首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The contemporary copper cycle of Asia   总被引:11,自引:1,他引:10  
A regional stock and flow model for an industrial metal was developed based on the substance-flow framework. Using this model, the contemporary copper cycle of the Asian region was constructed by aggregating country-level production and import and export data for different stages of the copper cycle. The reliability and availability of data were assessed both qualitatively and quantitatively. Asia as a region is a net importer of copper. There is a significant build-up of copper in use at a rate of nearly 3TgCu/year. The per capita generation of copper waste (0.4kgCu/(capita-year)) and the rate of secondary recovery of copper are low compared with Europe and North America. Japan's rates of use, waste generation, and recycling of copper are all much larger than the continental average. A tremendous potential exists in the region to utilize the copper content of the in-use reservoir, and subsequently to enhance copper recycling rates in the future. A set of metrics for the copper cycle is suggested in order to address sustainability issues related to resource policy and the environmental management of copper.  相似文献   

2.
We have previously manufactured activated carbon using waste paper board, which was prepared by adding 8% phenol resin adhesive to torn waste newspaper and hot-pressing. In this study, the pretreatment process of the raw material was simplified; the waste paper was extruded to form granules. The activated carbon was manufactured by the carbon dioxide activation method using the granules as the raw material. The properties of the activated carbon were evaluated based on the pore structure, the iodine adsorption number, and the adsorption of toluene vapor in a sealed chamber. The activated carbon, which was manufactured at an activation temperature of 1100°C and a treatment time of 60min, exhibited a specific surface area of 1241m2/g and an iodine adsorption number of 1120mg/g. These results were similar to those obtained for two commercially available activated carbons. The extent of toluene vapor adsorption by this activated carbon was similar to that observed for the two commercial activated carbons over a period of 130min.  相似文献   

3.
Thermal cracking of oils from waste plastics   总被引:2,自引:0,他引:2  
Thermal cracking of decomposed waste plastic oil produces a good yield of olefins. The solvent extraction of such waste plastic oil seems to be efficient for increasing gas yields and recycling monomers. To assess the potential of monomer recovery from municipal waste plastics, the oils were cracked using a laboratory-scale quartz-tube reactor. The waste plastic oils were provided by two commercial plants of the Sapporo Plastic Recycle Co. and the Dohoh Recycle Center Co. in Japan. A model waste plastic oil made in a laboratory was also examined. Yields of ethene, propene, and other products were measured at different temperatures. Two-step pyrolysis reduces coking compared with the direct thermal degradation of plastics. The raffinates from waste plastic oils extracted by sulfolane were also cracked. The primary products were almost the same as those from nontreated oils. The maximum total gas yield was 78wt%–85wt% at 750°C, an increase of about 20wt% compared with that of nonextracted oil. Solvent extraction removes stable aromatic hydrocarbons such as styrene, which is more coked than cracked.  相似文献   

4.
This article describes landfill-mining tests, including excavation, screening, and fraction characterization, carried out in the Msalycke and Gladsax landfills for municipal solid waste (MSW) in Sweden. The excavated waste in these two sites was 17–22 and 23–25 years old, respectively. The main part of Msalycke was unaffected by degradation, and during excavations no substantial amount of biogas was detected. After screening, three size fractions were obtained: <18mm, 18–50mm, and >50mm. Soil amendment and anaerobic digestion with energy extraction are suggested for the first and second fraction, respectively. Incineration with energy recovery is possible with the third fraction after any coarse (inert) material is removed, and construction/demolition waste can easily be recycled provided that it is not contaminated by hazardous material. Excavated waste taken from different depths was also analysed and compared in relation to composition, calorific value, and leachate constituents.  相似文献   

