首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 921 毫秒
1.
ABSTRACT: This paper considers the distribution of flood flows in the Upper Mississippi, Lower Missouri, and Illinois Rivers and their relationship to climatic indices. Global climate patterns including El Niño/Southern Oscillation, the Pacific Decadal Oscillation, and the North Atlantic Oscillation explained very little of the variations in flow peaks. However, large and statistically significant upward trends were found in many gauge records along the Upper Mississippi and Missouri Rivers: at Hermann on the Missouri River above the confluence with the Mississippi (p = 2 percent), at Hannibal on the Mississippi River (p < 0.1 percent), at Meredosia on the Illinois River (p = 0.7 percent), and at St. Louis on the Mississippi below the confluence of all three rivers (p = 1 percent). This challenges the traditional assumption that flood series are independent and identically distributed random variables and suggests that flood risk changes over time.  相似文献   

2.
ABSTRACT: Chemical variability in the Mississippi River during water years 1989 to 1998 was evaluated using stream discharge and water‐quality data in conjunction with the DAFLOW/BLTM hydraulic model. Model simulations were used to identify subbasin contributions of water and chemical constituents to the Mississippi River upstream from its confluence with the Ohio and the Mississippi River and at the Atchafalaya Diversion in Louisiana. Concentrations of dissolved solids, sodium, and sulfate at the Thebes site showed a general decreasing trend, and concentrations of silica and nitrate showed a general increasing trend as the percentage of discharge from the Mississippi River upstream from Grafton increased. Concentrations of most chemical constituents in the Mississippi River at the Atchafalaya Diversion exhibited a decreasing trend as the percentage of water from the Ohio River increased. Regression models were used to evaluate the importance of the source of water to the water chemistry in the Mississippi River at Thebes and the Atchafalaya Diversion. The addition of terms in regression equations to account for the percent of water from sub‐basins improved coefficients of determination for predicting chemical concentrations by as much as nine percent at the Thebes site and by as much as 48 percent at the Atchafalaya Diversion site. The addition of source‐water terms to regression equations increased the estimated annual loads of nitrate and silica delivered from the Mississippi River Basin to the Gulf of Mexico by as much as 14 and 13 percent, respectively.  相似文献   

3.
ABSTRACT: As part of a basinwide water-quality study, nitrogen and phosphorus data for the Upper Colorado River Basin from the Colorado-Utah State line to the Continental Divide were analyzed for spatial distributions, concentrations associated with various land uses, and temporal trends. Nitrogen and phosphorus concentrations generally increased in a downstream direction. Some nutrient concentrations were elevated at some sites in the upper parts of the basin in areas influenced by increasing urbanization. Sites were grouped according to land use and site type, and median nutrient concentrations were compared among groups. Sites within the agricultural areas of the basin generally had the highest concentrations of nitrogen and phosphorus; concentrations for main-stem, tributary, and urbanization sites were slightly lower than for the agricultural sites. Background sites, or sites with minimal land-use impacts, had very low median nutrient concentrations. Several sites with long-term data were analyzed for temporal trends in concentrations. Several statistically significant downward trends of low and moderate magnitude were observed for nitrogen and phosphorus species. No upward trends were observed in the data at any site.  相似文献   

4.
Detecting water quality improvements following watershed management changes is complicated by flow-dependent concentrations and nonlinear or threshold responses that are difficult to detect with traditional statistical techniques. In this study, we evaluated the long-term trends (1997-2009) in total P (TP) concentrations in the Illinois River of Oklahoma, and some of its major tributaries, using flow-adjusted TP concentrations and regression tree analysis to identify specific calendar dates in which change points in P trends may have occurred. Phosphorus concentrations at all locations were strongly correlated with stream flow. Flow-adjusted TP concentrations increased at all study locations in the late 1990s, but this trend was related to a change in monitoring practices where storm flow samples were specifically targeted after 1998. Flow-adjusted TP concentrations decreased in the two Illinois River sites after 2003. This change coincided with a significant decrease in effluent TP concentrations originating with one of the largest municipal wastewater treatment facilities in the basin. Conversely, flow-adjusted TP concentrations in one tributary increased, but this stream received treated effluent from a wastewater facility where effluent TP did not decrease significantly over the study period. Results of this study demonstrate how long-term trends in stream TP concentrations are difficult to quantify without consistent long-term monitoring strategies and how flow adjustment is likely mandatory for examining these trends. Furthermore, the study demonstrates how detecting changes in long-term water quality data sets requires statistical methods capable of identifying change point and nonlinear responses.  相似文献   

