首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
Zhao B  Zhu L  Li W  Chen B 《Chemosphere》2005,58(1):33-40
The effects of mixed anionic-nonionic surfactants, sodium dodecyl sulfate (SDS) mixed with Tween80 (TW80), Triton X-100 (TX100) and Brij35 respectively on the solubility enhancement and biodegradation of phenanthrene in the aqueous phase were investigated. The efficiency of solubilization and biodegradation of phenanthrene in single-, and mixed-surfactant solutions were also compared. The critical micellar concentrations (CMCs) of mixed surfactants were sharply lower than that of sole SDS. The degree of solubility enhancements by the mixed surfactants followed the order of SDS-TW80>SDS-Brij35>SDS-TX100. Synergistic solubilization was observed in the mixed surfactant solutions, in which the molar ratios of SDS to nonionic surfactant were 1:0, 9:1, 7:3, 5:5, 3:7, 1:9 and 0:1 while the total concentration of surfactants was kept at 5.0 and 10.0 mM, respectively. SDS-Brij35 exhibited more significant degree of synergistic solubility enhancement for phenanthrene. The mixed surfactants exhibited no inhibitory effect on biodegradation of phenanthrene. Substantial amounts of the solubilized phenanthrene by mixed surfactants were completely degraded by phenanthrene-degrading microorganisms within 96 h. The results suggested that anionic-nonionic surfactants would improve the performance of remediation of PAH-contaminated soils.  相似文献   

2.
Biodegradation of polycyclic aromatic hydrocarbons by a mixed culture   总被引:39,自引:0,他引:39  
Yuan SY  Wei SH  Chang BV 《Chemosphere》2000,41(9):1463-1468
We investigated the potential biodegradation of polycyclic aromatic hydrocarbons (PAHs) by an aerobic mixed culture utilizing phenanthrene as its carbon source. Following a 3-5 h post-treatment lag phase, complete degradation of 5 mg/l phenanthrene occurred within 28 h (optimal conditions determined as 30 degrees C and pH 7.0). Phenanthrene degradation was enhanced by the individual addition of yeast extract, acetate, glucose or pyruvate. Results show that the higher the phenanthrene concentration, the slower the degradation rate. While the mixed culture was also capable of efficiently degrading pyrene and acenaphthene, it failed to degrade anthracene and fluorene. In samples containing a mixture of the five PAHs, treatment with the aerobic culture increased degradation rates for fluorene and anthracene and decreased degradation rates for acenaphthene, phenanthrene and pyrene. Finally, it was observed that when nonionic surfactants were present at levels above critical micelle concentrations (CMCs), phenanthrene degradation was completely inhibited by the addition of Brij 30 and Brij 35, and delayed by the addition of Triton X100 and Triton N101.  相似文献   

3.
Zhou W  Zhu L 《Chemosphere》2005,60(9):1237-1245
The effect of a nonionic surfactant, Triton X-100 (TX100), on the distribution of four representative polycyclic aromatic hydrocarbons (PAHs), phenanthrene, fluorene, acenaphthene and naphthalene, in soil-water system was studied on a natural soil. The apparent soil-water distribution coefficient with surfactant (Kd*) for these compounds increased when TX100 equilibrium concentration from zero to around the critical micelle concentration (CMC), followed by a decrease in Kd* at TX100 equilibrium concentration greater than CMC. This is a direct result of surfactant sorption onto soil followed by PAHs partitioning to the sorbed surfactant. The values of carbon-normalized solute distribution coefficient (Kss) with the sorbed TX100 are greater than the corresponding partition coefficients with soil organic matter (Koc), which indicates the soil-sorbed nonionic surfactant is more effective per unit mass as a partitioning medium than the native soil organic matter for PAHs. When Kd* = Kd the corresponding initial concentration of surfactant was defined as critical washing concentration (CWC). Depending on the surfactant initial concentration below or above the CWC, the addition of nonionic surfactant can enhance the retardation of soil for PAHs or promote the removal of PAHs from soil, respectively. The values of Kd* and CWC can be predicted by a model, which correlates them with the compounds' octanol-water partition coefficients (Kow), soil property and the amount of soil-sorbed surfactant.  相似文献   