5.
The catalytic degradation of polyolefin using H-gallosilicates was examined using a bench-scale reactor (0.8kg/h) with semicontinuous feeding and the following plastics: (1) low-density polyethylene (LDPE) pellets; (2) linear low-density polyethylene (L-LDPE) pellets; (3) high-density polyethylene (HDPE) pellets; (4) polypropylene (PP) pellets; (5) polyolefin obtained from pulverized industrial waste plastics. The yields of liquid compounds from these materials, which were aromatics in most cases, ranged from 55wt% to 68wt%. With an increase in the ratio of total reactant to catalyst, the liquid yield remained the same. Yields of benzene, toluene, and xylenes (BTXs) decreased rapidly to below 50wt% at a ratio of more than 30. Differences in this ratio for BTXs were always small and were independent of the material. Only about half of the gas product was propane with a fresh catalyst. When the experiments were repeated, propylene, isobutane, and isobutene were found to increase.  相似文献   

6.
Epoxy resin and polyetheretherketone (PEEK) resin were decomposed into their monomers such as phenol, cresols, and their analogues by thermal treatment in sub- and supercritical water in a 10-ml tubing bomb reactor. The addition of basic compounds such as Na2CO3 was effective in promoting the decomposition reaction of the resins. In the reaction of epoxy resin, the yield of identified products reached 10% for the reaction at 703K over 1h. In the reaction of PEEK resin, the total yield of phenol and dibenzofuran reached 88% for the reaction at 703K over 3h. Chemical participation of water in the decomposition reaction was confirmed by the reaction of dinaphthylether.  相似文献   

7.
A two-stage process for the chemical recycling of plastics is proposed. In this process, which consists of two reactors, plastics are converted into hydrogen and carbon. In the first reactor, plastic chips are thermally decomposed into hydrocarbons. In the second reactor, the hydrocarbons formed in the first reactor are catalytically decomposed into carbon and hydrogen. In this study, in order to obtain basic data for the second reactor, propene was catalytically decomposed in a laboratory-scale spouted-bed reactor (600mm high, 21.6mm internal diameter, made of SUS304). The effect of the type of spouting medium used on the decomposition behavior of propene was investigated using four types of spouting medium (nickel-plated -alumina, palladium-plated -alumina, nickel-impregnated -alumina, and -alumina). The nickel-impregnated -alumina gave the best propene conversion and hydrogen yield.  相似文献   

8.
The degradation rate of dioxins added to the activated sludge from a leachate treatment plant of a landfill under denitrification conditions was estimated using six bioreactors. Over 99% of the added dioxins (600ng) were degraded within 7 days. Furthermore, continuous cultivation was carried out for 1 month. The activated sludge degraded 600ng of dioxins (that is, all of the added dioxins) placed in each reactor every 7 days, and this activity was maintained for 35 days. Under aerobic conditions with this sludge, the dioxins were not degraded in 7 days, but 90% of the 600ng of dioxins was degraded in 35 days. The high level of activity observed in the present study may only occur under anaerobic conditions, especially under denitrifying conditions.  相似文献   

9.
Reaction of granular potato starch with urea and biuret resulted in the formation of products, which were soluble neither in cold nor boiling water. The net reaction was a monosubstitution of the hydrogen atom in one hydroxyl group in each D-glucose unit of starch with the either CO–NH2 or CO–NH–CO–NH2 moiety, respectively. Properties of the products, particularly these with urea, depended on the mode of reaction. Reactions were carried out in the microwave oven as well as with convection heating. The products retained the granular form of starch but a vast majority of granules were damaged. -Amylolysis of those materials revealed that their susceptibility to the enzyme increasing in the order: starch-amylolysis with simultaneous insolubility in water make these products suitable as ruminant fodder and, eventually, biodegradable material.  相似文献   