5.
Human alteration of the landscape has an extensive influence on the biogeochemical processes that drive oxygen cycling in streams. We estimated trends from the mid-1990s to 2003, using the seasonal Mann-Kendall's test, for percent saturation dissolved oxygen (DO), chemical oxygen demand (COD), total Kjeldahl nitrogen (TKN), and ammonia-nitrogen (NH(3)-N) for 12 sites in the Rock Creek watershed, northwest Oregon, USA. In order to understand the influence of landscape change, scale, and stormwater runoff management on dissolved oxygen trends, we calculated land cover change through aerial photo interpretation at full-basin, local (near sample point) basin, and 100m stream buffer scales, for the years 1994 and 2000. Significant (p < or = 0.05) trends occurred in DO (increasing at five sites), COD (decreasing at seven sites), TKN (decreasing at five sites, increasing at one site), and NH(3)-N (decreasing at one site, increasing at one site). Significant land cover change occurred in agricultural land cover (-8% for the entire basin area) and residential land cover (+10% for the entire basin area) (p < or = 0.05). Correlation results indicated that: (1) forest cover negatively influenced COD at the full basin scale and positively influences NH(3)-N at local scales, (2) residential land cover influenced oxygen demand variables at local scales, (3) agricultural land cover did not influence oxygen demand, (4) local topography negatively influenced TKN and NH(3)-N, and (5) stormwater runoff management infrastructure correlated positively with COD at the local scale. This study indicates that landscape factors influencing DO conditions for the study streams act at multiple scales, suggesting that better knowledge of scale-process interactions can guide watershed managers' decision making in order to maintain improving water quality conditions.  相似文献   

6.
ABSTRACT: Field investigations were conducted at three sites in the Washington, D.C., area to detect the accumulation patterns of the trace metals, cadmium, copper, lead and zinc in the soils of roadside grassed swale drains that had been receiving urban stormwater runoff. Two sites were residential areas and one site was an intensively used highway. The research results seem to indicate that the use of swale drains to control urban stormwater runoff had few harmful effects to fine textured soils with respect to the study metals. With the exception of zinc, typical roadside patterns of decreasing metal concentrations with increasing distance from roads were observed for the upper 5 cm of study soils. Zinc accumulated in residential grassed swales due to leachate from galvanized curverts. Sampling to a depth of 60 cm revealed no evidence of subsurface trace metal enrichment in the study swales. Although the percentage of soil zinc in leachable form was as high as 20 percent of total zinc concentrations, the other study metals had small leachable components. Leachable lead was always less than 1 percent of the total lead.  相似文献   

7.
ABSTRACT: Regression models are presented that can be used to estimate mean loads for chemical oxygen demand, suspended solids, dissolved solids, total nitrogen, total ammonia plus nitrogen, total phosphorous, dissolved phosphorous, total copper, total lead, and total zinc at unmonitored sites in urban areas. Explanatory variables include drainage area, imperviousness of drainage basin to infiltration, mean annual rainfall, a land-use indicator variable, and mean minimum January temperature. Model parameters are estimated by a generalized-least-squares regression method that accounts for cross correlation and differences in reliability of sample estimates between sites. The regression models account for 20 to 65 percent of the total variation in observed loads.  相似文献   

