首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
In this paper we describe the use of five-colour fluorescence in situ hybridization for prenatal diagnosis of aneuploidy using uncultured amniotic fluid cells. The analysis is based on ratio mixing of dual-labelled probes and digital imaging for the detection and visualization of five different probes specific for the five target chromosomes, 13, 18, 21, X, and Y. A retrospective blind analysis of 30 coded uncultured amniotic fluid samples correctly detected fetal sex and five trisomy 21 cases. Multicolour fluorescence in situ hybridization used in this way allows rapid and simultaneous detection of the most frequent aneuploidies.  相似文献   

2.
The major aneuploidies diagnosed prenatally involve the autosomes 13, 18, and 21, and sex chromosomes. Fluorescence in situ hybridization (FISH) allows rapid analysis of chromosome copy number in interphase cells. This prospective study evaluated the use of four commercially available centromeric DNA probes (DXZ1, DYZ1, D18Z1, and D13Z1/D21Z1) for direct analysis of uncultured amniocytes. One hundred and sixteen amniotic fluid samples were analysed by FISH and standard cytogenetics. This evaluation demonstrated that FISH with, X, Y, and 18 alpha satellite DNA probes could accurately and rapidly detect aneuploidies involving these chromosomes and could be used in any prenatal clinical laboratory. In contrast, the 13/21 alpha satellite DNA probe hybridizing both chromosomes 13 and 21 was unreliable for prenatal diagnosis in uncultured amniocytes.  相似文献   

3.
Fluorescence in situ hybridization (FISH) of chromosome-specific probes to interphase nuclei can rapidly identify aneuploidies in uncultured amniotic fluid cells. Using DNA probe sets specific for chromosomes 13, 18, 21, X, and Y, we have identified 14 fetuses where the hybridization pattern was consistent with a triploid chromosome constitution. In each case, the identification of fetal abnormalities by ultrasound examination initiated a request for rapid determination of ploidy status via prenatal FISH analysis of uncultured amniocytes. FISH produced a three-signal pattern for the three autosomes in combination with signals indicating an XXX or XXY sex chromosome complement. This hybridization pattern was interpreted to be consistent with triploidy. Results were reported to the physician within 2 days of amniocentesis and subsequently confirmed by cytogenetics. These cases demonstrate the utility of FISH for rapid prenatal identification of triploidy, particularly when fetal abnormalities are seen with ultrasonographic examination.  相似文献   

4.
Preimplantation genetic testing for aneuploidy (PGT-A) by copy number analysis is now widely used to select euploid embryos for transfer. Whole or partial chromosome aneuploidy can arise in meiosis, predominantly female meiosis, or in the postzygotic, mitotic divisions during cleavage and blastocyst formation, resulting in chromosome mosaicism. Meiotic aneuploidies are almost always lethal, however, the clinical significance of mitotic aneuploidies detected by PGT-A is not fully understood and healthy live births have been reported following transfer of mosaic embryos. Here, we used single nucleotide polymorphism genotyping of both polar bodies and embryo samples to identify meiotic aneuploidies and compared copy number changes for meiotic and presumed mitotic aneuploidies in trophectoderm cells biopsied at the blastocyst stage and arrested embryos. PGT-A detected corresponding full copy number changes (≥70%) for 36/37 (97%) maternal meiotic aneuploidies. The number of presumed mitotic copy number changes detected exceeded those of meiotic origin. Although mainly in the mosaic range, some of these mitotic aneuploidies had copy number changes ≥70% and would have been identified as full aneuploidies. Interestingly, many arrested embryos had multiple mitotic aneuploidies across a broad range of copy number changes, which may have arisen through tripolar spindle and other mitotic abnormalities.  相似文献   