10.
Increasing awareness of environmental and energy problems has promoted greater governmental interest in selected waste collection and consequently has attracted the interest of several research groups to the challenge of converting recovered plastics into useful materials. The reactive blending of postconsumer polyethylene terephthalate (PET) with different polyolefins (PO) was studied in attempts to obtain a new material with enhanced properties with respect to the starting materials. The success of the project depends mainly on the possibility of obtaining a compatibilized blend between two starting polymers that, from chemical and thermomechanical viewpoints, are very different. This was approached by employing polyolefins bearing functional groups capable of specific interaction or chemical reaction with PET end groups. Ternary blends of very low density polyethylene (VLDPE)/PET/functionalized polyolefin (FPO) in a weight composition of 70/20/10 and binary blends of FPO/PET in a weight composition of 90/10 were prepared and studied to obtain reinforced polyolefin thermoplastic materials. Reactive blending was achieved in a Brabender Plastograph with a mixing chamber of 30 or 50cm3, at 250°C, and 40rpm for 10min. Differential scanning calorimetry, scanning electron microscopy, and tensile tests were used to investigate the phase behavior, the efficiency of compatibilization, and the mechanical properties of the blends.  相似文献   

11.
Catalytic coprocessing of model and waste plastics with light Arabian crude oil residue was investigated using NiMo/Al2O3, ZSM-5, FCC, and hydrocracking catalysts. Reaction systems that were studied included low density polyethylene (LDPE), high density polyethylene (HDPE), polystyrene (PS), and polypropylene (PP). A series of single (plastic/catalyst) and binary (plastic/resid/catalyst) reactions were carried out in a 25-cm3 micro autoclave reactor under different conditions of weight and type of catalyst, duration, pressure, and temperature. The optimum conditions selected for our work were: 1% catalyst by weight of total feedstock weight, 60min reaction time, 8.3Mpa of H2, and 430°C. The product distribution for the binary system using plastic and petroleum residue provided some encouraging results. High yields of liquid fuels in the boiling range of 100°–480°C and gases were obtained along with a small amount of heavy oils and insoluble material such as gums and coke. In general, this study helps to demonstrate the technical feasibility of upgrading both waste plastics and petroleum resid, as well as an alternative approach to feedstock recycling.  相似文献   

12.
The legislative framework of waste management in Taiwan has never been efficient, mainly due to unclear definitions and regulations. In 2002, this system was split into two parts by enacting a new law, the Resource Recycling and Re-use Act (RRRA). However, it then became more complicated and recycling effectiveness was impeded. The causes were mainly the unclear definitions, conflicts about the scope, and issues between the RRRA and the Waste Disposal Act (WDA). This article examines the recycling legislation experience in Taiwan, and proposes two modifications for resolving these problems. The first proposal is merging these two acts into one. The second proposed modification maintains a two-system structure but introduces a new subject, discards, into the law. The subject of discards is further categorized as recyclable resources or waste, which correspond to recycling operations and disposal operations, respectively. The new structures, interfaces, prerequisites, properties, and comparisons are also explained.  相似文献   

13.
The biodegradation of several types of cyclodextrins (CDs) under laboratory-controlled composting conditions was investigated. CDs are used in a broad range of applications in food, pharmaceutical, medical, chemical, and textile industries because of their specific chemical characteristics related to their hydrophobic interior and hydrophilic exterior. The three naturally occurring cyclodextrins -CD, -CD, and -CD proved to be completely and readily biodegradable. Chemical modification of these basic compounds can have a major impact on the biodegradation rate and final biodegradation percentage. Fully acetylated -CD and -CD were found to be nonbiodegradable during 45 days of composting. Reducing the degree of acetylation had a positive effect on the biodegradation. Complete biodegradation was obtained for partially acetylated -CD with a degree of substitution (DS) of 7. The methylation (DS = 13) of -CD resulted in an undegradable compound during the 47 days composting, while (2-hydroxy)propyl--CD reached a plateau in biodegradation at a percentage of 20%. The incorporation of the antimicrobial agents imazalil and allyl-isothiocyanate into -CD had no negative impact on biodegradation, which makes these antimicrobial agents/CD complexes suitable for incorporation into biodegradable active packaging.  相似文献   

