such chamber measurements are usually made weekly and rarely more frequently than once daily. However, automatic chambers do allow flux measurements on sub-daily time scales. It has been hypothesized that sub-daily measurements provide more reliable results, as diurnal variations are captured better compared to manual measurements. To test this hypothesis we compared automatic and manual measurements of N2O, CO2 and CH4 fluxes from tilled and non-tilled plots of a rice–wheat rotation ecosystem over a non-waterlogged period. Our results suggest that both techniques, i.e., either manual or automatic chambers of N2O and CO2 emissions resulted in biased fluxes. The manual measurements were adequate to capture either day-to-day or seasonal dynamics of N2O, CO2 and CH4 exchanges, but overestimated the cumulative N2O and CO2 emissions by 18% and 31%, respectively. This was due to neglecting temperature-dependent diurnal variations of C and N trace gas fluxes. However, the automatic measurements underestimated the cumulative emissions of N2O and CO2 by 22% and 17%, respectively. This underestimation resulted from chamber effects upon soil moisture during rainfall processes. No significant difference was detected between the two methods in CH4 exchanges over the non-waterlogged soils. The bias of manual chambers may be significant when pronounced diurnal variations occur. The bias of automatic measurements can only be avoided/minimized if chamber positions are frequently changed and/or if chambers are automatically opened during rainfall events. We therefore recommend using automatic chambers together with continuous measurements of soil chamber moisture to allow for soil moisture correction of fluxes or to correct flux estimates as derived by manual chambers for possible diurnal variations.  相似文献   

6.
Agricultural practices affect the production and emission of carbon dioxide (CO2) from paddy soils. It is crucial to understand the effects of tillage and N fertilization on soil CO2 flux and its influencing factors for a better comprehension of carbon dynamics in subtropical paddy ecosystems. A 2-yr field study was conducted to assess the effects of tillage (conventional tillage [CT] and no-tillage [NT]) and N fertilization (0 and 210 kg N ha?1) on soil CO2 fluxes during the 2008 and 2009 rice growing seasons in central China. Treatments were established following a split-plot design of a randomized complete block with tillage practices as the main plot and N fertilizer level as the split-plot treatment. The soil CO2 fluxes were measured 24 times in 2008 and 17 times in 2009. N fertilization did not affect soil CO2 emissions while tillage affected soil CO2 emissions, where NT had similar soil CO2 emissions to CT in 2008, but in 2009, NT significantly increased soil CO2 emissions. Cumulative CO2 emissions were 2079–2245 kg CO2–C ha?1 from NT treatments, and 2084–2141 kg CO2–C ha?1 from CT treatments in 2008, and were 1257–1401 kg CO2–C ha?1 from NT treatments, and 1003–1034 kg CO2–C ha?1 from CT treatments in 2009, respectively. Cumulative CO2 emissions were significantly related to aboveground biomass and soil organic C. Before drainage of paddy fields, soil CO2 fluxes were significantly related to soil temperature with correlation coefficients (R) of 0.67–0.87 in 2008 and 0.69–0.85 in 2009; moreover, the Q10 values ranged from 1.28 to 1.55 and from 2.10 to 5.21 in 2009, respectively. Our results suggested that NT rice production system appeared to be ineffective in decreasing carbon emission, which suggested that CO2 emissions from integrated rice-based system should be taken into account to assess effects of tillage.  相似文献   

7.
The influence of the soil on atmospheric N2O was studied by In-situ measurements in 1976–1979 at several field stations near Mainz, Germany, where different soil types were located. Measurements were carried out using the closed chamber method and applying stainless steel capillaries allowing soil air sampling down to 60 cm depth. The N2O In soil was found to be produced and consumed simultaneously In the uppermost soil layer resulting In a net flux of N2O with release rates of 0.5–16 μg N2O–Nm?2h?1 on unfertilized natural as well as agriculturally used soils. After fertilization with mineral fertilizers the N2O release rates increased to values ≤43 μg N2O–Nm?2h?1. The total amount of fertilizer-N released Into the atmosphere as N2O was determined to be 0.01–0.05% for nitrate and 0.03–0.09 % for ammonium fertilizer.  相似文献   