5.
Cytogenetic data are presented for 11 473 chorionic villus sampling (CVS) procedures from nine centres in the U.S. NICHD collaborative study. A successful cytogenetic diagnosis was obtained in 99.7 per cent of cases, with data obtained from the direct method only (26 per cent), culture method only (42 per cent), or a combination of both (32 per cent). A total of 1.1 per cent of patients had a second CVS or amniocentesis procedure for reasons related to the cytogenetic diagnostic procedure, including laboratory failures (27 cases), maternal cell contamination (4 cases), or mosaic or ambiguous cytogenetic results (98 cases). There were no diagnostic errors involving trisomies for chromosomes 21, 18, and 13. For sex chromosome aneuploidies, one patient terminated her pregnancy on the basis of non-mosaic 47,XXX in the direct method prior to the availability of results from cultured cells. Subsequent analysis of the CVS cultures and fetal tissues showed only normal female cells. Other false-positive predictions involving non-mosaic aneuploidies (n = 13) were observed in the direct or culture method, but these cases involved rare aneuploidies: four cases of tetraploidy, two cases of trisomy 7, and one case each of trisomies 3, 8, 11, 15, 16,20, and 22. This indicates that rare aneuploidies observed in the direct or culture method should be subjected to follow-up by amniocentesis. Two cases of unbalanced structural abnormalities detected in the direct method were not confirmed in cultured CVS or amniotic fluid. In addition, one structural rearrangement was misinterpreted as unbalanced from the direct method, leading to pregnancy termination prior to results from cultured cells showing a balanced, inherited translocation. False-negative results (n = 8) were observed only in the direct method, including one non-mosaic fetal abnormality (trisomy 18) detected by the culture method and seven cases of fetal mosaicism (all detected by the culture method). Mosaicism was observed in 0.8 per cent of all cases, while pseudomosaicism (including single trisomic cells) was observed in 1.6 per cent of cases. Mosaicism was observed with equal frequency in the direct and culture methods, but was confirmed as fetal mosaicism more often in cases from the culture method (24 per cent) than in cases from the direct method (10 per cent). The overall rate of maternal cell contamination was 1.8 per cent for the culture method, but there was only one case of incorrect sex prediction due to complete maternal cell contamination which resulted in the birth of a normal male. The rate of maternal cell contamination was significantly higher in samples obtained by the transcervical sampling method (2. 16 per cent) than in samples obtained by the transabdominal method (0.79 per cent). From these data, it is clear that the culture method has a higher degree of diagnostic accuracy than the direct method, which should not be used as the sole diagnostic technique. The direct method can be a useful adjunct to the culture method, in which maternal cell contamination can lead to incorrect sex prediction and potentially to false-negative diagnostic results.  相似文献   

6.
In situ hybridization using a series of alphoid DNA probes has demonstrated the origin of two small accessory mosaic marker chromosomes ascertained from 1079 amniocenteses. These markers appeared to be de novo, derived from acrocentric chromosomes, and identical by traditional cytogenetic staining (G, Q, C, AgNOR, Hoechst-distamycin). Molecular characterization showed that one marker had originated from chromosome 14, the other from chromosome 22. Clinical outcome in both cases was normal.  相似文献   

7.
The nature and origin of two de novo small marker chromosomes found at prenatal diagnosis were determined by fluorescence in situ hybridization using chromosome centromere-specific probes and chromosome-specific plasmid libraries. One marker was found in a mosaic state and was shown to be an i(18p). The second marker was characterized as an inv dup(22). We conclude that molecular cytogenetic analysis contributes to the identification of marker chromosomes and therefore facilitates genetic counselling and decision-making for the parents.  相似文献   

8.
Marker or ring X [r(X)] chromosomes of varying size are often found in patients with Turner syndrome. Patients with very small r(X) chromosomes that did not include the X-inactivation locus (XIST) have been described with a more severe phenotype. Small r(X) chromosomes are rare in males and there are only five previous reports of such cases. We report the identification of a small supernumerary X chromosome in an abnormal male fetus. Cytogenetic analysis from chorionic villus sampling was performed because of fetal nuchal translucency thickness and it showed mosaicism 46,XY/47,XY,+r(X)/48,XY,+r(X),+r(X). Fluorescence in situ hybridizations (FISH) showed the marker to be of X-chromosome origin and not to contain the XIST locus. Additional specific probes showed that the r(X) included a euchromatic region in proximal Xq. At 20 weeks gestation, a second ultrasound examination revealed cerebral abnormalities. After genetic counselling, the pregnancy was terminated. The fetus we describe is the first male with a mosaic XIST-negative r(X) chromosome identified at prenatal diagnosis. The phenotype we observed was probably the result of functional disomy of the genes in the r(X) chromosome, secondary to loss of the XIST locus. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