4.
比较研究了蓖麻油硫酸盐(SCOS)与普通表面活性剂Triton X-100(TX100)、Tween 80(TW80)、Brij35、十二烷基苯磺酸钠(SDBS)和十二烷基硫酸钠(SDS)等对菲的增溶和洗脱作用.结果表明,菲表观溶解度与SCOS的浓度呈单一线性关系,SCOS微乳液对菲的增溶比SR=0.0314为最大,菲在微乳相和水相之间的分配系数logKem=4.44,大于菲在胶束相和水相之间的分配系数(logKmc).1:10土-水体系下,SCOS微乳液对菲污染土壤的清洗速率最快,清洗效率最高.SCOS有望成为土壤有机污染淋洗修复的增效试剂.  相似文献   

5.
A new approach using an anionic/nonionic mixed surfactant, sodium dodecyl sulphate (SDS) with Triton X-100 (TX100), was utilized for the desorption of phenanthrene from an artificial contaminated natural soil in an aim to improve the efficiency of surfactant remediation technology. The experimental results showed that the presence of SDS not only reduced the sorption of TX100 onto the natural soil, but also enhanced the solubilization of TX100 for phenanthrene, both of which resulted in the distribution of phenanthrene in soil-water systems decreasing with increasing mole fraction of SDS in surfactant solutions. These results can be attributed to the formation of mixed micelles in surfactant solution and the corresponding decrease in the critical micelle concentration of TX100 in mixed solution. The batch desorption experiments showed that the desorption percentage of phenanthrene from the contaminated soil with mixed solution was greater than that with single TX100 solution and appeared to be positively related to the mole fraction of SDS in surfactant solution. Thus, the anionic/nonionic mixed surfactants are more effective for the desorption of phenanthrene from the contaminated soil than a single nonionic surfactant.  相似文献   

6.
Zhao B  Zhu L  Yang K 《Chemosphere》2006,62(5):772-779
Efforts to remediate the dense nonaqueous phase liquids (DNAPLs) by mobilizing them face with risks of driving the contaminants deeper into aquifer zones. This spurs research for modifying the approach for in situ remediation. In this paper, a novel solubilization of DNAPLs by mixed nonionic and anionic surfactant, Triton X-100 (TX100) and sodium dodecylbenzene sulfonate (SDBS), was presented and compared with those by single ones. Given 1:40 phase ratio of DNAPL:water (v/v) and the total surfactant concentration from 0.2 to 10gl(-1), mixed TX100-SDBS at the total mass ratios of 3:1, 1:1 and 1:3 exhibited significant solubilization for the DNAPLs, trichloroethene (TCE), chlorobenzene (CB) and 1,2-dichlorobenzene (1,2-DCB). The solubilization extent by mixed TX100-SDBS was much larger than by single TX100 and even larger than by single SDBS at the ratios of 1:1 and 1:3, respectively. TX100 partitioning into the organic phase dictated the solubilization extent. The TX100 losses into TCE, CB and 1,2-DCB phases were more than 99%, 97% and 97% when single TX100 was used. With SDBS alone, no SDBS partitioned into DNAPLs was observed and in mixed systems, SDBS decreased greatly the partition loss of TX100 into DNAPLs. The extent of TX100 partition decreased with increasing the amount of SDBS. The mechanism for reduction of TX100 partition was discussed. TX100 and SDBS formed mixed micelles in the solution phase. The inability of SDBS to partition into DNAPLs and the mutual affinity of SDBS and TX100 in the mixed micelle controlled the partitioning of TX100 into DNAPL phase. The work presented here demonstrates that mixed nonionic-anionic surfactants would be preferred over single surfactants for solubilization remediation of DNAPLs, which could avoid risks of driving the contaminants deeper into aquifers and decrease the surfactant loss and remediation cost.  相似文献   