8.
Emissions of CH4 and N2O related to private pig farming under a tropical climate in Uvéa Island were studied in this paper. Physicochemical soil parameters such as nitrate, nitrite, ammonium, Kjeldahl nitrogen, total organic carbon, pH and moisture were measured. Gaseous soil emissions as well as physicochemical parameters were compared in two private pig farming strategies encountered on this island on two different soils (calcareous and ferralitic) in order to determine the best pig farming management: in small concrete pens or in large land pens. Ammonium levels were higher in control areas while nitrate and nitrite levels were higher in soils with pig slurry inputs, indicating that nitrification was the predominant process related to N2O emissions. Nitrate contents in soils near concrete pens were important (≥55 μg N/g) and can thus be a threat for the groundwater. For both pig farming strategies, N2O and CH4 fluxes can reach high levels up to 1 mg N/m2/h and 1 mg C/m2/h, respectively. CH4 emissions near concrete pens were very high (≥10.4 mg C/m2/h). Former land pens converted into agricultural land recover low N2O emission rates (≤0.03 mg N/m2/h), and methane uptake dominates. N2O emissions were related to nitrate content whereas CH4 emissions were found to be moisture dependent. As a result relating to the physicochemical parameters as well as to the gaseous emissions, we demonstrate that pig farming in large land pens is the best strategy for sustainable family pig breeding in Uvéa Islands and therefore in similar small tropical islands.  相似文献   

9.
The spatial variability of carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O) fluxes from forest soil with high nitrogen (N) deposition was investigated at a rolling hill region in Japan. Gas fluxes were measured on July 25th and December 5th, 2008 at 100 points within a 100 × 100 m grid. Slope direction and position influenced soil characteristics and site-specific emissions were found. The CO2 flux showed no topological difference in July, but was significantly lower in December for north-slope with coniferous trees. Spatial dependency of CH4 fluxes was stronger than that of CO2 or N2O and showed a significantly higher uptake in hill top, and emissions in the valley indicating strong influence of water status. N2O fluxes showed no spatial dependency and exhibited high hot spots at different topology in July and December. The high N deposition led to high N2O fluxes and emphasized the spatial variability.  相似文献   

10.
High-density polyethylene (HDPE) membranes are commonly used as a cover component in sanitary landfills, although only limited evaluations of its effect on greenhouse gas (GHG) emissions have been completed. In this study, field GHG emission were investigated at the Dongbu landfill, using three different cover systems: HDPE covering; no covering, on the working face; and a novel material-Oreezyme Waste Cover (OWC) material as a trial material. Results showed that the HDPE membrane achieved a high CH4 retention, 99.8% (CH4 mean flux of 12 mg C m-2 h-1) compared with the air-permeable OWC surface (CH4 mean flux of 5933 mg C m-2 h-1) of the same landfill age. Fresh waste at the working face emitted a large fraction of N2O, with average fluxes of 10 mg N m-2 h-2, while N2O emissions were small at both the HDPE and the OWC sections. At the OWC section, CH4 emissions were elevated under high air temperatures but decreased as landfill age increased. N2O emissions from the working face had a significant negative correlation with air temperature, with peak values in winter. A massive presence of CO2 was observed at both the working face and the OWC sections. Most importantly, the annual GHG emissions were 4.9 Gg yr-1 in CO2 equivalents for the landfill site, of which the OWC-covered section contributed the most CH4 (41.9%), while the working face contributed the most N2O (97.2%). HDPE membrane is therefore, a recommended cover material for GHG control.

