首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 342 毫秒
1.
砷在化合物中的氧化态主要有-Ⅲ(胂)、+Ⅲ和+Ⅴ.尽管元素砷的毒性较小,但砷的化合物毒性却很大,三价砷比五价砷毒性更大,天然水流经矿时可能会含微量的砷,但砷主要存在于冶炼、农药、制革、染色等多种工业废水中,其存在形式主要是砷的各种化合物及离子,它们不仅有剧  相似文献   

2.
为解决石膏中砷的污染问题,通过烘干、水洗对石膏进行除砷研究,分析石膏中砷的存在形态和砷的浸出规律。结果表明,毒性浸出法能够浸出石膏中大部分可交换态砷、部分结合态和残渣态砷。烘干能使石膏中结合态和残渣态砷转化为可交换态砷,导致其砷洗出总量增加。同时水洗液pH值越低,洗出砷的总量就越大,水洗后石膏砷的浸出浓度越低。用pH=3.0的水洗液水洗石膏,水洗后石膏砷的浸出浓度低于5.0 mg·L~(-1),为一般固体废物。通过XPS、SEM分析可知,烘干、酸洗能使部分三价砷氧化成五价砷,并使石膏晶体粒径变得更小,这是砷洗出总量增加的主要原因。  相似文献   

3.
饮用水除砷材料吸附特性及影响因素分析   总被引:2,自引:2,他引:0  
采用活性氧化铝、零价铁粉和载铁沸石作为吸附剂,通过静态吸附实验,研究3种饮用水除砷材料的吸附特性及影响因素。结果表明,在pH值为6.5,砷浓度为1 mg/L,投加量为2 g/L,25℃恒温的条件下,活性氧化铝、零价铁粉和载铁沸石分别在90 min、150 min和90 min达到吸附平衡状态,均较好符合langmuir等温吸附模型,对砷的最大吸附容量依次为7.3、3.3和3.9 mg/g。pH值和竞争性阴离子对砷的去除均有显著影响。降低溶液pH值能明显提高3种材料的除砷效率;水中磷酸根离子的存在,能够明显降低活性氧化铝和零价铁粉的除砷效率;水中硅酸根离子的存在,能够明显降低零价铁粉和载铁沸石的除砷效率。  相似文献   

4.
利用静态和动态土柱实验初步研究了好氧砷还原菌Bacillus sp.SXB在砷迁移转化过程中的作用。结果表明,在静态实验中,菌株SXB可以有效还原吸附在针铁矿上的五价砷;在动态土柱实验中,由于原土中砷是以三价砷形式存在,因此,不论是空白对照还是菌株SXB加入处理,出水中砷均为三价砷;当孔隙体积大于100时,铁的溶出开始增加。菌株SXB的加入,轻微地促进了土壤中砷的释放,而对铁的释放并没有明显影响。  相似文献   

5.
饮用水除砷技术研究进展   总被引:7,自引:5,他引:2  
饮用水中的砷对人体健康危害很大。介绍了从饮用水中去除砷的各种方法,总结了目前除砷技术存在的不足,指出混凝微滤工艺具有除砷效率高、能耗低、操作简单等优点,应成为今后饮用水除砷技术的发展方向。  相似文献   

6.
目前,国内主要以化学沉淀法处理含砷酸性污水。其中又以氧化钙为沉淀剂的中和法,其环境效益稻经济效益均较好,值得推广。一、氧化钙对砷的沉淀机理1.氧化钙及砷在水中的特性:氧化钙在水中只可能以氢氧化钙的形态存在。其溶度积为3.1×10~(-5)。而砷在液体中主要的形态是亚砷离子(AsOi_2~(-2))和砷酸的离子(AsO_4~(-3)),当水中有  相似文献   