9.
A prenatally detected case of a rare mosaic tetrasomy 12p/trisomy 12p is reported, presenting as the well-known accessory isochromosome 12p and a supernumerary single 12p marker in 17/24 and 6/24 clones of cultured amniotic fluid cells, respectively. The chromosomal nature of both marker chromosomes was investigated in cultured amniotic fluid cells by fluorescent in situ hybridization with various probes: the 12-centromeric probes pa12H8 and D12Z3, a whole chromosome 12 paint, and the chromosome 12p-specific paint M28. DNA analysis revealed a maternal origin of the extra 12p material. After counselling, the parents requested termination of pregnancy. Inspection and autopsy of the fetus revealed many of the dysmorphisms and internal structural abnormalities of the Pallister–Killian syndrome.  相似文献   

10.
We have devised and evaluated a rapid screening method for the detection of numerical aberrations of chromosomes13, 18 and 21 in chorionic villus cells. We used non-radioactive in situ hybridization (ISH) with three chromosome-specific probes on overnight-attached mesenchymal cells from chorionic villi. A blind study was performed of 47 karyotypically normal samples, one triploid sample, two samples trisomic for chromosome 21, and two samples from a fetus with putative mosaicism (46/47, +21). All samples were hybridized with the chromosome 18- and 21-specific probes. Thirty samples were additionally hybridized with the chromosome 13-specific probe. The test could be completed within 3-4 days of sampling. In samples disomic with respect to the probed chromosomes, an average of 2 per cent (range 0-9 per cent) had three hybridization signals. By contrast, in the samples trisomic for the probed chromosome(s), 57 per cent (chromosome 13), 51 per cent (chromosome 18), and an average of 74 per cent (55-86 per cent) (chromosome 21) of the nuclei exhibited three signals. In the putative mosaic samples, the number of nuclei with three chromosome 21-specific signals ranged from 41 to 69 per cent. We conclude that this technique rapidly and clearly distinguishes between normal and trisomic/triploid samples, and consequently may be of use in future prenatal diagnosis.  相似文献   

11.
Embryonic aneuploidies may be responsible for pregnancy failure in many IVF patients. In recent years, fluorescent in situ hybridisation (FISH) for multiple chromosomes has been used to document a high frequency of chromosomal errors and aneuploidy in human preimplantation embryos and, after embryo biopsy, to select embryos that are more likely to implant. Such studies suggest that women with recurrent miscarriage and advanced maternal age may benefit most from preimplantation genetic diagnosis with aneuploidy screening (PGD-AS). The success of PGD-AS is likely to be enhanced by new technologies, such as comparative genomic hybridisation, which enable full karyotyping of single cells. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

12.
Cytogenetic studies of spontaneous abortions or intrauterine fetal death depend on conventional tissue culturing and karyotyping. This technique has limitations such as culture failure and selective growth of maternal cells. Fluorescent in situ hybridization (FISH) using specific probes permits diagnosis of aneuploidies but is limited to one or a few chromosomal regions. Comparative genomic hybridization (CGH) provides an overview of chromosomal gains and losses in a single hybridization directly from DNA samples. In a prospective study, we analyzed by CGH trophoblast cells from 21 fetuses in cases of spontaneous abortions, intrauterine fetal death or polymalformed syndrome. Six numerical chromosomal abnormalities including one trisomy 7, one trisomy 10, three trisomies 18, one trisomy 21 and one monosomy X have been correctly identified by CGH. One structural abnormality of the long arm of chromosome 1 has been characterized by CGH. One triploidy and two balanced pericentromeric inversions of chromosome 9 have not been identified by CGH. Sexual chromosomal constitutions were concordant by both classical cytogenetic technique and CGH. Contribution of trophoblast analysis by CGH in embryo-fetal development anomalies is discussed. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

