首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of ozone in a chemical sludge disintegration process was evaluated. Sludge solution chemical oxygen demand (COD), total suspended solids (TSS) and settling were investigated in single and sequential processes. A significant influence of ozone dose on sludge disintegration was observed: ozone was utilised to degrade the soluble organic matter and to destroy cell surfaces and release the cell liquids. For a single ozonation step, we found an optimum ozone dose in the range of 0.008–0.013 g O3/g TSS to give the best COD and TSS removal efficiency. Disintegrated sludge was treated in a sequential process consisting of consecutive ozonation and bio-aeration (i.e. O3 + biological treatment). The tendency was dependent on accumulated ozone, treatment time and operational conditions. An accumulated ozone dose of 0.055 g O3/g TSS in two separate ozonation processes followed by biological treatments led to COD and TSS removal efficiency of 53 and 46.6%, respectively. The removal efficiency was improved by increasing aerobic treatment time and/or by mixing ozonated sludge with non-ozonated sludge. The settling ability of sludge was found to be fast at very low specific ozone doses. An observed tendency was the effect of ozone on cell disintegration and protein liberation. The use of sequential processes improved the settling tendency of sludge.  相似文献   

2.
This study was conducted to investigate the effectiveness of aerobic biological treatment in removal of nitrogen, phosphorous, and heavy metals from a unique anaerobic liquid waste, produced at a solid waste-to-methane anaerobic digestion facility. Laboratory scale continuous flow activated sludge reactors were employed in this study. The liquid waste has moderate BOD/COD ratio with BOD concentration of 1300 mg/L and high concentration of essential nutrients, making the liquid waste biologically treatable. Results showed that aerobic biological treatment can remove nitrogen and phosphorous on the order of 85%. Metal removal efficiencies vary widely for 11 metals studied in this investigation.  相似文献   

3.
Inappropriate usage of reclaimed wastewater has caused outbreaks of viral infectious diseases worldwide. International and domestic guidelines for wastewater reuse stipulate that virus infection risks are to be regulated by the multiple-barrier system, in which a wastewater treatment process composed of sequential treatment units is designed based on the pre-determined virus removal efficiency of each unit. The objectives of this review were to calculate representative values of virus removal efficiency in wastewater treatment units based on published datasets, and to identify research topics that should be further addressed for improving implementation of the multiple-barrier system. The removal efficiencies of human noroviruses, rotaviruses and enteroviruses in membrane bioreactor (MBR) and conventional activated sludge (CAS) processes were obtained by a systematic review protocol and a meta-analysis approach. The log10 reduction (LR) of norovirus GII and enterovirus in MBR were 3.35 (95% confidence interval: 2.39, 4.30) and 2.71 (1.52, 3.89), respectively. The LR values of rotavirus, norovirus GI and GII in CAS processes were 0.87 (0.20, 1.53), 1.48 (0.96, 2.00) and 1.35 (0.52, 2.18), respectively. The systematic review process eliminated a substantial number of articles about virus removal in wastewater treatment because of the lack of information required for the meta-analysis. It is recommended that future publications should explicitly describe their treatment of left-censored datasets. Indicators, surrogates and methodologies appropriate for validating virus removal performance during daily operation of wastewater reclamation systems also need to be identified.  相似文献   

4.
The dairy industry is among the most polluting industries as it produces large volume of wastewater that may adversely affect the environment if discharged untreated. Dairy wastewater is characterized by high COD, BOD and nutrient levels. In this study, water treatment sludge was used as a coagulant for the treatment of synthetic dairy wastewater in the pH range of 4–10. Turbidity, COD, BOD, TSS and TDS removals from the synthetic dairy wastewater were found to be around 93, 65, 67, 84 and 85%, respectively, at the optimum conditions. Water treatment sludge was found to perform even better than other conventional coagulants used for the same. Results showed that it has the potential to substitute the conventional coagulants partially or fully in the primary treatment of dairy wastewater. The utilization of water treatment sludge at dairy wastewater treatment plants would provide sustainable sludge management and cost-effective dairy wastewater treatment.  相似文献   