Implications: Monitoring of GHG emissions at three different cover types in a municipal solid waste landfill during a 1-year period showed that the working face was a hotspot of N2O, which should draw attention. High CH4 fluxes occurred on the permeable surface covering a 1- to 2-year-old landfill. In contrast, the high-density polyethylene (HDPE) membrane achieved high CH4 retention, and therefore is a recommended cover material for GHG control.  相似文献   


11.
To investigate the spatial and seasonal variations of nitrous oxide (N2O) fluxes and understand the key controlling factors, we explored N2O fluxes and environmental variables in high marsh (HM), middle marsh (MM), low marsh (LM), and mudflat (MF) in the Yellow River estuary throughout a year. Fluxes of N2O differed significantly between sampling periods as well as between sampling positions. During all times of day and the seasons measured, N2O fluxes ranged from ?0.0051 to 0.0805 mg N2O m?2 h?1, and high N2O emissions occurred during spring (0.0278 mg N2O m?2 h?1) and winter (0.0139 mg N2O m?2 h?1) while low fluxes were observed during summer (0.0065 mg N2O m?2 h?1) and autumn (0.0060 mg N2O m?2 h?1). The annual average N2O flux from the intertidal zone was 0.0117 mg N2O m?2 h?1, and the cumulative N2O emission throughout a year was 113.03 mg N2O m?2, indicating that coastal marsh acted as N2O source. Over all seasons, N2O fluxes from the four marshes were significantly different (p?<?0.05), in the order of HM (0.0256?±?0.0040 mg N2O m?2 h?1)?>?MF (0.0107?±?0.0027 mg N2O m?2 h?1)?>?LM (0.0073?±?0.0020 mg N2O m?2 h?1)?>?MM (0.0026?±?0.0011 mg N2O m?2 h?1). Temporal variations of N2O emissions were related to the vegetations (Suaeda salsa, Phragmites australis, and Tamarix chinensis) and the limited C and mineral N in soils during summer and autumn and the frequent freeze/thaw cycles in soils during spring and winter, while spatial variations were mainly affected by tidal fluctuation and plant composition at spatial scale. This study indicated the importance of seasonal N2O contributions (particularly during non-growing season) to the estimation of local N2O inventory, and highlighted both the large spatial variation of N2O fluxes across the coastal marsh (CV?=?158.31 %) and the potential effect of exogenous nitrogen loading to the Yellow River estuary on N2O emission should be considered before the annual or local N2O inventory was evaluated accurately.  相似文献   

12.
An increasing nitrogen deposition experiment (2 g N m?2 year?1) was initiated in an alpine meadow on the Qinghai-Tibetan Plateau in May 2007. The greenhouse gases (GHGs), including CO2, CH4 and N2O, was observed in the growing season (from May to September) of 2008 using static chamber and gas chromatography techniques. The CO2 emission and CH4 uptake rate showed a seasonal fluctuation, reaching the maximum in the middle of July. We found soil temperature and water-filled pore space (WFPS) were the dominant factors that controlled seasonal variation of CO2 and CH4 respectively and lacks of correlation between N2O fluxes and environmental variables. The temperature sensitivity (Q10) of CO2 emission and CH4 uptake were relatively higher (3.79 for CO2, 3.29 for CH4) than that of warmer region ecosystems, indicating the increase of temperature in the future will exert great impacts on CO2 emission and CH4 uptake in the alpine meadow. In the entire growing season, nitrogen deposition tended to increase N2O emission, to reduce CH4 uptake and to decrease CO2 emission, and the differences caused by nitrogen deposition were all not significant (p < 0.05). However, we still found significant difference (p < 0.05) between the control and nitrogen deposition treatment at some observation dates for CH4 rather than for CO2 and N2O, implying CH4 is most susceptible in response to increased nitrogen availability among the three greenhouse gases. In addition, we found short-term nitrogen deposition treatment had very limited impacts on net global warming potential (GWP) of the three GHGs together in term of CO2-equivalents. Overall, the research suggests that longer study periods are needed to verify the cumulative effects of increasing nitrogen deposition on GHG fluxes in the alpine meadow.  相似文献   