7.
Polycyclic aromatic hydrocarbons (PAHs) cause a high environmental impact when released into the environment. The objective of this study was to evaluate the capacity of decontamination of polluted soils with PAHs using the sequence extraction-electrochemical treatment: extraction of PAHs from the soil with surfactant followed by electrochemical degradation of the liquid collected. Several PAHs (anthracene, benzo[a]pyrene, and phenanthrene) have been used as model compounds since such PAHs are found in high concentrations in contaminated environmental samples. Due to their hydrophobic nature, soil extraction has been limited. In this work, the use of six surfactants, Brij 35, Merpol, Tergitol, Tween 20, Tween 80 and Tyloxapol, has been evaluated on the PAH extraction from a model soil such as kaolin. Furthermore, the electrochemical degradation of PAHs with the surfactant that gave the best result was investigated working with neat solutions. The electrochemical treatment of these solutions was carried out in two electrochemical cells with different working volumes, 0.4 and 1.5l, and electrode material (graphite or titanium). Near complete degradation was reached for all the experiments in both cells.  相似文献   

8.
Degradation of di-butyl-phthalate by soil bacteria   总被引:2,自引:0,他引:2  
Chao WL  Lin CM  Shiung II  Kuo YL 《Chemosphere》2006,63(8):1377-1383
Twelve Gram-positive phthalate ester degraders were isolated from soil. Using Biolog GP2 plates, eight of them were identified as belonging to the Corynebacterium-Mycobacterium-Nocardia group, while the remaining four were unidentifiable. When cultured in the presence of di-butyl-phthalate (DBP) in basal salts solution, five of these isolates accomplished more than 90% of DBP degradation within 48 h (fast group), three were placed in the medium group, and the remaining four were placed in the slow group which caused less than 30% of DBP degradation within the same period of time. A 420 bp DNA fragment was amplified from six isolates and none of them fell within the slow group. When compared with the large subunit of phthalate dioxygenase gene (phtA) of Arthrobacter keyseri, 83% and 91% similarities were evident in the nucleotide and amino acid sequences, respectively. However, no correlation between cell surface hydrophobicity and phthalate degradation ability was evident. Six surfactants (Brij 30, Brij 35, Tergitoltype NP-10, Triton N-101, Triton X-100 and SDS) were tested for their abilities to increase degradation rate. When added at the critical micellar concentration (CMC), they all displayed strong growth inhibition against the three bacteria tested, with Brij 30 been the least toxic to isolates G2 and G11, and Brij 35 had the least inhibitory effect for G1. When half the CMC of Brij 30 was incorporated into the basal salts, the inhibitory effect on DBP degradation remained. Soil helped to minimize surfactant toxicity of surfactant and increase the degradation potential of some of the test bacteria. When DBP-amended soil had been aged for three months, decreases in bioavailability were observed but the effect varied tremendously between different organisms. For isolates G1, G2, G5, G7 and G17 the aging effects were almost non-exist. The present study indicates that selection of a suitable degrader may minimize the undesired effect of aging on bioremediation process.  相似文献   

9.
Nonionic surfactant-modified clay is a useful absorbent material that effectively removes hydrophobic organic compounds from soil/groundwater. We developed a novel material by applying an immobilized fungal laccase onto nonionic surfactant-modified clay. Low-water-solubility polycyclic aromatic hydrocarbons (PAHs) (naphthalene/phenanthrene) were degraded in the presence of this bioactive material. PAH degradation by free laccase was higher than degradation by immobilized laccase when the surfactant concentration was allowed to form micelles. PAH degradation by immobilized laccase on TX-100-modified clay was higher than on Brij35-modified clay. Strong laccase degradation of PAH can be maintained by adding surfactant monomers or micelles. The physical adsorption of nonionic surfactants onto clay plays an important role in PAH degradation by laccase, which can be explained by the structure and molecular interactions of the surfactant with the clay and enzyme. A system where laccase is immobilized onto TX-100-monomer-modified clay is a good candidate bioactive material for in situ PAHs bioremediation.  相似文献   