5.
Theoretical mathematical models of primary sedimentation and column settling tests have failed until now to predict the behaviour of sedimentation tanks under actual operating conditions due to the difficulties in simulating the effect of the density currents and the complex phenomenon of flocculation. Therefore, empirical models can be helpful in the design of sedimentation tanks. Using performance data from three different pilot-scale sedimentation tanks, empirical mathematical models were developed in this paper relating suspended solids (SS) removal efficiency to surface overflow rate, influent SS concentration, and sewage temperature. The model coefficients were derived from the combined analysis of three well correlated sets of data, thus giving a good indication for their possible general applicability. The analysis of experimental data also gave a relationship between SS and chemical oxygen demand (COD) removal efficiencies.  相似文献   

6.
7.
Parameters affecting biological phosphate removal from wastewaters   总被引:13,自引:0,他引:13  
This paper reviews some of the key wastewater composition parameters, which influence the biological removal of phosphate from wastewaters, such as COD content, volatile fatty acid (VFA) content, cation concentration, phosphorus load, pH and food to microorganism ratio. The discussion also focuses on operational parameters affecting successful nutrient removal in wastewater treatment plants, such as temperature, sludge quality, sludge settlement, dissolved oxygen (DO) concentration, anaerobic P-release and secondary P-release. The aim of this review is to compile an updated document for researchers and operators of biological nutrient removal (BNR) systems. In addition, the article will provide a good foundation for readers with no prior knowledge of the process.  相似文献   

8.
The pre-treatment of three different olive oil processing effluents by means of direct flocculation (i.e. without prior coagulation) was investigated. Four cationic and two anionic poly-electrolytes were tested and most of them were found capable of removing nearly completely total suspended solids (TSS) as well as reducing considerably the concentration of chemical (COD) and biochemical oxygen demand (BOD(5)) without altering solution pH. Flocculant dosage was crucial to achieve effective separation. For three cationic and one anionic poly-electrolytes, the minimum dosage required to initiate separation was about 2.5-3 g/L. The remaining two poly-electrolytes failed to cause separation even at dosages as high as 7 g/L. Lime and ferric chloride were also tested as reference coagulants and found quite effective in terms of TSS removal although the degree of COD reduction was generally lower than that with poly-electrolytes. However, lime treatment would require greater dosages and longer treatment times than that with poly-electrolytes and would also increase considerably solution pH. A preliminary cost analysis showed that lime treatment for complete solids removal was generally less costly than that with poly-electrolytes presumably due to its low market price. Nonetheless, cost-benefits may be defied by several drawbacks associated with the use of lime.  相似文献   

9.
Highly polluted wastewater from oil and soap factories has been treated via coagulation followed by dissolved air flotation. Ferric chloride and alum were used as coagulants at their optimal pH value and dosages. Factors affecting the efficiency of the dissolved air flotation process, such as detention time and air-solids ratio, have been investigated. The results obtained showed that this process proved to be very efficient in removing the organic contaminants. The oil removal value reached 99.1%. The COD, BOD, and turbidity removal achieved 94.5%, 96% and 99.3%, respectively.  相似文献   

10.
Treatment of wastewater by natural systems   总被引:11,自引:0,他引:11  
Experimental results from a pilot-scale constructed wetland (CW) treatment plant have been described. The study was conducted at two different systems: continuous and batch. In the continuous system, the treatment yields were monitored in different loading conditions in 1-year period. The pilot plant consists of two serially connected tanks settled up with fillers; Cyperus was used as treatment media and wastewater between the two tanks was recycled periodically. Chemical oxygen demand (COD) and suspended solid (SS) removal efficiencies were obtained as 90% and 95%, respectively. The effluent COD concentration at an average loading of 122 g COD/m2 day was satisfactory for the Turkish Water Pollution Control Regulation. This means that a 0.8 m2 of garden area per person is required. Other removal values for the same conditions were as follows: total Kjeldahl nitrogen (TKN) was 77%, total nitrogen (TN) was 61%, and PO4(3-) -P was 39%. The batch experimental systems consist of 12 pairs of serially connected tanks, with each pair having a surface area of 1 m2. Each set was filled with sewage once a day, and the wastewater between the paired tanks was recycled periodically by the pump. Each pair of tanks was filled with materials such as gravel, peat, and perlite. Seven of them were vegetated with Phragmites, Cyperus, Rush, Iris, Lolium, Canna, and Paspalum, while the other five were not seeded. The best performances were obtained by Iris for COD (% 94), by Canna for ammonia nitrogen (% 98), and by Iris for total nitrogen (% 90) and phosphorus (% 55) removal.  相似文献   

