首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
One of the most attractive features of hydrogen as an energy carrier is that it can be produced from water. Hydrogen has the highest energy content per unit mass as compared to chemical fuel and can be substituted. Its burning process is non-polluting, and it can be used in the fuel cells to produce both electricity and useful heat. Photovoltaic arrays can be used in supplying the water electrolysis systems by their energy requirements. During the daylight hours, the sunlight on the photovoltaic array converts into electrical energy which can be used for electrolyzer. The hydrogen produced by the electrolyzer is compressed and stored in hydrogen vessel and provides energy for the fuel cell to meet the load when the solar energy is insufficient. This study investigates a stand-alone power system that consists of PV array as power supply and electrolyzer. They have been integrated and worked at the Taleghan renewable energies’ site in Iran. The National Renewable Energy Laboratory’s Hybrid Optimization Model for Electric Renewables simulation software has been used to carry out the optimal design and techno-economic viability of the energy system. The simulation results demonstrate that energy system is composed of 10-kW PV array, 3.5-kW electrolyzer, 0.4-kW proton exchange membrane fuel cell, 2.5-kW inverter, and 60 batteries (100 Ah and 12 V). The total initial capital cost, net present cost, and cost of electricity produced from this energy system are 193,563 US$, 237,509 US$, and 3.35 US$/kWh, respectively.  相似文献   

2.
Hybrid energy systems are renewable energy system combined in a complementary fashion to ensure dependable power supply at competitive cost. Diesel generators (DGs) are also added here as a back-up source of supply. For remote areas far from a transmission grid, these systems can provide a reliable and cost-effective supply. Addition of DG could instigate environmental pollution in such remote unpolluted areas. In the present work, optimal sizing of hybrid energy system has been attempted for a remote village cluster of Uttarakhand (India) to make available desired power supply at minimum environmental effluence. Hybrid Optimization Model for Electrical Renewable (HOMER) software from National Renewable Energy Laboratory, USA has been employed to attain the objective. The software offered several feasible systems, ranked on the basis of net present cost (NPC). All such systems are further analysed for emissions they have made in the environment. Hence, the optimal system fulfilling the criteria of minimal environmental degradation with sufficiently minimum NPC has been searched for. In the present work, the most appropriate system offered on the basis of NPC is the one which has five wind turbines (10 kW each), one DG (65 kW) and 25 batteries (6 V, 6.94 kW h each). The NPC of the system is $1,252,018, whereas its initial capital cost and levelised cost of energy (COE) are $94,233 and $0.292/kW h, respectively. After further analysis of all the feasible systems on the basis of environmental effluence, the most feasible system explored is the one which has minimal emissions of various pollutants such as carbon dioxide, carbon monoxide, hydrocarbon, particulate matter, sulphur dioxide and nitrous oxide. The system has been obtained on a compromised NPC of $1,270,921 with a capital cost of $148,133 and COE of $0.296/kW h. Components of the system include five wind turbines (10 kW), a 9 kW PV panel and a 65 kW DG along with 30 batteries (6 V, 6.94 kW h each). The system so obtained would prove to be a feasible, optimally sized and sustainable power supply alternative for remote unelectrified hilly rural area.  相似文献   

3.
Today, energy occupies a pivotal position around which all socio-economic activities revolve. No energy means no life, and supply of energy in a cheap, plentiful, long-sustainable and environmentally safe form is a boon for everyone. In the light of rising cost of oil and fears of its exhaustion coupled with increased pollution, the governments worldwide are deliberating and making huge strides to promote renewable energy sources such as wind. Integration of wind machines with the diesel plants is pursued widely to reduce dependence on fossil-fuel-produced energy and to reduce the release of carbon gases that cause global climate change. The literature indicates that commercial/residential buildings in the Kingdom of Saudi Arabia (KSA) consume an estimated 10–40% of the total electric energy generated. The aim of this study is to analyse wind-speed data of Dhahran (East-Coast, KSA) to assess the economic feasibility of utilising autonomous hybrid wind–diesel power systems to meet the electrical load of 100 typical residential buildings (with annual electrical energy demand of 3512 MWh). The monthly average wind speeds range from 3.3 to 5.6 m/s. The hybrid systems simulated consist of different combinations of 600 kW commercial wind machines supplemented with diesel generators. The National Renewable Energy Laboratory's hybrid optimisation model for electric renewables software was employed to perform the techno-economic analysis.