8.
Hypoxia in the Gulf of Mexico   总被引:1,自引:0,他引:1  
Seasonally severe and persistent hypoxia, or low dissolved oxygen concentration, occurs on the inner- to mid-Louisiana continental shelf to the west of the Mississippi River and Atchafalaya River deltas. The estimated areal extent of bottom dissolved oxygen concentration less than 2 mg L-1 during mid-summer surveys of 1993-2000 reached as high as 16,000 to 20,000 km2. The distribution for a similar mapping grid for 1985 to 1992 averaged 8000 to 9000 km2. Hypoxia occurs below the pycnocline from as early as late February through early October, but is most widespread, persistent, and severe in June, July, and August. Spatial and temporal variability in the distribution of hypoxia exists and is, at least partially, related to the amplitude and phasing of the Mississippi and Atchafalaya discharges and their nutrient flux. Mississippi River nutrient concentrations and loadings to the adjacent continental shelf have changed dramatically this century, with an acceleration of these changes since the 1950s to 1960s. An analysis of diatoms, foraminiferans, and carbon accumulation in the sedimentary record provides evidence of increased eutrophication and hypoxia in the Mississippi River delta bight coincident with changes in nitrogen loading.  相似文献   

9.
ABSTRACT: Ground and surface water quality monitoring data from 71 municipal sanitary landfills in North Carolina were analyzed to determine the nature and extent of current contamination problems and identify any common characteristics associated with this contamination. A total of 322 surface and 411 ground water quality records were analyzed using the SAS data system. Almost all the landfill records included inorganic and heavy metal analyses while approximately half of the records also included organic analyses by CC/MS. Our analysis indicates that landfills are having measurable impacts on ground and surface water quality, but these impacts may not be as severe as is commonly assumed. Statistically significant increases were detected in the average concentrations in ground water and downstream surface water samples when compared to upstream surface water samples. The largest percentage increases were observed for zinc, turbidity, total organic carbon, conductivity, total dissolved solids, and lead. Violations of ground water quality standards for heavy metals and hazardous organic compounds were detected at 53 percent of the landfills where adequate data existed. The moat common heavy metal violations were for lead (18 percent), chromium (18 percent), zinc (6 percent), cadmium (6 percent), and arsenic (6 percent) (percentage of landfills violating shown in parenthesis). The organic compounds that appear to pose the greatest threat to ground water are the chlorinated solvents (8 percent), petroleum derived hydrocarbons (8 percent), and pesticides (5 percent). A comparison of monitoring data from sanitary landfills and secondary wastewater treatment plants suggests that the concentrations of heavy metal and organic pollutants discharged to surface waters from these two sources are similar.  相似文献   

10.
ABSTRACT: Hydrological and geochemical spatial patterns and temporal trends were analyzed using U.S. Geological Survey (USGS) water quality data collected from 1975 to 1999 along the uppermost 600 km of the Rio Grande in Colorado and New Mexico. Data on discharge, specific conductivity (SC), total dissolved solids (TDS), pH, Ca2+, Na+, Mg2+, K+, HCO3?, SO42‐, Cl?, F?, and SiO2 came from six USGS stations ranging from the Colorado‐New Mexico border to below Albuquerque, New Mexico. Linear regression, Kendall's S, and Seasonal Kendall's S’ were used to detect trends, and ANOVA was used to analyze spatial differences between stations. Statistically significant increasing trends occurred in SC, TDS, Ca2+, Na+, Mg2+, K+, Cl?, and F?in the uppermost reaches, and significant decreasing trends of SC, TDS, Ca2+, Mg2+, K+, HCO3?, and SO42‐occurred at the lower stations around Albuquerque. Both fluoride concentrations and pH values increased at and below Albuquerque over the study period. Discharge data show an increasing trend across all stations. Spatially, data for dissolved substances show generally linear upstream to downstream increases in concentrations in the upper four stations, with several notable nonlinear increases at and below Albuquerque (SC, TDS, Na+, Cl?). Significant increases in pH appear at and below Albuquerque, relative to upstream stations, probably due to improved sewage treatment.  相似文献   