11.
Leachate samples were collected from the West New Territory Landfill (WENT), Hong Kong, and characterized in the laboratory. The analytical results confirmed that it has a typical nature of aged leachate with a low BOD5/COD ratio of 0.22 and a high strength of ammonia-nitrogen around 5 g/L. A lab-scale study was conducted to investigate the inhibition of microbial activity of the activated sludge. In the first test, glucose-based synthetic wastewater was used in two parallel reactors. The experimental results demonstrated that COD removal declined from 95.1 to 79.1% and the dehydrogenase activity of the sludge decreased from 11.04 to 4.22 μg TF/mg mixed liquor suspended solids (MLSS), when the ammonia-nitrogen concentration increased from 50 mg/L to 800 mg/L progressively. The remaining NH3+-N residue in the treated wastewater increased from 0.58 mg/L to 649 mg/L extensively. In the second test, mixed wastewater samples containing glucose and raw leachate were fed into six parallel biological reactors and operated on batch mode. The experimental results showed COD removal decreased from 97.7 to 78.1% and the dehydrogenase activity decreased from 9.29 to 4.93 μg triphenyl formazon (TF)/mg MLSS, respectively, when the ammonia-nitrogen concentration increased within the same range. Microbial inhibition could also be substantiated by a decrease of specific oxygen uptake rate (SOUR) from 68 to 45 mg O2/g MLSS. These results suggested leachate containing high-strength ammonia-nitrogen should be pretreated to an acceptable NH4+-N level before it is fed into biological reactors.  相似文献   

12.
Anaerobic digestion is increasingly applied to stabilise sludge and to reduce operating costs of the wastewater treatment plant by generating biogas, considered as a sustainable energy source. The process suffers from many drawbacks such as slow and incomplete degradation rates, the result of the slow and rate‐limiting sludge hydrolysis step, due to the low biodegradability of the cell walls and the presence of extra‐cellular biopolymers.

Methods to enhance the biogas formation should hence make the substrate more accessible to the anaerobic micro‐organisms. Research on increasing the biogas production is extensive, with low‐frequency ultrasound treatment emerging as the technical and economic most appropriate technology. Although ultrasound is now widely applied in practice, underlying phenomena and optimum operating conditions are still open to debate. Laboratory ultrasound treatment was coupled with digestion experiments (at 37°C) using 12 parallel digesters, two of them being used as control digesters with untreated sludge.

The present paper demonstrates that ultrasound treatment can – within specific ranges of energy‐input – achieve (i) an increased disintegration of the sludge, as witnessed by an increasing soluble COD‐fraction accompanied by an increasing presence of BOD; (ii) an increased release of volatile fatty acids as a result of the oxidising radicals being formed through cavitation; and (iii) a slightly reduced dewaterability of the residual sludge, needing an increased dosage of poly‐electrolyte to obtain a high degree of cake dryness.

As pre‐treatment to digestion, ultrasound enhances the biogas production by more than 40% at low specific energy‐inputs (SE), and approximately 15% at higher SE‐values.  相似文献   

13.
Elemental chlorine-free (ECF) bleach effluents from kraft mill are characterised by: a chemical organic demand/biological organic demand (COD/BOD(5)) ratio of 4, chlorophenol content with low chlorine substitution, and toxicity. The effect of increasing the concentration of 2,4,6-trichlorophenol (2,4,6-TCP) content in ECF bleaching sequence effluent on the degradative activity of bacterial communities present in an aerobic system treatment was studied. An aerobic lagoon (AL) was used as a typical secondary treatment of kraft-mill effluent. AL displays a high performance of BOD(5) degradation (up to 90%); however, only 40% of the COD was removed. Simultaneously, the AL system shows a high ability to biodegrade 2,4,6-TCP up to 237 mg/l day. Kinetic parameters of the 2,4,6-TCP biodegradation by aerobic bacteria were determined. The K(s) and K(i) values were 34.3 and 50 mg/l 2,4,6-TCP, respectively. Moreover, the tolerance of aerobic bacteria was observed up to 1.3 g/l 2,4,6-TCP.  相似文献   

