首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Monoclonal antibody to fetal haemoglobin (a2γy2) has been proposed as a fetal-specific reagent. We developed an intracellular staining protocol that combines fluorescein isothiocyanate or phycoerythrin conjugated anti-γ with the DNA binding dye Hoechst 33342 to identify and flow sort fetal erythroblasts from maternal blood. Our preliminary observations on anti-γ-positive cells sorted from four different pregnant women are described here, using fluorescence in situ hybridization (FISH) with chromosome-specific probes to identify fetal cells. Our data demonstrate that far fewer candidate fetal cells are sorted with this protocol than by current cell surface staining methods that employ the monoclonal antibody CD71. This results in increased fetal cell sorting purities. With this protocol, standard FISH techniques require modification due to the rigorous fixation with 4 per cent paraformaldehyde. Our initial data indicate the promise of this approach.  相似文献   

2.
In order to provide a noninvasive prenatal diagnosis of the hemoglobin E (Hb E) related disorder, we have evaluated the possibility of identifying the fetal βE-globin gene in maternal plasma. The analysis was performed during 8 to 18 weeks of gestation using DNA extracted from 200 µL of plasma from pregnant women whose husbands carried Hb E. The βE-globin mutation in maternal plasma was detected by a nested PCR amplification followed by the Mnl I restriction analysis. The result was compared with that of routine analysis of the CVS specimens. Among the five pregnant women examined, the fetal βE-globin gene was identified in maternal plasma in three of them and the result was completely concordant with the conventional CVS analysis. This simple noninvasive prenatal detection of the fetal βE-globin gene should prove useful in a prevention and control program of Hb E/β-thalassemia in countries where the βE-globin gene is prevalent. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

3.
The objective of this study was to detect fetal HLA-DQα gene sequences in maternal blood. HLA-DQα genotypes of 70 pregnant women and their partners were determined for type A1. We specifically sought couples where the father, but not the mother, had genotype A1. In 12 women, maternal blood samples were flow-sorted. Candidate fetal cells were isolated and amplified by using PCR primers specific for a paternal HLA-DQα A1 allele. Fetal HLA-DQα A1 genotype was predicted from sorted cells; amniocytes or cheek swabs were used for confirmation. Six of twelve sorted samples had amplification products indicating the presence of the HLA-DQα A1 allele; 6/12 did not. Prediction of the fetal genotype was 100 per cent correct, as determined by subsequent amplification of amniocytes or cheek swabs. We conclude that paternally inherited uniquely fetal HLA-DQα gene sequences can be identified in maternal blood. This system permits the identification of fetal cells independent of fetal gender, and has the potential for non-invasive prenatal diagnosis of paternally inherited conditions.  相似文献   

4.

Objective

Recent studies have integrated copy number variant (CNV) and gene analysis using target enrichment. Here, we transferred this concept to our routine genetics laboratory, which is not linked to centralized non-invasive prenatal testing (NIPT) facilities.

Method

From a cohort of 100 pregnant women, 22 were selected for the analysis of maternal genomic DNA (gDNA) along with fetal cell-free DNA. Using targeted enrichment, 135 genes were analyzed, combined with aberrations of chromosomes 21, 18, 13, X, and Y. The data were subjected to specificity and sensitivity analyses, and correlated with the results from invasive testing methods.

Results

The sensitivity/specificity was determined for the CNV analysis of chromosomes: 21 (80%/75%), 18 (-/82%), 13 (100%/67%), and Y (100%/100%). The gene detection was valid for maternal gDNA. However, for cell-free fetal DNA, it was not possible to determine the boundary between an artifact and a real sequence variant.