13.
Li K  Gong Y  Song W  He G  Hu Y  Tian C  Liu X 《Chemosphere》2012,88(1):140-143
To assess the effects of nitrogen (N) deposition on greenhouse gas (GHG) fluxes in alpine grassland of the Tianshan Mountains in central Asia, CH4, CO2 and N2O fluxes were measured from June 2010 to May 2011. Nitrogen deposition tended to significantly increase CH4 uptake, CO2 and N2O emissions at sites receiving N addition compared with those at site without N addition during the growing season, but no significant differences were found for all sites outside the growing season. Air temperature, soil temperature and water content were the important factors that influence CO2 and N2O emissions at year-round scale, indicating that increased temperature and precipitation in the future will exert greater impacts on CO2 and N2O emissions in the alpine grassland. In addition, plant coverage in July was also positively correlated with CO2 and N2O emissions under elevated N deposition rates. The present study will deepen our understanding of N deposition impacts on GHG balance in the alpine grassland ecosystem, and help us assess the global N effects, parameterize Earth System models and inform decision makers.  相似文献   

14.
Municipal solid waste landfills are the significant anthropogenic sources of N2O due to the cooxidation of ammonia by methane-oxidizing bacteria in cover soils. Such bacteria could be developed through CH4 fumigation, as evidenced by both laboratory incubation and field measurement. During a 10-day incubation with leachate addition, the average N2O fluxes in the soil samples, collected from the three selected landfill covers, were multiplied by 1.75 (p < 0.01), 3.56 (p < 0.01), and 2.12 (p < 0.01) from the soil samples preincubated with 5% CH4 for three months when compared with the control, respectively. Among the three selected landfill sites, N2O fluxes in two landfill sites were significantly correlated with the variations of the CH4 emissions without landfill gas recovery (p < 0.001). N2O fluxes were also elevated by the increase of the CH4 emissions with landfill gas recovery in another landfill site (p > 0.05). The annual average N2O flux was 176 ± 566 μg N2O–N m?2 h?1 (p < 0.01) from sandy soil–covered landfill site, which was 72% (p < 0.05) and 173% (p < 0.01) lower than the other two clay soil covered landfill sites, respectively. The magnitude order of N2O emissions in three landfill sites was also coincident by the results of laboratory incubation, suggesting the sandy soil cover could mitigate landfill N2O emissions.  相似文献   

15.
In coastal Antarctica, freezing and thawing influence many physical, chemical and biological processes for ice-free tundra ecosystems, including the production of greenhouse gases (GHGs). In this study, penguin guanos and ornithogenic soil cores were collected from four penguin colonies and one seal colony in coastal Antarctica, and experimentally subjected to three freezing–thawing cycles (FTCs) under ambient air and under N2. We investigated the effects of FTCs on the emissions of three GHGs including nitrous oxide (N2O), carbon dioxide (CO2) and methane (CH4). The GHG emission rates were extremely low in frozen penguin guanos or ornithogenic soils. However, there was a fast increase in the emission rates of three GHGs following thawing. During FTCs, cumulative N2O emissions from ornithogenic soils were greatly higher than those from penguin guanos under ambient air or under N2. The highest N2O cumulative emission of 138.24 μg N2O–N kg?1 was observed from seal colony soils. Cumulative CO2 and CH4 emissions from penguin guanos were one to three orders of magnitude higher than those from ornithogenic soils. The highest cumulative CO2 (433.0 mgCO2–C kg?1) and CH4 (2.9 mgCH4–C kg?1) emissions occurred in emperor penguin guanos. Penguin guano was a stronger emitter for CH4 and CO2 while ornithogenic soil was a stronger emitter for N2O during FTCs. CO2 and CH4 fluxes had a correlation with total organic carbon (TOC) and soil/guano moisture (Mc) in penguin guanos and ornithogenic soils. The specific CO2–C production rate (CO2–C/TOC) indicated that the bioavailability of TOC was markedly larger in penguin guanos than in ornithogenic soils during FTCs. This study showed that FTC-released organic C and N from sea animal excreta may play a significant role in FTC-related GHG emissions, which may account for a large proportion of annual fluxes from tundra ecosystems in coastal Antarctica.  相似文献   