The simulation results indicate that for a hybrid system comprising 600 kW wind capacity together with a 1.0 MW diesel system (two 500 kW units), the wind penetration (at 50 m hub-height, with 0% annual capacity shortage) is 26%. The cost of generating energy (COE, $/kWh) from this hybrid wind–diesel system was found to be 0.070 $/kWh (assuming diesel fuel price of 0.1 $/l). The study exhibits that for a given hybrid configuration, the number of operational hours of diesel generator sets (gensets) decreases with an increase in the wind-farm capacity. Concurrently, emphasis has also been placed on wind penetration, un-met load, effect of hub-height on energy production and COE, excess electricity generation, percentage fuel savings and reduction in carbon emissions (relative to diesel-only situation) of different hybrid systems, cost breakdown of wind–diesel systems, COE of different hybrid systems, etc.  相似文献   

4.
Renewable energy system such as solar, wind, small hydro and biogas generators can be used successfully in rural off-grid locations where grid connection is not possible. The main objectives of this study are to examine which configuration is the most cost-effective for the village. One renewable energy model has been developed for supplying electric power for 124 rural households of an off-grid rural village in eastern India. The load demand of the village was determined by the survey work, and the loads were divided into three sub-heads such as primary load I, primary load II and deferred load. Locally available energy sources such as solar radiation and biogas derived from cow dung and kitchen wastes were used as sensitivity variables. This study is unique as it has not considered any diesel generator for supplying unmet electricity to the households; rather it completely depends on locally available renewable resources. Here in this paper, two different models were taken and their cost and environmental benefit were discussed and compared. The net present cost, levelised cost of energy and operating cost for various configurations of models were determined. The minimum cost of energy of $0.476/kWh with lowest net present cost of $386,971 and lowest operating cost ($21,025/year) was found with stand-alone solar–biogas hybrid system.  相似文献   

5.
This paper addresses the requirements of electrical energy for an isolated island of Masirah in Oman. The paper studied the possibility of using sources of renewable energy in combination with current diesel power plant on the island to meet the electrical load demand. There are two renewable energy sources used in this study, solar and wind energy. This study aimed to design and evaluate hybrid solar/wind/diesel/battery system in terms of cost and pollution. By using HOMER software, many simulation analyses have been proposed to find and optimize different technologies that contain wind turbine, solar photovoltaic, and diesel in combination with storage batteries for electrical generation. Four different hybrid power systems were proposed, diesel generators only, wind/diesel/battery, PV/diesel/battery, and PV/wind/diesel/battery. The analysis of the results shows that around 75 % could reduce the cost of energy by using PV/wind/diesel hybrid power system. Also, the greenhouse emission could be reduced by around 25 % compared with these by using diesel generators system that currently utilize in the Masirah Island. The solar/wind/diesel hybrid system is techno-economically viable for Masirah Island.  相似文献   

6.
The design of a new power management tool able to manage the power flow from different renewable energy sources is proposed in this paper. PV and wind are the primary power sources for the system, and a fuel cell with electrolyser and batteries are used as reserve. The designed controller purpose is to manage power flows among the different energy systems and to assure a continuous supply of load. Modelling and simulation of the various energy sources of distributed generation (DG) systems including wind turbine (WT), fuel cell-electrolyser (FC), photovoltaic (PV) and battery are developed. The coordination controller is designed based on the criteria of providing the load demand and the excess power is used either to produce hydrogen through electrolyser for the FC or to store it in battery. Simulation is carried out in MATLAB/Simulink environment and the results show satisfactory performance of the coordination scheme to satisfy the load requirements.  相似文献   