14.
Trace organic contaminants (TrOCs), such as endocrine disrupting compounds (EDCs) and pharmaceuticals and personal care products (PPCPs), represent global threats to aquatic animals and ecosystems. A major source of TrOCs in the aquatic environment is via the discharge of treated sewage, so there is an urgent need to evaluate the comparative efficiencies of the most widely used sewage treatment technologies as regards elimination of these compounds from wastewater. To address this need, 976 published articles were compiled focusing on estimates of removal (%) for 20 common environmental TrOCs, from five major sewage treatment technologies: conventional activated sludge (CAS), oxidation ditch (OD), membrane bioreactor (MBR), ponds and constructed wetlands (PCW), and trickling biological filters (TBF). A quantitative meta-analysis was performed to compare standardized relative removal efficiencies (SREs) of the compounds amongst these technologies, and where possible potential sources of heterogeneity were considered (e.g., flow rates and chemical sorption potential). The results indicate that the most widely used CAS treatment and the less common TBF provide comparatively poor overall removal of common organic micropollutants. Membrane bioreactors appear to be capable of achieving the greatest overall removal efficiencies, but the sustainability and economic viability of this option has been questioned. Treatment with OD systems may be more economical while still achieving comparatively high removal efficiencies, and the analysis revealed OD to be the best option for targeting highly potent estrogenic EDCs. This study offers a unique global assessment of TrOC removal via leading sewage treatment technologies, and is an important step in the identification of effective options for treating municipal sewage.  相似文献   

15.
This paper investigated the source of priority pollutants, assessment of the wastewater treatment plant, and priority pollutant removal efficiency for a single Soderberg-type primary aluminum plant.Forty-eight hour composite samples were collected from the following streams: (1) plant intake water; (2) wastewater from the primary air pollution control system (gas stream cooling water and wet ESPs); (3) secondary air pollution control system (room ventilation wet scrubber liquor); (4) paste plant briquette cooling water; and (5) final effluent after the wastewater treatment plant.Wastewater from the primary air pollution control system entered a conventional chemical coagulation (using slacked lime) — clarification plant. Clarified water from the clarifier was combined with the other three wastewater streams and flowed into a settling lagoon with a 20-h hydraulic retention time. Clarified lagoon water was finally discharged to the river.The principal source of organic compounds in the wastewater was from the primary and secondary air pollution control systems and results from the volatilization of petroleum coke and pitch in the Soderberg anode. Wastewater treatment plant removal efficiencies of greater than 85% were achieved for the majority of the organic priority pollutant species detected.  相似文献   

16.
The study reported and analyzed the current state of wastewater treatment plants (WWTPs) in urban China from the perspective of treatment technologies, pollutant removals, operating load and effluent discharge standards. By the end of 2013, 3508 WWTPs have been built in 31 provinces and cities in China with a total treatment capacity of 1.48 × 108 m3/d. The uneven population distribution between China's east and west regions has resulted in notably different economic development outcomes. The technologies mostly used in WWTPs are AAO and oxidation ditch, which account for over 50% of the existing WWTPs. According to statistics, the efficiencies of COD and NH3–N removal are good in 656 WWTPs in 70 cities. The overall average COD removal is over 88% with few regional differences. The average removal efficiency of NH3–N is up to 80%. Large differences exist between the operating loads applied in different WWTPs. The average operating loading rate is approximately 83%, and 52% of WWTPs operate at loadings of < 80%, treating up to 40% of the wastewater generated. The implementation of discharge standards has been low. Approximately 28% of WWTPs that achieved the Grade I-A Discharge Standard of Pollutants for Municipal Wastewater Treatment Plant (GB 18918–2002) were constructed after 2010. The sludge treatment and recycling rates are only 25%, and approximately 15% of wastewater is inefficiently treated. Approximately 60% of WWTPs have capacities of 1 × 104 m3/d–5 × 104 m3/d. Relatively high energy consumption is required for small-scale processing, and the utilization rate of recycled wastewater is low. The challenges of WWTPs are discussed with the aim of developing rational criteria and appropriate technologies for water recycling. Suggestions regarding potential technical and administrative measures are provided.  相似文献   