10.
The potential of five nonionic surfactants, Triton X-100, Brij35, Ethylan GE08, Ethylan CD127, and Ethylan CPG660 for enhancing release of carbaryl and ethion from two long-term contaminated soils was evaluated using the batch method. Incorporation of the surfactants into soils enhanced the release of both pesticides to various extents, which could be related to the type of pesticides and type and the amount of surfactants added. Release of ethion was dramatically enhanced by aqueous concentrations of surfactants above their critical micelle concentration values. This was attributed to solubility enhancement through incorporation of the highly hydrophobic compound within surfactant micelles. A concentration of 10 g L(-1) of various surfactants released >70% of the total ethion from the soil irrespective of the surfactant. For carbaryl, the surfactants were effective at low concentrations and dependence on concentration was lower than in the case of ethion. The ethylan surfactants (GE08, CD127, and CPG660) had a higher potential than Triton X-100 and Brij35 for releasing the pesticides. However, there was still a significant portion of carbaryl (11% of the total) and ethion (17% of the total) left in the soil. Our study also showed that there must be an optimal concentration of each surfactant to maximize the mass transfer of pesticides. At some threshold concentration level, additional surfactant started to inhibit the mass transfer of solute from the soil into the water. The results suggested that surfactants could help remediation of soils polluted by pesticides. The choice of surfactant should be made based on the properties of pesticides.  相似文献   

11.
Gao Y  Ling W  Wong MH 《Chemosphere》2006,63(9):1560-1567
Plant-accelerated dissipation of phenanthrene and pyrene in water in the presence of a nonionic-surfactant (Brij35) was studied. The mechanisms involved were evaluated, based on the investigation of plant uptake of these compounds from water with Brij35. The presence of ryegrass (Lolium multiflorum Lam) clearly enhanced the dissipation of tested PAHs in water with 0-296 mg l(-1) Brij35. The first-order rate constants (K), calculated from the first-order kinetic models for these PAH degradation (all significant at P < 0.05, n=8), of phenanthrene and pyrene in the presence of ryegrass were 16.7-50% and 47.1-108% larger than those of plant-free treatments, whereas half-lives (T1/2) of the former were 14.3-33.4% and 32.0-52.0% smaller than the latter, respectively. However, the promotion of PAH dissipation by ryegrass was found to significantly decrease with increasing Brij35 concentrations. In the range of 0-296 mg l(-1), low concentrations (< or = 74.0 mg l(-1)) of Brij35 generally enhanced plant uptake and accumulation of phenanthrene and pyrene, based on the observed plant concentrations and accumulated amounts of these chemicals from water. In contrast, Brij35 at relatively high concentrations (> or = 148 mg l(-1)) markedly restricted plant uptake of these PAHs. Plant accumulation of phenanthrene and pyrene accounted for 6.21-35.0% and 7.66-24.3% of the dissipation enhancement of these compounds from planted versus unplanted water bodies. In addition, plant metabolism was speculated to be another major mechanism of plant-accelerated dissipation of these PAHs in water systems. Results obtained from this study provided some insight with regard to the feasibility of phytoremediation for PAH contaminated water bodies with coexisted contaminants of surfactants.  相似文献   

12.
The biotransformation and mineralization of a mixture of two polycyclic aromatic hydrocarbons (PAHs), anthracene and pyrene, which are known contaminants of soil and groundwater, by an enrichment culture in the presence or absence of 100 mg l(-1) Tergitol NP-10, a non-ionic surfactant, and at temperatures of 10 degrees C and 25 degrees C were investigated. The overall biotransformation of 2 mg l(-1) total PAHs with free cell suspensions in batch culture was greater than 97.2% at both examined temperatures. At 25 degrees C, the overall mineralization of anthracene was 48.8% and that of pyrene was 66.1%. However, the decrease of temperature to 10 degrees C had a negative effect on the mineralization of PAHs and reduced it to 18.5% and 61.5% for anthracene and pyrene, respectively. Using a higher PAHs concentration of 20 mg l(-1) at 25 degrees C, the overall biotransformation of anthracene was 80.7% and that of pyrene was 100%, where only 17.3% anthracene and 7.6% pyrene were mineralized to carbon dioxide and water. The addition of surfactant at 25 degrees C increased the overall mineralization of anthracene and pyrene to 33.0% and 27.6%, respectively. However, the addition of surfactant at 10 degrees C had a negative impact on the overall biotransformation of anthracene and pyrene, reducing them to 20.6% and 14.0%, respectively. These results have significant implications in the bioremediation of PAHs-contaminated sites.  相似文献   