7.
由于铁盐稳定化修复砷污染土通常不考虑砷价态对毒性和迁移性的影响,导致了修复效果欠佳。针对三价砷污染土提出了预氧化-稳定化协同修复方法,先使用芬顿将三价砷氧化为低迁移性的五价砷,再利用氯化铁将其稳定化。通过合成沉降淋滤试验、生物可利用性、pH测试、连续萃取试验和光谱分析研究了协同修复的稳定化效果和机理。结果表明,与未经处理的污染土相比,1%用量的芬顿和1倍铁砷比的氯化铁进行协同修复的稳定化处理可使浸出浓度降低99.6%,生物可利用性砷的质量分数降低99.4%,修复效率得到提高;芬顿氧化和氯化铁稳定化都使土壤pH降低,但1倍铁砷比下协同修复后的pH为5.82,高于6倍铁砷比下只用氯化铁修复的pH (3.78),由此可一定程度上避免过量使用铁盐造成的土壤酸化;连续萃取试验表明协同修复后更多不稳定态的砷转变为稳定形态;光谱分析发现协同修复可以将土壤中三价砷全部氧化为五价,并通过铁氧化物/氢氧化物吸附和砷酸铁沉淀的形式固定砷。本研究结果可为三价砷污染土修复提供理论和技术支持。  相似文献   

8.
天然有机物对零价铁去除水体中砷的影响研究   总被引:3,自引:0,他引:3  
在研究零价铁对水体中砷去除动力学的基础上,着重探讨了天然有机物腐殖酸对零价铁除砷的影响.并对零价铁的腐蚀产物进行了分析.结果表明,水体中的砷可以通过在零价铁腐蚀产物上的吸附得到快速去除.腐殖酸显著降低了砷的去除率,这归因于腐殖酸与零价铁腐蚀产生的铁离子形成络合物,阻止了Fe(OH)3(或Fe(OH)2)沉淀的产生.腐殖酸浓度越高.砷的去除率越低.1.00 mg腐殖酸最多可以络合约0.75 mg铁离子.当铁离子与腐殖酸的络合达到饱和后,零价铁进一步腐蚀产生的铁离子可形成Fe(OH)3(或Fe(OH)2)沉淀,这些沉淀物可吸附水体中的腐殖酸和砷,从而加速砷的去除.冷冻干燥后的零价铁腐蚀产物的结构以无定型为主,含有少量的结晶化合物,包括γ-Fe2O3、γ-FeO(OH)和Fe3O4等.腐殖酸的存在可进一步增加腐蚀产物中的无定型成分.光电能谱(XPS)分析结果显示,吸附在腐蚀产物上的砷为5价,没有发现5价砷被还原成3价砷.在应用零价铁修复砷污染水体时,应考虑腐殖酸的影响.  相似文献   

9.
生态修复是重金属污染河流治理的重要手段之一,以云南省文山州内跨境河流小白河生态修复区为研究对象,探析了不同形态砷在小白河生态修复区沉积物表层(0~10cm)、中层(10~20cm)和底层(20~30cm)的空间分布规律。结果表明:(1)表、中、底层中主要以残余态砷存在;残余态砷随沉积物深度的增加占比逐渐增大。表层中可氧化态砷弱酸可提取态砷可还原态砷;中层中可氧化态砷弱酸可提取态砷可还原态砷;底层中可氧化态砷可还原态砷弱酸可提取态砷。(2)小白河表层沉积物中砷全量总体呈B断面D断面C断面。(3)有机质与可还原态、可氧化态砷的结合趋势较大。(4)随着采样深度的增加,可提取态砷明显减少。故在利用该生态修复区进行环境治理时,应该重点针对表层沉积物进行定期清淤,减少该层沉积物的环境风险。  相似文献   

10.
纳滤膜技术在地下水除砷应用中的研究进展   总被引:3,自引:0,他引:3  
砷污染突发事件的频发严重威胁着地下水饮用水水源的水质安全,加之饮用水控制标准的提高,就对饮用水除砷技术提出了更高的要求,而纳滤(NF)膜分离技术为饮用水除砷提供了新的思路。首先概述了地下水中砷的存在形态、化学性质以及我国高砷地下水地区分布,然后分析了NF膜特点、除砷机理与性能,系统地阐述了各种因素包括膜操作因素(操作压力、膜回收率、膜排布方式等)和原水水质因素(pH、水温、共存离子、共存有机物及砷浓度与砷价态等),对NF膜除砷性能的影响。此外,对NF除砷的关键问题,如原水预处理、膜浓水处理、膜污染及其清洗等,也作了探讨。最后,总结了目前NF除砷应用中所面临的问题,探索性提出了NF膜技术在除砷应用中的研究方向。  相似文献   