Conclusion

The target enrichment method combining CNV and gene detection seems feasible in a regular laboratory. However, this method can only be responsibly optimized with a sufficient number of controls and further validation on a strong bioinformatic background. The present results showed that NIPT should be performed in specialized centers, and that its introduction to isolated laboratories may not provide valid data.  相似文献   

5.
Several attempts have been made to detect and retrieve fetal nucleated cells including nucleated erythrocytes (NRBCs), leukocytes, and trophoblasts in maternal blood. We have recently developed a new method for non-invasive fetal DNA diagnosis from maternal blood. Peripheral blood granulocytes including NRBCs were isolated by a discontinuous density gradient method using Percoll (Pharmasia). NRBCs were found and retrieved at a single cell level using a micromanipulator under a microscope. To determine whether the origin of the NRBCs was maternal or fetal, the NRBCs were analysed by polymerase chain reaction (PCR) amplification to determine the presence of a Y-chromosome-specific repeat sequence in mothers carrying male fetuses. We were successful in predicting fetal sex accurately in 10 out of 11 samples taken from maternal blood. This new technique opens up fetal DNA diagnosis from maternal blood during the first trimester of pregnancy to the whole population because there is no risk to the fetus or the mother.  相似文献   

6.
Achondroplasia is the most common form of short-limbed dwarfism in humans and is caused by mutations in the FGFR3 gene. Currently, prenatal diagnosis of this disorder relies on invasive procedures. Recent studies have shown that fetal single gene point mutations could be detected in cell-free DNA (cf-DNA) from maternal plasma by either the matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) assay with single allele base extension reaction (SABER) approach or the size fractionation of cf-DNA in maternal plasma. Here, we combined the two approaches to non-invasively examine the fetal G1138A mutation in maternal plasma. cf-DNA was extracted from maternal plasma samples obtained from two pregnant women at risk for achondroplasia. The fetal G1138A mutation was determined by the analysis of size-fractionated cf-DNA in maternal plasma using MALDI-TOF MS with SABER approach and homogenous MassEXTEND (hME) assay, respectively. The fetal G1138A mutation was detectable in the two achondroplasia-affected pregnancies by the analysis of cf-DNA in maternal plasma using MALDI-TOF MS. However, the size-fractionation approach led to a more precise detection of the fetal mutation in both analyses. This analysis would be suitable for non-invasive prenatal diagnosis of diseases caused by fetal single gene point mutations. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

7.
Recent reports have indicated that digital PCR may be useful for the noninvasive detection of fetal aneuploidies by the analysis of cell-free DNA and RNA in maternal plasma or serum. In this review we provide an insight into the underlying technology and its previous application in the determination of the allelic frequencies of oncogenic alterations in cancer specimens. We also provide an indication of how this new technology may prove useful for the detection of fetal aneuploidies and single gene Mendelian disorders. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

8.
A single copy Y-chromosome DNA sequence was amplified using the polymerase chain reaction (PCR) from the peripheral blood of 30 women who had achieved a pregnancy through an in vitro fertilization (IVF) programme. The time of conception was known precisely and was confirmed by serial ultrasound scans. Conceptions were dated as the number of weeks after fertilization plus 2, to give a time equivalent to the obstetric menstrual dating of the pregnancy (LMP). Y-chromosome-specific DNA was detected in all pregnancies with a male fetus (18/30). The earliest detection was at 4 weeks and 5 days, and the latest at 7 weeks and 1 day. Y-chromosome-specific sequences were no longer detected in any of the male pregnancies 8 weeks after delivery. No Y-chromosome sequences were detected in any of the pregnancies where only female babies were delivered. This demonstrates that fetal DNA appears in the maternal circulation early in the first trimester, that it can be identified in all pregnancies tested by 7 weeks, that it continues to be present throughout pregnancy, and that it has been cleared from the maternal circulation 2 months after parturition. Early non-invasive prenatal diagnosis for aneuploidies and inherited disorders will be possible in all pregnancies if fetal cells can be isolated free from maternal contamination (or identified accurately in the presence of maternal cells) without problems of contamination from previous pregnancies.  相似文献   