13.
The effect of surfactant alkyl chain length on soil Cd desorption was studied using nonionic surfactants of polyethylene oxide (PEO) of PEO chain lengths of 7.5 (Triton X-114), 9.5 (Triton X-100), 30 (Triton X-305), or 40 units (Triton X-405) in combination with the I- ligand. Triplicate 1 g soil samples were equilibrated with 15 ml of surfactant-ligand mixture, at concentrations of 0.025, 0.50 or 0.10, and 0.0, 0.168 or 0.336 mol/l, respectively. After shaking the samples for 24 h, the supernatant fraction was analyzed for Cd content to determine the percent of Cd desorbed from the soil. After five successive washings, 53%, 40% and 25% of Cd had been desorbed by 0.025, 0.050 or 0.10 mol/l of Triton X-114, respectively, in the presence of 0.336 mol/l of I-, whereas with the same conditions, Triton X-100 desorbed 61%, 57% and 56% Cd and either Triton X-305 or Triton X-405 desorbed 51, 40 and 14 to 16% Cd. The most efficient Cd desorption was obtained using 0.025 mol/l Triton X-100 in admixture with 0.336 mol/l I-. Increased surfactant concentration was detrimental to Cd desorption consistent with a process that blocked ligand access to the soil particle surface. After 5 washings,the cumulative cadmium desorption decreased with increasing surfactant alkyl chain length, indicating that the metal-ligand complexes are preferably stabilized by the micelles' hydrophobic octyl phenyl (OP) group rather than by the hydrophilic PEO group. In the absence of ligand, the surfactants alone desorbed less than 1% Cd from the contaminated soil, suggesting that the ligand, rather than the surfactant, extracts the metal, to be subsequently stabilized within the surfactant micelles.  相似文献   

14.
Effect of surfactants on desorption of aldicarb from spiked soil   总被引:2,自引:0,他引:2  
Xu J  Yuan X  Dai S 《Chemosphere》2006,62(10):1630-1635
Surfactant enhanced desorption of aldicarb from spiked soil was investigated in this paper. Anionic (sodium dodecyl benzene sulphonate, SDBS), cationic (hexadecyl trimethyl ammonium bromide, HTAB) and nonionic (octyl polyethylene glycol phenyl ether, OP) surfactants were tested to determine their optimal desorption conditions including desorption time, mixing speed and surfactant concentrations. The results showed that the optimal operating conditions were obtained at 2 h, 150 rpm, and surfactants concentrations were 1000, 100, and 200 mg l(-1) for SDBS, OP, and HTAB, respectively. The paper also investigated the desorption efficiency of mixture of different kinds of surfactants for aldicarb-spiked soil, and found that anionic-nonionic surfactant mixtures gave the best desorption efficiency up to 77%, while anionic-cationic surfactant mixture gave a poor desorption efficiency similar to water, suggesting that mixture of anionic-nonionic surfactants were highly promising on remediation of aldicarb-contaminated soil.  相似文献   

15.
16.
We investigated the potential of an aerobic polycyclic aromatic hydrocarbon (PAH)-adapted consortium to degrade phenanthrene in soil. Optimal degradation conditions were determined as pH7.0 and 30 degrees C with a water content of 100% wt soil/wt water (w/w). At a concentration of 5 microg/g, phenanthrene degradation (k1) was measured at 0.0269 l/hr with a half-life (t(1/2)) of 25.8 hrs. Our results show that the higher the phenanthrene concentration, the slower the degradation rates. Phenanthrene degradation was enhanced by treatment with yeast extract, glucose, or pyruvate, but was not significantly improved by the addition of acetate. Degradation was delayed by the addition of either compost or potassium nitrate and enhanced by the addition of nonionic surfactants (Brij30, Brij35, Triton X100 or Triton N101) at critical micelle concentration (CMC). Phenanthrene degradation was delayed at levels above CMC.  相似文献   

17.
18.
Effect of a cationic surfactant on the volatilization of PAHs from soil   总被引:1,自引:0,他引:1  

Purpose

Cationic surfactants are common in soils because of their use in daily cosmetic and cleaning products, and their use as a soil amendment for the mitigation and remediation of organic contaminated soils has been proposed. Such surfactant may affect the transfer and fate of organic contaminants in the environment. This study investigated the effect of a cationic surfactant, dodecylpyridinium bromide (DDPB), on the volatilization of polycyclic aromatic hydrocarbons (PAHs) from a paddy soil.