11.
环境中砷的存在往往对人类健康产生不利影响,从而一直受到人们的广泛关注。在厌氧条件下硫酸盐还原菌(SRB)利用有机物还原硫酸根生成硫化物,进一步通过硫化物与溶液中砷反应产生沉淀从而实现砷的最终去除。为了探讨不同因素对SRB除砷的影响,该实验研究了在不同初始pH值、碳源和初始砷浓度条件下的SRB活性及其对砷的去除效果。提取在UASB反应器中长期驯化的富含SRB的厌氧污泥进行批次实验。研究表明,在选取乳酸、乙酸、葡萄糖作为不同外加碳源的对比实验中,微生物利用乳酸作为基质反应相对缓慢(COD分解速率低),SRB具有较高的反应活性(对硫酸根去除率最高),同时保持较好的砷去除率(大约60%);SRB利用不同有机物反应过程中产生碱度导致系统内pH逐渐升高,其中以乳酸作为碳源时系统内pH升高到8.5左右;随着初始pH的升高,砷的去除效果降低,硫化砷沉淀在弱酸性条件下更易稳定存在;随着初始砷浓度的增加,SRB的活性受到抑制,当初始砷浓度达到40 mg·L~(-1)时,SRB基本失去反应活性;利用驯化污泥除砷过程中,部分砷价态发生了变化。  相似文献   

12.
以锰渣为材料,用聚环氧琥珀酸(PESA)作为萃取剂,研究PESA在不同pH、萃取剂浓度、土液比下对砷(As)的萃取效果。实验结果表明,与丙烯酸/马来酸酐共聚物(MA/AA)相比较,PESA对锰渣中As有优良的萃取效果。在萃取体系条件为pH=1、萃取剂浓度50 mg/mL、土液比1∶200、搅拌60 min并浸泡过夜时,PESA对砷的萃取率可达78.3%。实验还发现,PESA对三价砷和五价砷均有螯合萃取作用,对砷的萃取无价态的选择性。  相似文献   

13.
采用新型膜蒸馏技术对水中As(III)与As(Ⅴ)的去除展开了研究。实验结果表明,膜蒸馏对水中As (III)及As (Ⅴ)具有较高的去除能力:当产水中砷含量超过10 μg/L时,原水中As (III)与As (Ⅴ)的浓度可分别高达40 mg/L和2 000 mg/L。局部润湿现象的存在导致As (III)及As (Ⅴ)跨膜至产水侧,PVDF微孔膜在溶液中的负电性以及As (III)与 As (Ⅴ)在溶液中存在形式的不同导致膜蒸馏对两者去除能力的差异。360 h连续运行过程中产水通量及电导率稳定,且整个过程中As (III)均低于检测限,说明PVDF微孔膜具有良好的疏水性和稳定的除砷性能。  相似文献   

14.
根据AFS-230双道原子荧光光度计测定原理和方法,同时用以测定饮用水中的砷和硒,结果表明:方法线性关系良好,砷、硒均为0-10μg/L,检出限:砷为0.08μg/L,硒为0.07μg/L。相对标准偏差:砷为1.41%,硒为1.06%。平均加标回收率:砷为96.2%,硒为94.3%。方法操作简便、灵敏度高、快捷、便于推广,适用于水中砷和硒的测定。  相似文献   

15.
天然水或略受污染的天然水中砷的含量往往都很低,一般在零点几ppb至几ppb,直接取50毫升水样,用二乙基二硫代氨基甲酸银比色法测定,灵敏度达不到,需要预富集.预富集最常采用的是共沉淀方法.其原理如下,水样中的砷一般呈三价和五价状态,在碱性条件下,加入三价铁盐后,As(Ⅲ)和As(V)形成铁盐沉淀被氢氧化铁  相似文献   

16.
本文用巯基棉分离、二乙基二硫代氨基甲酸银(简称Ag-DDC法)光度法测定了用1MHCl提取的土壤提取液中三价、五价砷的含量。结果表明:在1MHCl的土壤提取液中的三价砷在巯基棉上的吸附率平均为95.7%,标准差S=±4.58%,变异系数C.V.=4.79%;五价砷的回收率平均为100.4%,S=±3.55%,C.V.=3.54%。土壤中能被1MHCl提取出来的共存离子不影响三价砷的吸附率和五价砷的回收率,分离测定取得了令人满意的结果。  相似文献   