16.
This study presents the field investigations into the effects of cover soils and leachate subsurface irrigation on N2O emissions from municipal solid waste landfills. Landfill Site A and Site B, covered with carefully chosen infertile soils, were selected to monitor their diurnal and seasonal variations of N2O emissions. The annual average N2O flux was 469 ± 796 μg N2O-N m−2 h−1 in Site B with leachate subsurface irrigation, three times that of Site A without leachate irrigation. When an additional soil containing lower contents of carbon and nitrogen was introduced to cover part of Site B, its N2O fluxes decreased by 1-2 orders of magnitude compared with the left area of Site B. This suggested that carefully selected cover soils could substantially reduce N2O emissions even under leachate subsurface irrigation. Statistical analysis proved that the availabilities of soil moisture and mineralized nitrogen were the key parameters controlling landfill N2O emissions.  相似文献   

17.
Quantifying greenhouse gas (GHG) emissions from wetland ecosystems is a relatively new issue in global climate change studies. China has approximately 22% of the world's rice paddies and 38% of the world's rice production, which are crucial to accurately estimate the global warming potential (GWP) at regional scale. This paper reports an application of a biogeochemical model (DeNitrification and DeComposition or DNDC) for quantifying GWP from rice fields in the Tai-Lake region of China. For this application, DNDC is linked to a 1:50,000 soil database, which was derived from 1107 paddy soil profiles compiled during the Second National Soil Survey of China in the 1980–1990s. The simulated results show that the 2.34 Mha of paddy soil cultivated in rice–wheat rotation in the Tai-Lake region emitted about ?1.48 Tg C, 0.84 Tg N and 5.67 Tg C as CO2, N2O, and CH4 respectively, with a cumulative GWP of 565 Tg CO2 equivalent from 1982 to 2000. As for soil subgroups, the highest GWP (26,900 kg CO2 equivalent ha?1 yr?1) was linked to gleyed paddy soils accounting for about 4.4% of the total area of paddy soils. The lowest GWP (5370 kg CO2 equivalent ha?1 yr?1) was associated with submergenic paddy soils accounting for about 0.32% of the total area of paddy soils. The most common soil in the area was hydromorphic paddy soils, which accounted for about 53% of the total area of paddy soils with a GWP of 12,300 kg CO2 equivalent ha?1 yr?1. On a regional basis, the annual averaged GWP in the polder, Tai-Lake plain, and alluvial plain soil regions was distinctly higher than that in the low mountainous and Hilly soil regions. As for administrative areas, the average annual GWP of counties in Shanghai city was high. Conversely, the average annual GWP of counties in Jiangsu province was low. The high variability in soil properties throughout the Tai-Lake region is important and affects the net greenhouse gas emissions. Therefore, the use of detailed soil data sets with high-resolution digital soil maps is essential to improve the accuracy of GWP estimates with process-based models at regional and national scales.  相似文献   

18.
Simulation models are one of the approaches used to investigate greenhouse gas emissions and potential effects of global warming on terrestrial ecosystems. DayCent which is the daily time-step version of the CENTURY biogeochemical model, and DNDC (the DeNitrification–DeComposition model) were tested against observed nitrous oxide flux data from a field experiment on cut and extensively grazed pasture located at the Teagasc Oak Park Research Centre, Co. Carlow, Ireland. The soil was classified as a free draining sandy clay loam soil with a pH of 7.3 and a mean organic carbon and nitrogen content at 0–20 cm of 38 and 4.4 g kg?1 dry soil, respectively. The aims of this study were to validate DayCent and DNDC models for estimating N2O emissions from fertilized humid pasture, and to investigate the impacts of future climate change on N2O fluxes and biomass production. Measurements of N2O flux were carried out from November 2003 to November 2004 using static chambers. Three climate scenarios, a baseline of measured climatic data from the weather station at Carlow, and high and low temperature sensitivity scenarios predicted by the Community Climate Change Consortium For Ireland (C4I) based on the Hadley Centre Global Climate Model (HadCM3) and the Intergovernment Panel on Climate Change (IPCC) A1B emission scenario were investigated. DayCent predicted cumulative N2O flux and biomass production under fertilized grass with relative deviations of +38% and (?23%) from the measured, respectively. However, DayCent performs poorly under the control plots, with flux relative deviation of (?57%) from the measured. Comparison between simulated and measured flux suggests that both DayCent model’s response to N fertilizer and simulated background flux need to be adjusted. DNDC overestimated the measured flux with relative deviations of +132 and +258% due to overestimation of the effects of SOC. DayCent, though requiring some calibration for Irish conditions, simulated N2O fluxes more consistently than did DNDC. We used DayCent to estimate future fluxes of N2O from this field. No significant differences were found between cumulative N2O flux under climate change and baseline conditions. However, above-ground grass biomass was significantly increased from the baseline of 33 t ha?1 to 45 (+34%) and 50 (+48%) t dry matter ha?1 for the low and high temperature sensitivity scenario respectively. The increase in above-ground grass biomass was mainly due to the overall effects of high precipitation, temperature and CO2 concentration. Our results indicate that because of high N demand by the vigorously growing grass, cumulative N2O flux is not projected to increase significantly under climate change, unless more N is applied. This was observed for both the high and low temperature sensitivity scenarios.  相似文献   