9.
For simple and effective isolation of fetal cells from peripheral maternal blood, we combined depletion of maternal cells and enrichment of fetal cells by high-gradient magnetic cell separation (MACS). First CD45+ and CD14+ cells were depleted from maternal peripheral blood mononuclear cells by MACS. From the depleted fraction, CD71+ erythroid cells were enriched up to 80 per cent by MACS. This ‘double-MACS’ procedure yielded an average depletion rate of 780-fold and an average enrichment rate of 500-fold, with approximate recovery rates of 40–55 per cent. For paternity testing, cells from unseparated blood and the various fractions were analysed for polymorphism of the HLA-DQ-A1 locus and D1S80 locus by the polymerase chain reaction (PCR). In CD45/CD71+ sorted cells from maternal blood, but not in unfractionated cells from maternal blood or CD45/CD14 cells, paternal alleles could be detected. In the CD45/CD71+ fraction, the relative frequency of paternal alleles compared with maternal alleles ranged from 1 in 20 to 1 in 200 (determined by titration and depending on the quality of separation and biological variation). In 7 out of 11 cases, between weeks 12 and 25 of gestation, we could identify paternal alleles by PCR, either HLA-DQ-A1 or D1S80. This double-MACS procedure is simple, fast, efficient, and reliable for non-invasive prenatal diagnosis.  相似文献   

10.
We report a multiplex family with a GATA1 gene mutation responsible for a massive fetal cerebral hemorrhage occurring at 36 weeks. Two other stillbirth cousins presented with fetal hydrops and congenital hemochromatosis' phenotype at 37 and 12 weeks of gestation. Molecular screening revealed the presence of a c.613G>A pathogenic allelic variation in exon 4 of GATA1 gene in the 3 male siblings and their carrier mothers. The diagnosis of a GATA1 gene mutation may be suspected in cases of male fetuses with intracerebral bleeding, particularly if a history of prior fetal loss(es) and mild maternal thrombocytopenia are also present.  相似文献   

11.
12.
Transcervical cell (TCC) samples have been shown to contain fetal cells amenable to molecular analysis. However, the presence of ‘contaminating’ maternal cells limits their use for prenatal diagnoses. In this report we show that clumps of fetal cells can be isolated from transcervical samples by micromanipulation and tested by fluorescence in situ hybridization (FISH) and polymerase chain reaction (PCR). Out of 129 clumps, isolated from mucus aspirates and transcervical lavages from 29 patients, 29 clumps from 11 patients were found to be exclusively of fetal origin as judged by the detection of chromosome 21-specific polymorphic DNA markers and Y-derived DNA sequences by PCR and FISH. One case of a male triploid fetus, diagnosed by the analysis of TCC samples obtained by mucus aspiration and lavage, was confirmed by testing clumps of cells isolated by micromanipulation.  相似文献   

13.
Objectives To validate the use of Real Time PCR, a widely used technique that can detect very low levels of Y chromosomal sequence, and to assess the use of a highly sensitive PCR technique, pyrophosphorolysis-activated polymerisation (PAP), for fetal sex determination using free fetal DNA (ffDNA). Methods The fetal sex was determined by Real Time PCR in 58 pregnancies using ffDNA isolated from maternal plasma. In parallel with the Real Time PCR experiments, the presence of Y chromosome sequence was also determined using PAP on 54 isolated ffDNA samples. Results Both techniques detected Y chromosome sequence at very low levels with 98% specificity and 100% sensitivity (Real Time n = 44, PAP n = 54). Furthermore, the PAP technique was shown to be more robust than the Real Time PCR as none of the samples tested failed to meet the acceptance criteria. Combining the two techniques for male fetal sex detection from maternal blood plasma increases the sensitivity and specificity to 100% in this series. Conclusions This study shows that both Real Time PCR and PAP can be used for Y chromosome detection on ffDNA. Furthermore, by using PAP in combination with Real Time PCR more reliable early prenatal sexing can be performed using ffDNA. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