7.
This paper compares an existing unreliable grid supply with a proposed PV–biodiesel hybrid energy system in order to find the feasibility of the latter for improvement in reliability of power supply, lower pollutant emissions and saving of coal reserves. In the present study, the electrical load of a cement technology institute located in Bhilai, India, has been selected for the purpose of analysis. The results show that hybrid PV–biodiesel system comprising 25 kW PV array, 8 kW biodiesel generator-1, 20 kW biodiesel generator-2, 10 kW inverter and 10 kW rectifier will supply power to the institute avoiding addition of 27.744 tons of CO2 in atmosphere and save 55,080 kg of coal per year with improvement in reliability from 93.15 to 100%.  相似文献   

8.
ABSTRACT

Demand of electrical energy is exponentially increasing causing environmental problems due to extensive use of fossil fuels. Hence, research has been promoted in renewable energy technologies to mitigate environmental pollution. Indian subcontinent is rich in renewable energy sources (RES). This paper describes potential of RES and region-wise installed capacity in India. Estimated potential of RES is 57 GW which is targeted to be 175 GW by 2022. A logical framework for our future research work has been presented. This includes performance optimisation of solar pumping system and reliability assessments of the designed system using reliability indices.

Abbreviation: RES: Renewable energy resources; SHP: small hydro plants; GOI: Government of India; MNRE: Ministry of New and Renewable Energy; LHP: large hydropower; BCM: billion cubic metres; PEC: per-capita energy consumption; JNNSM: Jawaharlal Nehru National Solar Mission; DNI: direct normal irradiance; SPV: solar photovoltaic; UMPP: ultra mega green solar power project; GIS: geographic information systems; WMS: wind monitoring stations; MPWL: Madhya Pradesh windfarms Ltd.; MIB: mat river basin; SWAT: Soil and Water Assessment Tool; ROR: run of river; SMS: short message service; CDM: clean development mechanism; NIOT: national institute of ocean technology; LOLP: loss of load probability; CSO: Central Statistics Office; CEA: Central Electricity Authority; TERI: The Energy and Resources Institute; WPI: Wind Power India; IEA: International Energy Agency; EAI: Energy Alternatives India; BKP: Biomass Knowledge Portal; IRENA: International Renewable Energy Agency; GAIN: Global Agricultural Information Network; NITI: National Institution for Transforming India; NIWE: National Institute of Wind Energy; UP: Uttar Pradesh; J&K: Jammu and Kashmir; HP: Himachal Pradesh; NR: northern region; MP: Madhya Pradesh; WR: western region; TN: Tamil Nadu; AP: Andhra Pradesh; SR: southern region; ER: eastern region; NER: north eastern region; A&N: Andaman & Nicobar  相似文献   

9.
ABSTRACT

Renewable and sustainable fuels for diesel engine applications provide energy protection, overseas exchange saving and address atmospheric and socio-economic concerns. This study presents the investigational work carried out on a single cylinder, four-stroke, direct injection diesel engine operated in dual fuel (DF) mode using renewable and sustainable fuels. In the first phase, a Y-shaped mixing chamber or venture was developed with varied angle facility for gas entry at 30°, 45° and 60°, respectively, to enable homogeneous air and gas mixing. Further effect of different gas and air mixture entry on the DF engine performance was studied. In the next phase of the work, hydrogen flow rate influence on the combustion and emission characteristics of a compression ignition (CI) engine operated in DF mode using diesel, neem oil methyl ester (NeOME) and producer gas has been investigated. During experimentation, hydrogen was mixed in different proportions varied from 3 to 12 l/min (lpm) in step of 3 lpm along with air-producer gas and the mixtures were directly inducted into engine cylinder during suction stroke. Experimental investigation showed that 45° Y-shaped mixing chamber resulted in improved performance with acceptable emission levels. Further, it is observed that investigation showed that at maximum operating conditions and hydrogen flow rate of 9 lpm, Diesel–producer gas and NeOME–producer gas combination showed increased thermal efficiency by 13.2% and 3.8%, respectively, compared to the DF operation without hydrogen addition. Further, it is noticed that hydrogen-enriched producer gas lowers the power derating by 5–10% and increases nitric oxide (NOx) emissions. However, increased hydrogen addition beyond the 12 lpm leads to sever knocking.