19.
Having a quantitative understanding of the carbon cycle in forests is of great importance for predicting global warming issues. Carbon dioxide production in soil is the largest CO2 source in forests, and exhibits large temporal and spatial variations. Continuous observation of soil CO2 flux at many sites over a forest is therefore necessary to obtain representative soil CO2 fluxes for the forest. In this study, a gradient method to measure soil CO2 flux indirectly from soil radon and CO2 measurements was theoretically modified to conveniently measure the soil CO2 flux from soil radon and CO2 concentrations measured at one soil depth. To experimentally test the modified method, a field observation was conducted continuously in a forest over a 31-day period.Since changes in the soil water content near the soil surface were small throughout the observation, a constant effective diffusivity for CO2 was assumed for the soil CO2 flux estimation. The soil CO2 flux was then calculated as the product of the effective diffusivity and the gradient of the soil CO2 concentration, each calculated from soil radon and CO2 concentrations. The estimated flux ranged from 1.9 to 5.8 μmol m?2 s?1, and, correlating well with the reference value, measured with a conventional ventilated-chamber method. We therefore conclude that the modified gradient method based on the measurement of soil CO2 and radon concentration at one depth is reliable, at least under conditions where the change in the soil water content is small.  相似文献   

20.
Greenhouse gas emissions from hydroelectric dams have recently given rise to controversies about whether hydropower still provides clean energy. China has a large number of dams used for energy supply and irrigation, but few studies have been carried out on aquatic nitrous oxide (N2O) variation and its emissions in Chinese river-reservoir systems. In this study, N2O spatiotemporal variations were investigated monthly in two reservoirs along the Wujiang River, Southwest China, and the emission fluxes of N2O were estimated. N2O production in the reservoirs tended to be dominated by nitrification, according to the correlation between N2O and other parameters. N2O saturation in the surface water of the Wujiangdu reservoir ranged from 214% to 662%, with an average fluctuation of 388%, while in the Hongjiadu reservoir, it ranged from 201% to 484%, with an average fluctuation of 312%. The dissolved N2O in both reservoirs was over-saturated with respect to atmospheric equilibrium levels, suggesting that the reservoirs were net sources of N2O emissions to the atmosphere. The averaged N2O emission flux in the Wujiangdu reservoir was 0.64 μmol m?2 h?1, while it was 0.45 μmol m?2 h?1 in the Hongjiadu reservoir, indicating that these two reservoirs had moderate N2O emission fluxes as compared to other lakes in the world. Downstream water of the dams had quite high levels of N2O saturation, and the estimated annual N2O emissions from hydropower generation were 3.60 × 105 and 2.15 × 105 mol N2O for the Wujiangdu and the Hongjiadu reservoir, respectively. These fluxes were similar to the total N2O emissions from the reservoir surfaces, suggesting that water released from reservoirs would be another important way for N2O to diffuse into the atmosphere. It can be concluded that dam construction significantly changes the water environment, especially in terms of nutrient status and physicochemical conditions, which have obvious influences on the N2O spatiotemporal variations and emissions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号