11.
ABSTRACT: Concentrations of nitrite plus nitrate, ammonia, orthophosphate, and atrazine were measured in streams and ground water beneath the streams at 23 sites in the South Platte River basin of Colorado, Nebraska, and Wyoming to assess: (1) the role of ground water as a source of nutrients and atrazine to streams in the basin, and (2) the effect of land-use setting on this process. Concentrations of nitrite plus nitrate, ammonia, orthophosphate, and atrazine were higher in ground water than in the overlying streams at 2, 12, 12, and 3 of 19 sites, respectively, where there was not a measurable hydraulic gradient directed from the stream to the ground water. Orthophosphate was the only constituent that had a significantly higher (p ≤ 0.05) concentration in ground water than in surface water for a given land-use setting (range land). Redox conditions in ground water were more important than land-use setting in influencing whether ground water was a source of elevated nitrite plus nitrate concentrations to streams in the basin. The ratios of nitrite plus nitrate in ground water/surface were were significantly lower (p ≤ 0.05) at sites having concentrations of dissolved oxygen in ground water ≤ 0.5 mg/L than at sites having dissolved oxygen concentrations ≥ 0.5 mg/L. Elevated concentrations of ammonia or atrazine in ground water occurred at sites in close proximity to likely sources of ammonia or atrazine, regardless of land-use setting. These results indicate that land-use setting is not the only factor that influences whether ground water is a source of elevated nutrient and atrazine concentrations to streams in the South Platte River Basin.  相似文献   

12.
ABSTRACT: The potentially toxic components in coal ash (ash particles, heavy metals) were evaluated in laboratory static, acute (96 hr) bioassays, both separately and in various combinations with extreme pH (5.0 and 8.5), using rainbow trout (Salmo gairdneri) and bluegifi sunfish (Lepomis macrochirus). Ash particle morphology and metal distribution anlaysis, using electron microscopy and surface-subsurface analysis by ion microscopy, showed that metals could be either clumped or evenly distributed on the surface of fly ash. Surface enrichment on fly ash particles from electrostatic precipitators, as measured by ion microscopy, was found for cadmium, copper, chromium, nickel, lead, mercury, titanium, arsenic, and selenium. Bottom (heavy) ash was not acutely toxic to either fish species at concentrations of up to 1500 mg/l total suspended solids (TSS) at pH 5.0, 7.5, or 8.5. Fly ash particles were not acutely toxic to blue-gill at levels up to 1360 mg/l TSS. Rainbow trout were highly sensitive to fly ash (25 to 60 percent mortality) at concentrations of 4.3 to 20.5 mg/I TSS when dissolved metal availability was high but were not sensitive at higher particulate concentrations (58 to 638 mg/I TSS) when dissolved metals were low. When metals were acid-leached from fly ash prior to testing, no rainbow trout mortality occurred at TSS concentrations of up to 2,350 mg/l TSS. When the percent of dissolved metal was high (e.g., 50–90 percent of the total), fish mortality was increased. Rainbow trout were nearly two orders of magnitude more sensitive than bluegill when subjected to a blend of cadmium, chromium, copper, nickel, lead, and zinc. The two species were similar in their acute sensitivity to acidic pH at levels at or below 4.0 and alkaline pH of 9.1. If the pH of coal ash effluent is contained within the range 6.0 to 9.0, acute toxicity to fish can be attributed to trace element availability from fly ash but not heavy ash. Control of holding pond and effluent pH and maximizing pond residence time are important strategies for minimizing effects of ash pond discharges on fish.  相似文献   

13.
ABSTRACT: For more than 30 years, a program of continuous monitoring of pH, acidity, alkalinity, and other parameters has been maintained on a network of large streams degraded by acid mine drainage in the northern Appalachian high sulfur coal region. Continuous records since 1952 are available at a number of stations, and at several stations, acidity records date back to 1930. Comparable analysis techniques were maintained over the period of record, assuring the long term continuity of the database. This monitoring program has captured integrated long term trends within large and complex watersheds with numerous and varied types of mine discharges. The focus of this paper is a historical trend analysis of lightly to severely acid degraded major tributaries of the Allegheny River. Over the past three decades, all of the Allegheny River drainage basin stations have demonstrated steady and substantial declines in acidity and associated increases in pH and alkalinity. The average recorded decline in total acidity at four stations monitored since the 1950s was 94 percent. Since the 1970s, acidity declined by an average of 63 percent at 10 stations. Oxidative exhaustion of pyritic minerals exposed by mining is proposed as a major factor influencing these trends.  相似文献   