Abbreviations: NeOME: Neem oil methyl ester; BTE: brake thermal efficiency; CI: compression ignition; ITE: indicated thermal efficiency; PG: producer gas; CA: crank angle; K: Kelvin; BP: brake power; IP: indicated power; H2: hydrogen; HC: unburnt hydrocarbon; CO: carbon dioxide; CO2: carbon dioxide; NOx: nitric oxide; HRR: heat release rate; %: percentage; PPM: parts per million; CMFIS: conventional mechanical fuel injection system.  相似文献   

10.
The capacity of a concentrating solar thermal power (CSP) plant can be considered flexible and firm, just like that of a conventional steam cycle power station. Periods without sunshine can be bridged by thermal energy storage or fuel, enabling a CSP plant to deliver power on demand at any time. To this technical quality is added the economic quality of electricity costs that will be stable for a lifetime because they are mainly composed of capital costs, spare parts and personnel. CSP is competitive with power from fuel oil and moving to break even in costs with natural gas by around 2020 and steam coal by around 2025. Carbon dioxide emissions of 10–40 tons/GWh, land use of 250–550 m²/GWh and water consumption of 250 m³/GWh (using dry cooling) compare favorably with other energy sources. Environmental benefits, the technical imperative of firm and at the same time flexible power supply, and the economic targets of affordability and cost stability are the main reasons for a significant role for CSP in a sustainable future electricity mix. Two case studies show the different roles CSP can play north and south of the Mediterranean Sea, in one case importing CSP to Germany for flexible power and in the second case using CSP in Jordan to provide firm and at the same time renewable power capacity for the quickly growing electricity demand.  相似文献   

11.
Due to energy crisis and shortage of fossil fuel, there is a growing interest in alternative fuel for internal combustion engine. Producer gas presents a very promising alternative fuel to diesel since it is a renewable and clean burning fuel having properties similar to that of diesel. In this study, a twin cylinder dual fuel diesel engine is experimentally optimized for maximum diesel saving and lower emissions, without any undue vibration of engine using woody biomass producer gas. The test is carried out to study the performance and emission parameters of the engine in diesel mode and dual fuel mode at different gas flow rates under different load conditions. The study reveals that maximum diesel savings is found to be 83% at optimum gas flow rate and 8 kW load. Carbon monoxide, hydrocarbon and carbon dioxide emissions in dual fuel mode were higher compared with diesel mode at all test ranges. However, the main pollutants, such as nitrogen oxide and smoke, decrease substantially in the dual fuel mode compared with the diesel mode. Lower brake thermal efficiency and higher brake-specific energy consumption as well as exhaust gas temperature are observed in dual fuel mode compared with diesel mode.  相似文献   

12.
This paper addressed the performance of single flash combined with a binary system that was proposed in the Dieng geothermal power plant by applying thermodynamic assessment methods. A set of mathematical equations from the plant was developed and solved iteratively using engineering equation solver. The results showed that the available exergy of the produced fluid from production wells is 66,204 kW. The performance of an existing single-flash power plant indicated 24,300 kW of net power output. The proposed design of single flash combined with a binary system improves the power output by 17.16% to 27,786 kW. The second law efficiency increases from 36.7% to 41.97% while the first law efficiency increases from 11.62% to 13.61%.  相似文献   

13.
Solar and wind energy data available for Oman indicate that these two resources are likely to play an important role in the future energy generation in this country. In this paper, a model is designed to assess wind and solar power cost per kWh of energy produced using different sizes of wind machines and photovoltaic (PV) panels at two sites in Oman, which then can be generalised for other locations in Oman. Hourly values of wind speed and solar radiation recorded for several years are used for these locations. The wind profiles from Thumrait and Masirah island are modelled using the Weibull distribution. The cost of wind-based energy is calculated for both locations using different sizes of turbines. Furthermore, this paper presents a study carried out to investigate the economics of using PV only and PV with battery as an energy fuel saver in two villages. The results show that the PV energy utilisation is an attractive option with an energy cost of the selected PV ranges between 0.128 and 0.144 $/kWh at 7.55% discount rate compared to an operating cost of 0.128–0.558 $\kWh for diesel generation, considering the capital cost of diesel units as sunk.  相似文献   