13.
We report a case of Pallister-Killian syndrome initially diagnosed prenatally as tetrasomy 21. A 33-year-old primiparous woman was noted at 24 weeks' gestation to have moderate polyhydramnios. Ultrasonography showed diminished fetal stomach filling, hydronephrosis, and prominence of the cisterna magna. Cytogenetic analysis of cultured amniocytes was initially interpreted as mosaic tetrasomy 21: 46,XX/47,XX,+i(21q). The patient was then referred to our centre for genetic counselling. At 34 weeks' gestation, a dysmorphic infant was delivered and died within 30 min. Physical features were consistent with the Pallister-Killian syndrome. Renal, gastrointestinal, and central nervous system anomalies were found at post-mortem examination. Analysis of peripheral lymphocytes revealed 5 per cent of cells with a marker chromosome, while 92 per cent of cultured fibroblasts had this same marker. Fluorescent in situ hybridization (FISH) using an alpha-satellite probe for chromosomes 13 and 21 failed to hybridize to the marker, while a chromosome 12 centromeric probe unequivocally identified it as an i(12p). Use of FISH can provide rapid, specific prenatal diagnosis of ambiguous marker chromosomes and improve prenatal counselling.  相似文献   

14.
We characterized by microdissection and fluorescence in situ hybridization (FISH) two marker chromosomes: (1) a de novo, acrocentric marker chromosome detected in 88 per cent of the amniotic fluid cells of one of two physically and developmentally normal twins; and (2) a metacentric marker chromosome present in a phenotypically normal female. Analysis of FISH probes developed from the marker chromosomes indicated that the marker chromosomes in cases 1 and 2 were del(14)(q11) and a derivative chromosome from a Robertsonian translocation, respectively. Microdissection in combination with FISH may prove to be a valuable technique in determining the chromosomal origin of de novo marker chromosomes and unbalanced structural rearrangements detected during prenatal diagnosis.  相似文献   

15.
In a routine application of commercially available centromeric DNA probes for the prenatal screening of common trisomies involving the autosomes 13, 18, and 21, and sex chromosomes, four cases of discrepancy between fluorescence in situ hybridization (FISH) results and follow-up cytogenetic analysis were observed from a total of 516 cases of amniocentesis. In three of these cases, the results were false negative, and in one false positive. In this case, amniocentesis was performed because of a positive triple test in a 34-year-old woman with previous infertility treatment. The alpha satellite DNA probe for chromosomes 13/21 revealed five signals in 50 per cent of uncultured amniocytes, while standard cytogenetic analysis showed a normal karyotype. FISH analysis on metaphase chromosomes demonstrated the location of the additional signal in the centromeric region of chromosome 22. This additional signal was also present in the centromeric region of chromosome 22 of the mother, providing evidence for a possible inherited polymorphism in chromosome 22 responsible for unspecific hybridization with the alpha satellite probe for chromosomes 13/21 in this case. The observed polymorphism in centromeric regions may contribute to unreliability of the use of the 13/21 alpha satellite probe for prenatal screening by FISH.  相似文献   

16.
Effective screening for major aneuploidies can be provided in the first trimester of pregnancy. Screening by a combination of fetal nuchal translucency and maternal serum free-β-human chorionic gonadotrophin and pregnancy-associated plasma protein-A can identify about 90% of fetuses with trisomy 21 and other major aneuploidies for a false-positive rate of 5%. Improvement in the performance of first-trimester screening can be achieved by firstly, inclusion in the ultrasound examination assessment of the nasal bone and flow in the ductus venosus, hepatic artery and across the tricuspid valve, and secondly, carrying out the biochemical test at 9 to 10 weeks and the ultrasound scan at 12 weeks. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