14.
The present study was undertaken to evaluate a nested polymerase chain reaction (PCR) for detection of Y chromosome-specific fetal DNA in maternal plasma and urine of pregnant women during different gestational stages. DNA isolated from plasma and urine samples of 80 pregnant women (between 7 and 40 weeks' gestation) underwent amplification for Y chromosome-specific 198 bp DNA by nested PCR. The postpartum analysis of fetal gender showed that 55 women carried male and 25 female fetuses. Among the 55 women bearing male fetuses, Y chromosome-specific signals were detected in 53 (96%) plasma and 21 (38%) urine samples. Moreover, out of 25 women bearing female fetuses, 3 (12%) and 1 (4%) women had Y chromosome-specific signal in plasma and urine, respectively. Analysis of results with respect to gestational age revealed that there was no significant difference in the detection of Y chromosome-specific DNA between different trimesters in maternal plasma of women bearing male fetuses. These results showed that fetus-specific DNA was detected with high sensitivity (96%) and specificity (88%) in the maternal plasma by nested PCR, and therefore the method could be useful as a non-invasive procedure for fetal sex determination and prenatal diagnosis. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

15.
Fetal nucleated erythrocytes (NRBC) in maternal blood are a non-invasive source of fetal DNA for prenatal genetic screening. We compared the effectiveness of three monoclonal antibodies for the separation of fetal cells from maternal blood by flow sorting. Mononuclear blood cells from 49 healthy pregnant women were incubated with antibody to CD 71, CD 36, and/or glycophorin A (GPA), employed singly or in combination with each other. These monoclonal antibodies recognize surface antigens on haematopoietic precursor cells. Successful isolation of fetal cells was defined as detection of Y chromosomal sequences in maternal blood from women carrying male fetuses, with absence of Y sequences when female fetuses were carried. Thus, gender prediction accuracy was used as a measure of fetal cell separation. Using anti-CD 71 to isolate fetal cells, gender prediction was 57 per cent correct; with anti-CD 36, it was 88 per cent correct. Anti-GPA, an erythrocyte-specific antigen, used alone or in combination with anti-CD 71 or 36, improved gender prediction to 100 per cent. We conclude that antibody to GPA improves the retrieval of fetal NRBC from maternal blood, permitting genetic analysis by the polymerase chain reaction.  相似文献   

16.
Fetal trophoblasts can be found in maternal circulation from an early stage of pregnancy and thus provide a potential source of DNA for non-invasive prenatal diagnosis. We have developed a two-step method for trophoblast isolation between the 8th and 12th week of pregnancy. Blood was sampled from 14 women undergoing termination of pregnancy or spontaneous abortion. Immunomagnetic beads precoated with HLA class I and II, and with anti-cytokeratin-18 monoclonal antibodies, were used to remove CD8+ and other maternal cells, and to select for fetal trophoblasts, respectively. Microsatellite analysis was performed on DNA extracted from the isolated, maternal, paternal and placental cells after PCR amplification. Recovery of the trophoblasts was confirmed in 13/14 cases (93%) by the identification of an identical microsatellite pattern for fetal and placental cells. Further evidence was the presence of heterozygous alleles of both maternal and paternal origin. The correct prediction of gender in all five male fetuses was an additional confirmation of trophoblast recovery. We conclude that trophoblasts can be effectively isolated from maternal blood in the first trimester, and by using polymorphic microsatellite markers to confirm sample purity, this method has potential future application in prenatal diagnosis. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

17.
An Erratum has been published for this article in Prenatal Diagnosis 22(13) 2002, 1241. Fetal sex prediction can be achieved using PCR targeted at the SRY gene by analysing cell-free fetal DNA in maternal serum. Unfortunately, the results reported to date show a lack of sensitivity, especially during the first trimester of pregnancy. Therefore, determination of fetal sex by maternal serum analysis could not replace karyotype analysis following chorionic villus sampling. A new highly sensitive real-time PCR was developped to detect an SRY gene sequence in maternal serum. Analysis was performed on 121 pregnant women during the first trimester of pregnancy (mean gestational age: 11.8 weeks). Among them, 51 had at least one previous male-bearing pregnancy. Results were compared with fetal sex. SRY PCR analysis of maternal serum was in complete concordance with fetal sex. Among the 121 pregnant women, 61 were bearing a male fetus and 60 a female fetus. No false-negative results were observed. Furthermore, no false-positive results occurred, even though 27 women carrying a female fetus during the current pregnancy had at least one previous male-bearing pregnancy. This study demonstrates that a reliable, non-invasive sex determination can be achieved by PCR analysis of maternal serum during the first trimester of pregnancy. This non-invasive approach for fetal sex prediction should have great implications in the management of pregnant women who are carriers of an X-linked genetic disorder. Prenatal diagnosis might thus be performed for male fetuses only, avoiding invasive procedures and the risk of the loss of female fetuses. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