17.
This work evaluated the sludge potential of the Wastewater Treatment Plant (ETA) in the city of Brasília to be used as a fuel by gasification. It is known that ETA sludge is a significant environmental liability, since current legislation restricts its final disposal. For this, the chemical characterisation of ETA sludge was performed by immediate and elemental analysis. No traces of heavy metals were observed, and the moisture (ω) and ash contents were 31.17 and 51.77%, respectively, different from those already reported in the literature because the composition depends on the water treatment technology employed. The gasification process was numerically simulated; once dry, it constitutes a residue with an energy content (HHV) of 22.4498 MJ kg?1, comparable with other types of biomass currently used for large-scale energy generation by thermochemical processes (e.g. agricultural residues, wood and sugar cane bagasse). For the numerical simulation with an equivalence ratio (Φ) near 3, higher concentrations of CO and H2 can only be achieved with ω lower than 15%. The results showed that gasification can be an attractive option for the disposal and use of a renewable waste resource, such as ETA sludge, in an environmentally safe way, and it is allowed by local legislation.  相似文献   

18.
The need to remove hydrocarbons from water supply sources raises questions on the efficiency of the present water treatment processes in removing hydrocarbons. Therefore, the effectiveness of physicochemical processes involving chlorination, chemical coagulation and sand filtration were investigated. The effect of variable filtration media was also examined. In addition, the use of an activated carbon column was considered, and the effect of different retention times was evaluated. Results of this study showed that chemical coagulation using alum and Nalco removed only 32% of the total hydrocarbons and 80% of turbidity. Use of sand and a mixture of anthracite and sand filters showed additional removal of hydrocarbons and turbidity during the continuous filtration process. Increasing the anthracite depth relative to the total effective filtration depth increases the efficiency of the filter. Adsorption on granular activated carbon was shown to be an effective means for the removal of hydrocarbons. Results obtained indicated that the carbon adsorption capacity increases linearly as the retention time increases.  相似文献   

19.
This review provides an innovative approach of treating palm oil mill effluent (POME) from open pond and closed anaerobic sludge reactor for generation of green energy in the form of biogas containing methane. Improper techniques for the treatment and management of POME produce hazards to people and contribute to global warming. In all over the world, the total crude oil palm production in the countries like Malaysia, Indonesia, Africa, Latin America, Asian countries, Solomons and other were around 51, 31, 7, 6, 3, 2 and 1% compared with soya 41.8% and coconut 3.48%, respectively. In the year 2014–15, Malaysia generated at least 87.8 million tonnes of palm effluent per year. Various studies reveal that about 80% of palm effluent is disposed off partially treated in open dumps. The generated certified emission reductions (CERs) estimated and favoured the treatment of POME in anaerobic reactor by replacing open lagoon of aerobic system for cleaner production. The clean development mechanism (CDM) encourages the utilisation of upflow anaerobic sludge blanket reactors for POME treatment and methane capture to earn CER credits as a source of revenue.  相似文献   

20.
分析了徒骇河、德惠新河与马颊河2003~2010年入海断面水质变化状况及入海通量的变化趋势。结果表明:徒骇河与德惠新河主要超标污染物为CODCr、CODMn、BOD5、NH3 N、石油类,主要表现为耗氧类有机污染与有机有毒类污染。马颊河主要超标污染物除CODCr、CODMn、BOD5、NH3 N、石油类外,还包括TP与VHB,以上各水质指标浓度分别超过III类水质标准的9、7、12、6、7、9、13倍,表现为耗氧类有机污染、营养盐类污染及有机有毒类污染问题。3条河流中,马颊河污染最为严重。研究期间,除德惠新河的无机无毒类与有机有毒类分类综合污染指数呈一定的上升趋势外,其它类别分类综合污染指数均呈下降趋势,表明3条河流的污染程度有所缓解。徒骇河TN、TP的入海通量总体上呈下降的趋势,其他两条河流污染物的入海通量均有所增加,至2010年,3条河流CODCr、CODMn、NH3 N、TN、TP及石油类入海通量分别为73 871、12 963、1 025、26、69、162 t,16 075、2 997、365、304、13、31 t及51 571、10 801、1 738、626、934、140 t;且3条河流主要污染物入海通量的贡献顺序为徒骇河>马颊河>德惠新河  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号