14.
Consortia were developed for the treatment of corncobs for use as a feedstock in a biogas fermentor. The treatment of corncobs with xylanolytic consortia enhanced the production of methane and biogas. All five consortia developed produced the maximum biogas and methane at a 6% loading rate and 20 days hydraulic retention time (HRT). The maximum biogas yield of 0.59m3/kg volatile solids (VS) with a methane content of 62% was produced with the KK-10 consortium. This was apparently due to a maximum hemicellulose degradation of 88%.  相似文献   

15.
The concentrations of heavy, trace elements and major ions measuredin the Uluda and Bursa aerosols were investigated to assess size distributions, spatial and temporal variability, sources and source regions affecting the composition of aerosols in Uluda and Bursa. A total of 81 samples were collected in two sites, one in Bursa city and another in the Uluda Mountain during two sampling campaigns. Daily samples were collected using a high volume sampler on Whatman 41 cellulose filters in Uluda, while three days interval samples were collected in Bursa using an automatic dichotomous sampler on PTFE Teflon filters. Samples were analysed for 15 trace and heavy metals (Al, Fe, Ba, Na, Mg, K, Mn, Ca, Cu), (V, Pb, Cd, Cr, Ni, Zn), and 4 major ions (SO4 2-, NO3 -, Cl-), (NH4 +) using ICP-AES, GFAAS, HPLC and UV/VIS Spectrophotometer,respectively. In general, concentrations of the metals measured inUluda aerosols were lower than those in Bursa. The concentrations of crustal elements were higher in summer than winter, while anthropogenic elements had higher concentrations in winter than summer. Most of the mass of crustal elements was concentrated in the coarse mode while the mass of the heavy metals was concentrated in the fine mode. Factor analysis revealed four factors with sources including crustal, industrial and combustion. Back trajectory calculations were used to determine long range contributions. These calculations showed that contributions were mostly from European countries, former Soviet Union countries, Black Sea and North Africa.  相似文献   

16.
The degradation of several biodegradable polymers was measured as a result of exposure to an anaerobic medium. The polymers investigated included materials based upon polylactic acid, polylactone, and poly(hydroxy butyrate/valerate) as well as those incorporating starch-based materials. The degradation was monitored by methane and carbon dioxide evolution. In addition, the physical and chemical changes were noted as a result of exposure. These measurements included changes in mass, dimension, and molecular weight. FTIR, UV-vis, proton, and13C NMR spectra were also recorded prior to and after exposure. The results clearly indicated that several biological and chemical degradation processes were occurring with the biodegradable polymers studied.Paper presented at the Bio/Environmentally Degradable Polymer Society—Second National Meeting, August 19–21, 1993, Chicago, Illinois.Issued as NRCC No. 37549.  相似文献   

17.
Transmitted light measurements performed with a UV-visible spectrophotometer were used to characterize how starch affects the position of boundaries on the phase diagram for dilute aqueous solutions of levan (a branched polymer of fructose). Data were collected in the range 15 to 70°C; the minimum concentrations required for separation of a nematic phase and the minimum concentration required for a fully nematic solution were identified within this range. While hard interactions (repulsion between rod-like molecular segments) dictate the formation of a liquid crystalline phase at and above ambient temperature in the absence of starch, soft interactions become more significant as solutions are cooled toward ambient when starch is present. Small amounts of starch might be used as a filler to modify the mechanical properties (while retaining the process-related benefits) of levan films cast from liquid crystalline solution.  相似文献   

18.
Biodegradable hydrogels prepared by -irradiation from microbial poly(amino acid)s are reviewed. pH-sensitive hydrogels were prepared by means of -irradiation of poly(-glutamic acid) (PGA) produced byBacillus subtilis IFO3335 and poly(-lysine) (PL) produced byStreptomyces albulus in aqueous solutions. The preparation conditions, swelling equilibria, hydrolytic degradation, and enzymatic degradation of these hydrogels were studied. A hydrogel with a wide variety of swelling behaviors has been produced by -irradiation from a mixture solution of PGA and PL.Paper presented at the 4th International Workshop on Biodegradable Plastics and Polymers, October 11–14, 1995, Durham, New Hampshire, USA.  相似文献   