14.
ABSTRACT: The U.S. Geological Survey has collected flood data for small, natural streams at many sites throughout Georgia during the past 20 years. Flood-frequency relations were developed for these data using four methods: (1) observed (log-Pearson Type HI analysis) data, (2) rainfall-runoff model, (3) regional regression equations, and (4) map-model combination. The results of the latter three methods were compared to the analyses of the observed data in order to quantify the differences in the methods and determine if the differences are statistically significant. Comparison of regression-estimates with observed discharges for sites having 20 years (1966 to 1985) and 10 years (1976 to 1985) of record at different sites of annual peak record indicate that the regression-estimates are not significantly different from the observed data. Comparison of rainfall-runoff-model simulated estimates with observed discharges for sites having 10 years and 20 years of annual peak record indicated that the model-simulated estimates are significantly and not significantly different, respectively. The biasedness probably is due to a “loss of variance” in the averaging procedures used within the model and the short length of record as indicated in the 10 and 20 years of record. The comparison of map-model simulated estimates with observed discharges for sites having 20 years of annual-peak runoff indicate that the simulated estimates are not significantly different. Comparison of “improved” map-model simulated estimates with observed discharges for sites having 20 years of annual-peak runoff data indicate that the simulated estimates are different. The average adjustment factor suggested by Lichty and Liscum to calculate the “improved” map-model overestimates in Georgia by an average of 20 percent for three recurrence intervals analyzed.  相似文献   

15.
ABSTRACT: This research evaluated concentration data for selected water quality parameters in selected California urban separate storm sewer systems during storm event discharges and during dry weather conditions. We used existing monitoring data from multiple regulatory agencies and municipalities originally collected for compliance or local characterization, which allowed systematic assessment of seasonal patterns over a wide region. Long term mean concentration for most parameters in most streams was higher during storm discharges than during dry weather flows to at least 95 percent confidence in 20 of 45 comparative evaluations, and lower statistical confidence in 22 other comparisons. Some regional differences emerged: in four evaluated streams in the San Francisco Bay Area, total concentration of lead, copper and zinc were lower during dry weather than during storm flows to at least 99.9 percent confidence, with only one exception; while the other four evaluated California streams showed the same tendency, but to much lower statistical confidence.  相似文献   

16.
ABSTRACT: The Grand and Saugeen Rivers in southern Ontario were chosen for study as pilot watersheds under the Pollution From Land Use Activities Reference Group (PLUARG) study. The pilot watersheds have adjacent headwater areas and are physically similar in geology, physiography, and climate. Significant differences in water quality between the watersheds at their outlets are attributed to land use and population differences. The major pollutant sources in the two pilot watersheds were identified as trace elements from urban runoff and point source discharges; phosphorus from agricultural and urban runoff and private waste disposal; chloride from transportation corridors; and sediment and nitrogen from agricultural runoff. Yields at the watershed outlets were similar for suspended sediment and two to three times as high in the Grand River for phosphours, nitrogen, chloride, and lead. The higher phosphorus and nitrogen levels were attributed to larger point source inputs and the higher proportion of agricultural activity, comprising 75 percent of the Grand River basin compared to 64 percent in the Saugeen River basin. Similarly, the higher chloride and lead levels were attributed to an order of magnitude larger population and three times as much urban land in the Grand River basin compared to the Saugeen River basin.  相似文献   