14.
This paper presents a stand-alone wind power system with battery/supercapacitor hybrid energy storage. A stand-alone wind power system mainly consists of a wind turbine, a permanent magnet synchronous generator, hybrid energy storage devices based on a vanadium redox flow battery and a supercapacitor, an AC/DC converter, two bidirectional DC/DC converters, a DC/AC converter and a variable load. Several control strategies for the stand-alone wind power system are involved such as a maximum power point tracking (MPPT) control, a vanadium redox flow battery charge/discharge control and a supercapacitor charge/discharge control. The proposed MPPT control combines a sliding mode control with an extreme search control to capture maximum wind energy. This strategy avoids the necessity of measuring wind velocity, obtaining models or parameters of the wind turbine and calculating the differentials of the power generated from the wind power system and from the speed of the generator. The battery charge/discharge control maintains a constant DC bus voltage. When the battery charging/discharging current reaches the setting threshold, the charge/discharge control of the supercapacitor is triggered to limit the charging/discharging current of the battery. The simulation results show that the proposed method can rapidly respond to variations in wind velocity and load power.  相似文献   

15.
The recent increase in energy costs, driven by a surge in oil prices, has increased world‐wide efforts on the exploitation of renewable/wind energy resources for environment‐friendly sustainable development and to mitigate future energy challenges. Moreover, experience in the wind energy industry has reached high levels in the field of manufacturing and application. This inevitably increases the merits of wind energy exploitation. In order to exploit wind resources, through the establishment of wind power plants, specific attention must be focused on the characteristics of wind and wind machines. The literature indicates that wind‐energy resources are relatively better along coastlines. In the present study, long‐term hourly mean wind speed data for the period 1986–2003, recorded at Dhahran (Eastern Coastal region, Saudi Arabia), has been analysed to examine the wind characteristics including (but not limited to): yearly/monthly/diurnal variations of wind speed, frequency distribution of wind speed, impact of hub‐height/machine‐size on energy production, etc. Data have been checked/validated for completeness. Data analysis indicated that long‐term monthly average wind speeds ranged from 3.8 to 5.8 m/s.

Concurrently, the study determined monthly average daily energy generation from different sizes of commercial wind machines (150, 250, 600 kW, etc.) to assess the impact of wind machine size on energy yield. The study also estimated annual energy production (MWh/year) from wind farms of different capacities (3, 6, 12, 24 MW, etc.) by utilising different commercial wind energy conversion systems (WECS). It was observed that, for a given 6 MW wind farm size, a cluster of 150 kW wind machines (at 50 m hub‐height) yielded about 32% more energy when compared to a cluster of 600 kW wind machines. The study also estimated the cost of wind‐based electricity (COE, US$/kWh) by using different capacities of commercial WECS. It was found that the COE per kWh is 0.045 US$/kWh for 150 kW wind machine (at 50 m hub‐height) whereas COE was 0.039 US$/kWh for 600 kW wind machine (at 50 m hub‐height). The study also dealt with wind turbine characteristics (such as capacity factor and availability factor). These characteristics are important indicators of wind turbine performance evaluation.  相似文献   

16.
A chemical pathway combining reverse water gas shift, Fischer‐Tropsch synthesis and hydro‐cracking was considered to re‐synthesise jet fuel from CO2 captured at high purity by oxy‐fuelling of a typical coal‐fired power station (Drax, UK). The oxygen for oxy‐fuelling and hydrogen for the fuel re‐synthesis process are sourced by electrolysis of water. According to material and energy balances , 3.1 MT/year of jet fuel and 1.6 MT/year each of gas oil and naphtha can be produced from the Drax annual emissions of 20 MT of CO2, sufficient to supply 23% of the UK jet fuel requirements. The overall re‐synthesis requires 16.9 GW, to be sourced renewably from (offshore) wind power, and releases 4.4 GW of exothermic energy giving scope for improvements via process integration. The energy re‐synthesis penalty was 82% ideally and 95% on a practical basis. With the cost of offshore wind power predicted to reduce to 2.0 p/kWh by 2020, this ‘re‐syn’ jet fuel would be competitive with conventional jet fuel, especially if carbon taxes apply. The re‐use of CO2 sequestrated from coal power stations to form jet‐fuel would halve the combined CO2 emissions from the coal power and aviation sectors.  相似文献   