18.
Three monoclonal antibodies (MAbs) against trophoblast (GB17, GB21, and GB25) and flow cytometry were used to sort trophoblast-like cells (TLCs) from peripheral blood of pregnant women. Sorted TLCs were processed for electron microscopy and fetal DNA amplification of the Y-specific sequences from mothers carrying male fetuses. At the ultra-structural level, most of the nucleated cells had the morphology of leucocytes, suggesting maternal contaminants, and we did not find the characteristic features of the free inter-villous trophoblast cells. Nevertheless, polymerase chain reaction (PCR) analysis showed an amplification of Y-specific sequences in two out of three samples of sorted TLCs. These results suggest that besides the maternal leucocytes, sufficient trophoblast nucleated fetal cells can be obtained using cell enrichment by sorting. This sensitive method holds promise for non-invasive prenatal diagnosis of fetal sex and if sufficient Y(positive) nuclei are found, for the diagnosis of selected numerical chromosome abnormalities.  相似文献   

19.
Massively parallel sequencing has revolutionized our understanding of Mendelian disorders, and many novel genes have been discovered to cause disease phenotypes when mutant. At the same time, next-generation sequencing approaches have enabled non-invasive prenatal testing of free fetal DNA in maternal blood. However, little attention has been paid to using whole exome and genome sequencing strategies for gene identification in fetal disorders that are lethal in utero, because they can appear to be sporadic and Mendelian inheritance may be missed. We present challenges and advantages of applying next-generation sequencing approaches to gene discovery in fetal malformation phenotypes and review recent successful discovery approaches. We discuss the implication and significance of recessive inheritance and cross-species phenotyping in fetal lethal conditions. Whole exome sequencing can be used in individual families with undiagnosed lethal congenital anomaly syndromes to discover causal mutations, provided that prior to data analysis, the fetal phenotype can be correlated to a particular developmental pathway in embryogenesis. Cross-species phenotyping allows providing further evidence for causality of discovered variants in genes involved in those extremely rare phenotypes and will increase our knowledge about normal and abnormal human developmental processes. Ultimately, families will benefit from the option of early prenatal diagnosis. © 2014 John Wiley & Sons, Ltd.  相似文献   

20.
Single nucleated red blood cells (NRBCs) isolated from maternal circulation were used for prenatal diagnosis of β-thalassaemia. The study included 22 pregnant women in the first trimester, 6 carriers at risk for β-thalassaemia and 16 noncarriers. Methodology involved enrichment of NRBCs by magnetic cell sorting (MACS) and microdissection of single NRBCs with a laser micromanipulation system. Single-cell genotyping based on nested real-time PCR for genotyping β-globin gene mutations was performed followed by a multiplexed minifingerprinting to confirm the origin of the isolated cells and possible contamination. Two polymorphic markers (D13S314 and GABRB3) facilitated the identification of fetal NRBCs through comparison of allele sizes found in the respective parents. In this study, 224 single NRBCs were detached and transferred into individual PCR tubes. Allele amplification in at least one microsatellite marker was achieved in 128/224 cells. Minifingerprinting analysis showed that 22 cells were fetal, 26 maternal and 80 were noninformative due to ADO or homozygosity. In 6 NRBCs the β-globin gene was amplified and in 2, coming from the same pregnancy, only the paternal mutation was detected. The low PCR success when genotyping isolated NRBCs was possibly due to the poor quality of fetal NRBCs and the relatively large size of the β-globin gene product. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号