17.
强酸性高浓度含砷废水处理方法与经济性评价   总被引:1,自引:0,他引:1  
研究了硫化物沉淀和中和沉淀工艺对强酸性体系下As(Ⅲ)和As(Ⅴ)处理效果,考察了沉淀剂种类与投量、酸度(或平衡pH)等因素对除砷效果的影响,结合共沉淀产物的元素组成与价态分析探讨了2种工艺的除砷机理。研究表明,硫化物沉淀对As(Ⅲ)去除效果优于As(Ⅴ),且As(Ⅴ)去除过程中存在As(Ⅴ)转化为As(Ⅲ)的还原过程;中和沉淀对As(Ⅲ)和As(Ⅴ)去除率均可达到98%以上,但不存在砷形态转化过程。进一步以云南某硫精制酸化工厂实际含砷废水为对象,研究了硫化物沉淀(以Na2S为硫源)、中和共沉淀(Fe(Ⅲ)-Ca(OH)2,Fe(Ⅲ)-NaOH,单独Ca(OH)2和Ca(OH)2-Fe(Ⅱ)等)除砷效果和处理成本,发现上述几种工艺砷去除率均可达到99.0%左右;Na2S共沉淀法处理成本最高,单独Ca(OH)2成本最低但废渣产生量大;Ca(OH)2-Fe(Ⅱ)可在不大幅提高成本的基础上确保处理效果并降低废渣产生量。在工程中应综合原水水质特点、处理水质目标、可接受的处理成本以及含砷废渣处置要求等,确定最佳的处理技术方案。  相似文献   

18.
主要探讨应用AFS-2202型双道原子荧光光度计测定水中的痕量砷.用5%的盐酸和1%硫脲与1%抗坏血酸混合试剂处理,并以1.5%硼氢化钠作为还原剂,在5%的盐酸介质中测定砷,从而建立一种测定痕量砷的新方法,用于地表水痕量砷的测定,结果满足需要.  相似文献   

19.
金矿开采后的尾矿中含有大量的砷,纳米零价铁可以有效稳定尾矿中的砷,但是在尾矿的后期复垦过程中,表层植被分泌的小分子有机酸,会使土壤中稳定的砷重新释放,造成二次污染。以植物根系分泌的常见小分子有机酸中的乙酸作为研究对象,在纳米零价铁(NZVI)去除砷的动力学基础上,利用批实验方法研究乙酸对稳定砷的影响过程。结果表明,纳米铁可以在几分钟内去除尾矿浸出液中的砷,反应符合准二级动力学模型,铁砷质量比约500∶1时,砷去除率可以达到94%以上。NZVI快速去除As(Ⅴ)主要是在NZVI表面的氧化铁上发生吸附、共沉淀作用。有氧条件下的NZVI对As(Ⅴ)去除效果优于无氧条件下的效果,长期有氧腐蚀NZVI对浮选尾矿和生物氧化尾矿的砷去除率比未腐蚀的分别增加了18.03%和15.21%。乙酸盐对长期有氧腐蚀NZVI稳定的浮选尾矿和生物氧化尾矿砷的解吸率比未腐蚀的分别减少了7.56%和20.01%。当乙酸(以三水合乙酸钠计)与纳米铁的质量比达到2.72∶1时,由于乙酸的羧基与砷酸根有相似的电荷类型,可以与砷竞争吸附铁氧化物表面的吸附位点,又可以与三价铁离子形成稳定的配合物,会使稳定的砷重新释放。但当铁砷质量比逐渐增大(大于5 000∶1),较多的吸附位点会有效抑制乙酸盐对砷的释放。  相似文献   

20.
探索高浓度含砷废水中砷的深度脱除方法及脱除机理。采用预氧化-二段铁盐沉淀的方法脱除炼铅烟尘浸出液中的砷,研究影响砷脱除效率的控制条件和因素,砷脱除机理。结果表明,用双氧水氧化原料液中的低价铁和砷,加Fe Cl3调节铁砷比=1,在p H=4~5、T=60~70℃反应60 min,砷的脱除率达到99.95%,XRD分析结果表明,沉淀物为非晶态砷酸铁形态;在二段除砷中,控制铁砷比=5、p H=7~8,除砷后液中的砷含量小于0.014 mg/L,远低于允许的排放限值。采用二段铁盐脱砷工艺可以将高砷溶液中的砷深度脱除。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号