17.
Renewable energy is often associated with the production of clean electricity and free of significant adverse impacts. However, several studies have been highlighting the importance of the assessment of social impacts of these technologies, including not only the benefits but also the potential negative aspects most frequently affecting local population. The energy matrix in Brazil is already built up on a renewable system largely supported on hydropower but other technologies with special emphasis on wind power start to have a major role, with a strong growth forecasted for this sector in the coming years. This article discusses the integration of solar and wind power in the Brazilian electricity system focusing on the social awareness and acceptance for the population living in high potential regions. For this, a questionnaire was proposed with the aim of evaluating the level of knowledge of wind and solar power, their social acceptance and perceptions towards cost, local development and environmental impacts. The questionnaire was implemented in an academic institution in the State of Rio Grande do Norte (RN) including students and professors as key actors for the present and future energy policy decision making. The implementation process and the obtained results are described allowing to conclude on the high level of acceptance of solar and wind power in the country and the region, with low evidence of not in my backyard syndrome.  相似文献   

18.
The availability of sustainable and reasonably priced sources of energy for lighting is a prerequisite for the development of rural India. This study attempts to take a close look at the micro-level energy scene and its various options for domestic lighting, considering socio-economic condition of the poor people in rural areas. The concept of calculating levelized cost as cost per 300 lumen-hour is applied on source–device combinations of lighting and validated in Bargaon Community Development Block of Sundergarh District in Odisha, India, for finding out the low-priced energy sources for sufficient lighting. It is revealed that LED and CFL through solar photovoltaic and electricity should be the best choice of domestic lighting. Most of the households (97 %), even electrified, use kerosene regularly. There is a huge potential of biogas and solar photovoltaic which can overcome the problem of power cut, indoor pollution, carbon emission, etc. Supporting electrification to all households, this study is also justifying about efficient devices and off-grid power generation through SPV for all households and biogas for possible 2300 households. Government should immediately intervene, providing capital subsidy, micro-finance schemes, other credit mechanisms, training to local youths, etc. with adequate infrastructure and organizational development to make the clean energy such as solar home lighting system and biogas plant affordable and accessible by the poor villagers.  相似文献   

19.
ABSTRACT

The aim of this article is to analyse the performance of the Photovoltaic (PV) and to study the effect of soiling on the energy generation under Muscat environmental conditions. The generated energy is consumed in the eco-house, and the access energy is fed back to the electric grid. Two-ways metre was used to record the energy taken from the grid or fed back to the grid. The system was monitored from December 2014 until today. Various performance parameters of the plant were evaluated which include system efficiency, performance ratio (PR), capacity factor (CF) and different types of PV system losses and yields. The annual average values of recorded ambient temperature and solar radiation were 32°C and 482 W/m2, respectively.

The total annual energy produced was 23,595 kWh, whereas the annual average daily reference yield, array yield and final yield were 5.59, 3.78 and 3.64 kWh/kWP/day, respectively. The annual average daily PR and CF were 0.67 and 0.15, respectively, while the annual average system efficiency was 10.3%. Furthermore, the annual average daily capture, system and cell temperature losses were 1.82, 0.14 and 2.95 h/day,respectively, with a small reduction in energy production when modules left uncleaned.  相似文献   

20.
A majority of small-scale renewable energy sources including the solar PV modules, fuel cells gives out output voltage in the range of around 15–40 V DC. This needs to be stepped up to suit load requirements using a high voltage gain converter. Since renewable sources inherently generate sudden variations in input voltage, a good output voltage profile even during such random variations in input conditions is essential. This paper presents modeling of a high step-up converter configuration with closed loop control. The converter topology is designed to operate with moderate duty ratios and the simple coupled inductor. The converter is capable of high step-up and can find application in solar PV systems. The controller response is good with low steady state error and required dynamics. The modeling and simulation is carried out using MATLAB/Simulink software package.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号