17.
ABSTRACT: A nutrient mass balance — accounting for nutrient inputs from atmospheric deposition, fertilizer, crop nitrogen fixation, and point source effluents; and nutrient outputs, including crop harvest and storage — was calculated for 18 subbasins in the Mobile River Basin, and trends (1970 to 1997) were evaluated as part of the U.S. Geological Survey National Water Quality Assessment (NAWQA) Program. Agricultural nonpoint nitrogen and phosphorus sources and urban nonpoint nitrogen sources are the most important factors associated with nutrients in this system. More than 30 percent of nitrogen yield in two basins and phosphorus yield in eight basins can be attributed to urban point source nutrient inputs. The total nitrogen yield (1.3 tons per square mile per year) for the Tombigbee River, which drains a greater percentage of agricultural (row crop) land use, was larger than the total nitrogen yield (0.99 tons per square mile per year) for the Alabama River. Decreasing trends of total nitrogen concentrations in the Tombigbee and Alabama Rivers indicate that a reduction occurred from 1975 to 1997 in the nitrogen contributions to Mobile Bay from the Mobile River. Nitrogen concentrations also decreased (1980 to 1995) in the Black Warrior River, one of the major tributaries to the Tombigbee River. Total phosphorus concentrations increased from 1970 to 1996 at three urban influenced sites on the Etowah River in Georgia. Multiple regression analysis indicates a distinct association between water quality in the streams of the Mobile River drainage basin and agricultural activities in the basin.  相似文献   

18.
ABSTRACT The Cortaro Area is currently the depository for much of the liquid waste from the City of Tucson. In the past, more than one-half of the sewage effluent was used for crop irrigation. However, since 1970 virtually all of the sewage effluent has been percolated in the normally dry Santa Cruz River channel. Nitrate and chloride contents were monitored monthly in water samples from about 20 large-capacity irrigation wells. Contents and seasonal trends for these constituents were closely related to the disposal of sewage effluent. Water quality problems other than nitrate include total dissolved solids, boron, coliform, and lead. High lead contents in the area appear to be a natural phenomenon and the coliform contents are likely related to poor well construction. The other quality problems are primarily due to sewage effluent.  相似文献   

19.
ABSTRACT The Colorado River Basin faces the dilemma of an increasing demand for water while presently struggling with salinity concentrations approaching critical levels for some water uses. Based upon projected development salinity concentrations are predicted to exceed 1200 mg/1 at Imperial Dam by the year 2010. Annual losses to the basin economy associated with increased salinity will exceed $50 million by the year 2010. Although methods of controlling salt discharges are relatively unrefined, certain conclusions, based upon Bayesian statistical methods, can be reached. Five basic alternatives for coping with the problem are presented and evaluated in this paper: (1) do nothing; (2) adopt arbitrary salinity standards; (3) limit development; (4) control salt discharges at a cost equal to the cost of doing nothing, or (5) minimize total costs to the basin. Total costs associated with any given alternative, or the given salinity resulting, are the sum of salinity detriments (cost to users for water of increased salinity plus economic multiplier effects) plus the cost of constructing salt discharge control works. These impacts upon basin economy and Colorado River water quality for each alternative are presented and related to questions of equity which will play a role in arriving at any long-term solution to the Basin's problem.  相似文献   

20.
ABSTRACT: A variety of management options are used to minimize losses of nitrogen (N), phosphorus (P), and other potential pollutants from agricultural source areas. There is little information available, however, to indicate the effectiveness of these options (sometimes referred to as Best Management Practices, or BMPs) on basin scales. The objective of this study was to assess the water quality effectiveness of BMPs implemented in the 3240 ha Lincoln Lake basin in Northwest Arkansas. Land use in the basin was primarily forest (34 percent) and pasture (56 percent), with much of the pasture being regularly treated with animal manures. The BMPs were oriented toward minimizing the impact of confined animal operations in the basin and included nutrient management, dead bird composter construction, and other practices. Stream flow samples (representing primarily base flow conditions) were collected bi-weekly from five sites within the basin from September 1991 through April 1994 and analyzed for nitrate N (NO3-N), ammonia N (NH3-N), total Kjeldahl N (TKN), ortho-P (PO4-P), total P (TP), chemical oxygen demand (COD), and total suspended solids (TSS). Mean concentrations of PO4-P, TP, and TSS were highest for subbasins with the highest proportions of pasture land use. Concentrations of NH3-N, TKN, and COD decreased significantly with time (35–75 percent/year) for all sub-basins, while concentrations of other parameters were generally stable. The declines in analysis parameter concentrations are attributed to the implementation of BMPs in the basin since (a) the results are consistent with what would be expected for the particular BMPs implemented and (b) no other known activities in the basin would have caused the declines in analysis parameter concentrations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号