Materials and methods

The volatilization of PAHs from moist soil amended with different concentrations of DDPB was tested in an open system. The specific effects of DDPB on the liquid?Cvapor and solid?Cvapor equilibriums of PAHs were separately investigated in closed systems by headspace analysis.

Results and discussion

DDPB affects both liquid?Cvapor and solid?Cvapor processes of PAHs in soil. At DDPB concentrations below the critical micelle concentration (CMC), movement of PAHs from the bulk solution to the gas?Cliquid interface appeared to be facilitated by interaction between PAHs and the surfactant monomers adsorbed at the gas?Cliquid interface, promoting the volatilization of PAHs from solution. However, when DDPB was greater than the CMC, volatilization was inhibited due to the solubilization of PAHs by micelles. On the other hand, the formation of sorbed surfactant significantly inhibited the solid?Cvapor volatilization of PAHs.

Conclusions

The overall effect of the two simultaneous effects of DDPB on liquid?Cvapor and solid?Cvapor processes was a decreased volatilization loss of PAHs from soil. Inhibition of PAH volatilization was more significant for the soil with a lower moisture content.  相似文献   

19.
Cao J  Guo H  Zhu HM  Jiang L  Yang H 《Chemosphere》2008,70(11):2127-2134
Sorption and desorption of the herbicide prometryne in two types of soil subjected to the changes of pH and soil organic matter and surfactant were investigated. The sorption and desorption isotherms were expressed by the Freundlich equation. Freundlich Kf and n values indicate that soil organic matter was the major factor affecting prometryne behavior in the test soils. We also quantified the prometryne sorption and desorption behavior in soils, which arose from the application of Triton X-100 (TX100), a nonionic surfactant and change in pH. Application of TX100 led to a general decrease in prometryne sorption to the soils and an increase in desorption from the soils when applied in dosages of the critical micella concentration (CMC) 0.5, 1 and 2. At the concentration below the CMC, the non-ionic surfactant showed a tendency to decrease prometryne sorption and desorption. It appeared that TX100 dosages above CMC were required to effectively mobilize prometryne. Results indicate that the maximum prometryne sorption and minimum prometryne desorption in soils were achieved when the solution pH was near its pKa. Finally, the influence of TX100 on the mobility of prometryne in soils using soil thin-layer chromatography was examined.  相似文献   

20.
The remediation of the highly contaminated site around the former chemical plant of ACNA (near Savona) in Northern Italy is a top priority in Italy. The aim of the present work was to contribute in finding innovative and environmental-friendly technology to remediate soils from the ACNA contaminated site. Two soils sampled from the ACNA site (A and B), differing in texture and amount and type of organic contaminants, were subjected to soil washings by comparing the removal efficiency of water, two synthetic surfactants, sodium dodecylsulphate (SDS) and Triton X-100 (TX100), and a solution of a natural surfactant, a humic acid (HA) at its critical micelle concentration (CMC). The extraction of pollutants by sonication and soxhlet was conducted before and after the soil washings. Soil A was richer in polycyclic aromatic hydrocarbons, whereas soil B had a larger content of thiophenes. Sonication resulted more analytically efficient in the fine-textured soil B. The coarse-textured soil A was extracted with a general equal efficiency also by soxhlet. Clean-up by water was unable to exhaustively remove contaminants from the two soils, whereas all the organic surfactants revealed very similar efficiencies (up to 90%) in the removal of the contaminants from the soils. Hence, the use of solutions of natural HAs appears as a better choice for soil washings of highly polluted soils due to their additional capacity to promote microbial activity, in contrast to synthetic surfactants, for a further natural attenuation in washed soils.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号