17.
Fluorescence in situ hybridization (FISH) was performed with probes specific for chromosomes 13, 18, 21, X and Y on 911 of 11123 (8.2%) amniotic fluid samples submitted to the present authors' laboratory for cytogenetic analysis over an 8-year period. Altogether 3516 hybridizations were performed with an interpretable FISH result on all chromosomes requested in 884/911 (97%) of cases. An uninformative FISH result occurred in 44 hybridizations among 27 cases (3%). Of a total of 89 karyotypically proven cases with aneuploidy that might have been detected by FISH, the overall detection rate was 84%. An inconclusive or incomplete FISH result occurred in 9/89 (10%) of these proven aneuploid cases. In the remaining 80 informative proven aneuploid cases, correct detection of aneuploidy was accomplished in 75/80 (94%) of samples. A false-negative result occurred in the remaining 5/80 (6%) of such informative cases. Eighteen cases had karyotypically proven abnormalities that could not have been detected by the targeted FISH. Aside from these 18 cases, FISH allowed correct detection of normal disomy in 785/804 (98%) of such cases. An incomplete FISH result occurred in 18 normal disomic cases. There was a single possible ‘false-positive’ FISH result for chromosome 21. Interphase FISH analysis of uncultured amniotic fluid cells has been shown to be a useful laboratory tool for rapid fetal aneuploidy screening during pregnancy. As with all clinical laboratory diagnostic tests, incomplete or inconclusive results (or even interpretive errors) occur in a small percentage of cases. Nevertheless, FISH results accompanied by other data and by appropriate counseling provide clinicians and patients with valuable information for clinical decision-making surrounding family planning and pregnancy management. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

18.
Two biotinylated chromosome-specific DNA probes were used to quantify the number of chromosomes 18 and 1 in uncultured amniocytes. Thirty-three samples of uncultured amniocytes were hybridized with a chromosome 18-specific DNA probe. Uncultured cells from two of the 33 samples were also hybridized with a chromosome 1-specific probe. Thirty of the samples were disomic with respect to chromosome 18; two samples were trisomic with respect to chromosome 18, and one sample was trisomic with respect to chromosomes 1 and 18. The two cases of trisomy 18 and the single case of triploidy were identified on uncultured celis within 48-72 h after amniocentesis. They were found among five samples from pregnant women who had amniocentesis because of an ultrasonographically identified fetal malformation. A trisomic karyotype could be diagnosed with certainty in uncultured amniocytes because the majority of the responding nuclei exhibited three hybridization signals. In normal cells, the majority of nuclei exhibited two signals. In no cases was there discordance between the genotype as predicted by in situ hybridization and that determined by cytogenetic analysis.  相似文献   

19.
Cell-free DNA (cfDNA) testing is increasingly being used to screen pregnant women for fetal aneuploidies. This technology may also identify fetal sex and can be used to screen for sex chromosome aneuploidies (SCAs). Physicians offering this screening will need to be prepared to offer comprehensive prenatal counseling about these disorders to an increasing number of patients. The purpose of this article is to consider the source of information to use for counseling, factors in parental decision-making, and the performance characteristics of cfDNA testing in screening for SCAs. Discordance between ultrasound examination and cfDNA results regarding fetal sex is also discussed. © 2015 John Wiley & Sons, Ltd.  相似文献   

20.
Urinary gonadotropin peptide (UGP; β-core fragment), a major metabolite of human chorionic gonadotropin (hCG), was shown recently to be markedly elevated in Down syndrome pregnancy between 19 and 22 weeks of gestation. To confirm and extend this finding, we obtained maternal urine and matching maternal serum samples from 14 cases of Down syndrome and six other aneuploidies between 17 and 21 weeks of gestation. UGP was measured in all these samples and in 91 singleton control urines. Results were corrected for urinary creatinine level and expressed as multiples of the control median (MOM). hCG levels were assayed in all serum samples from the cases and compared with previously established reference values. The median UGP level in Down syndrome cases was 5.34 MOM (range 2.71–12.57); 88 per cent of the values were above the 95th centile of control levels after modelling. The median maternal serum hCG level for the same cases was 2.20 MOM (range 0.84–3.40); 36 per cent of the values were above the 95th centile. The level of UGP in every case including all other aneuploidies was higher than the comparable maternal serum hCG level. Elevated UGP measurements are strongly associated with fetal Down syndrome during the second trimester and could contribute to improved Down syndrome screening protocols that are more accessible and less expensive than are currently available.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号