19.
A 12-year record of water quality data for runoff from a spruce forested hillslope with podzolic soils shows the impacts of conifer harvesting and replanting in relation to nitrate generation and its influence on surface water acidification. With felling, nitrate increases from a background of 18 Eq/l to about 50 Eq/l after 1 to 2 years and then declines to background levels over the next 1 to 2 years and to lower concentrations thereafter. This change is mirrored by an acidification process as manifest by a change in Gran alkalinity, acid neutralization capacity (ANC) and aluminium concentrations as well as pH. For example, Gran alkalinity and ANC, which start at negative concentrations prior to felling (about –20 and –50 Eq/l, respectively), become more negative (–30 and –100 Eq/l, respectively) at high nitrate concentrations. Correspondingly, pH decreases from about 4.7 to 4.5 and aluminium concentrations increase from about 14 to 16 M. Subsequently, the acidification is reversed as nitrate concentrations decline and after five years post-felling the system has higher pH, Gran alkalinity and ANC together with lower aluminium concentrations than even before the felling took place (the post-felling values are about 4.9, -15 Eq/l, –20 Eq/l and 7 M/l, respectively).Other determinands show clear changes over time. For example, there is a marked increase in sodium and chloride prior to and around the time of felling (200 to 300 and 230 to 400 Eq/l, respectively), with a subsequent decline in concentration to pre-felling and to lower values of around 160 and 170 Eq/l, respectively, thereafter. This change is probably associated with abnormally high inputs of sea-salts from the atmosphere during the first quarter of the year of felling, and dilution thereafter, rather than a direct consequence of the felling activity itself: this change in sea salt loading has had an impact on stream acidity. Dissolved organic carbon and iron also change with concentrations increasing over time (60 to 200 and 1.0 to 1.5 M/l, respectively) and this mirrors a general pattern observed across the Plynlimon catchments irrespective of whether or not there has been felling activity.The implications of the findings are discussed in relations to environmental management and hydrochemical processes.  相似文献   

20.
Extremely high emissions of S and N compounds in Central Europe (both 280 mmol m-2 yr-1) declined by 70and 35%, respectively, during the last decade. Decreaseddeposition rates of SO4 -2, NO3 -, and NH4 + in the region paralleled emission declines. The reduction in atmospheric inputs of S and N to mountain ecosystemshas resulted in a pronounced reversal of acidification in the Tatra Mountains and Bohemian Forest lakes. Between the 1987–1990and 1997–1999 periods, concentrations of SO4 -2 and NO3 - decreased (average ± standard deviation) by 22±7 and 12±7 mol L-1, respectively, in theTatra Mountains, and by 19±7 and 15±10 mol L-1, respectively, in the Bohemian Forest. Their decrease was compensated in part (1) by a decrease in Ca2+ + Mg2+ (17±7 mol L-1) and H+ (4±6 mol L-1), and an increase in HCO3 -(10±10 mol L-1) in the Tatra Mountains lakes, and (2) by a decrease in Al (7±4 mol L-1), Ca2+ + Mg2+ (9±6 mol L-1), and H+ (6±5 mol L-1), in Bohemian Forest lakes. Despite the rapid decline in lake water concentrations of SO4 -2 and NO3 - in response to reduced S and N emissions, their present concentrations in some lakes are higher than predictionsbased on observed concentrations at comparable emission rates during development of acidification. This hysteresis in chemical reversal from acidification has delayed biological recovery of the lakes. The only unequivocal sign of biological recovery hasbeen observed in erné Lake (Bohemian Forest) where a cladoceran species Ceriodaphnia quadrangular has recentlyreached its pre-acidification abundance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号