首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
Mutlu  E. 《Marine Biology》2003,142(3):517-523
Swimming trajectories of Calanus euxinus Hulsemann in the Black Sea were studied using an echosounder at 120 and 200 kHz. C. euxinus were acoustically discriminated with respect to vertical migration and swimming speed, according to dissolved oxygen (DO) concentration and the timing of migrations. Species became torpid in water with DO values <0.5 mg lу. The time spent swimming under DO conditions between 2 and 5 mg lу was insignificant, and varied greatly from the 10% to 25% of total time spent swimming under normoxic conditions (5-10 mg lу). C. euxinus formed a concentration layer in the water of 1-3 m thickness. Upward migration was completed in about 3.5 h, starting 2.5 h before and ending 1 h after sunset (average rate: 0.95 cm sу) in summer. Species ascended discretely from the suboxic to the lower boundry of the cold intermediate layer (CIL) at 0.82 cm sу, and passed up the CIL and thermocline fast (2.3 cm sу). Downward migration took less time (2 h), starting ~1 h before and ending ~1 h after sunrise. Swimming speed within the thermocline and CIL was 2.7 cm sу; copepods subsequently returned to daylight depth at a sinking speed of 0.57 cm sу. Total time for C. euxinus to settle to their nocturnal depth layer was about 5 h.  相似文献   

2.
Molecular systematic analyses of marine taxa are crucial for recording ocean biodiversity, so too are elucidation of the history of population divergence and the dynamics of speciation. In this paper we present the joined phylogeography of the calanoid copepod Calanus helgolandicus (Claus 1863) from the North East (NE) Atlantic and the Adriatic Sea and the closely related C. euxinus (Hulsemann 1991) from the Black Sea based on sequences of a mitochondrial Cytochrome Oxidase subunit I (COI) fragment. Coalescent-based Bayesian methods and minimum spanning networks are used to reconstruct the history of population divergence. Our results reveal that copepod populations from all three basins share a great number of haplotypes and demonstrate a close genetic affinity of C. euxinus with C. helgolandicus. The data do not support significant genetic structuring among samples within seas. Coalescent analyses suggest divergences between NE Atlantic, Mediterranean, and Black Sea populations dating back to the middle Pleistocene, with the NE Atlantic–Mediterranean divergence being the earliest and the Mediterranean–Black Sea divergence the most recent. These middle Pleistocene dates are much older than the estimated dates of colonisation of the Mediterranean and Black Seas based on paleoclimatic scenarios. Our results do not rule out that the assumed colonisations took place but they indicate that the populations colonising the Mediterranean and the Black Sea were already, and have since remained, diverged. The chaetognath Sagitta setosa, which has a comparable distribution pattern and feeds upon the copepods, provides a unique opportunity to compare phylogeographic patterns and distinguish among alternative hypotheses. The dates produced in this paper are in agreement with those estimated elsewhere for S. setosa. We propose that a great deal of the genetic make-up of marine planktonic populations comprises divergences that date back to long before the last glacial maximum. We consider questions on the taxonomic status of C. euxinus to remain open. However, its high genetic affinity to the C. helgolandicus calls for further investigation.  相似文献   

3.
Vertical distribution of mesoplankton in the open area of the Black Sea   总被引:2,自引:0,他引:2  
In April–May 1984 mesoplankton vertical distribution in the Black Sea was studied by sampling with a 150-l waterbottle, vertical plankton nets with mesh-sizes of 180 and 500 mkm and by direct counting of the jelly-fish Aurelia aurita, the ctenophore Pleurobrachia pileus, Calanus helgolandicus and the chaetognath Sagitta setosa from the manned submersible Argus. During daytime throughout the whole deep-water body of the sea near the lower oxycline boundary, plankton forms a layer of high concentration (from 2.5 to 38 g m-3); its thickness varies from 5 to 10–20 m and it has an unchangeable vertical structure; its upper portion is formed by the ctenophore P. pileus, its middle portion by V–VI copepodites of C. helgolandicus, and its lower portion by the population of S. setosa. The lower boundary of this layer coincides with 0.4 to 0.5 ml O2 l-1 isooxygen surface, and the depth of its location varies in different areas of the sea from 150 to 50 m, depending on the depth location of 0.5 ml O2 l-1 isooxygen surface. By night the animals, which form this layer, migrate towards the surface.  相似文献   

4.
 In the Black Sea, during summer stratification, Calanus euxinus (Hulsemann) undertakes diel vertical migrations with an amplitude of about 117 m from oxygenated, warm (18 °C) surface layers to hypoxic (∼0.8 mg O2 l−1) zones with lower temperature (7.9 °C). When such changes in temperature and oxygen concentration are reproduced in the laboratory, total metabolism, basal metabolism and scope of activity of copepods decrease 7.2, 7.8 and 6.7 times, respectively, while the frequency of locomotory acts and mechanical power decline 3.4- and 9.5-fold, respectively. These changes allowed the copepods to conserve a significant portion of food consumed near the surface for transformation to lipid reserves. Diel respiratory oxygen consumption of migrating individuals, calculated so as to include actual duration of residence in layers with different temperature and oxygen concentrations, is estimated at 17.87 μg O2 ind−1. The net energy cost of vertical migration made up only 11.6% of the total. Copepods expend 78.6% of diel energy losses during approximately 10 h in the surface layers, while about 5.4% is required during about 9 h at depth. Hypoxia is shown to have a significant metabolic advantage during diel vertical migrations of C. euxinus in the Black Sea. Received: 1 October 1999 / Accepted: 11 July 2000  相似文献   

5.
A non-thecate dinoflagellate, Gymnodinium splendens, was studied in a 12 d laboratory experiment in 2.0x0.25 m containers in which light, temperature, and nutrients could be manipulated. Under a 12 h light: 12 h dark cycle, the dinoflagellates exhibited diurnal vertical migrations, swimming downward before the dark period began and upward before the end of the dark period. This vertical migration probably involved geotaxis and a diel rhythm, as well as light-mediated behavior. The vertical distribution of nitrate affected the behavior and physiology of the dinoflagellate. When nitrate was present throughout the container, the organisms resembled those in exponential batch culture both in C:N ratios and photosynthetic capacity (Pmax); moreover, they migrated to the surface during the day. In contrast, when nitrate was depleted, C:N ratios increased, Pmax decreased, and the organisms formed a subsurface layer at a depth corresponding to the light level at which photosynthesis saturated. When nitrate was present only at the bottom of the tank, C:N ratios of the population decreased until similar to those of nutrient-saturated cells and Pmax increased; however, the dinoflagellates behaved the same as nutrient-depleted cells, forming a subsurface layer during the light period. Field measurements revealed a migratory subsurface chlorophyll maximum layer dominated by G. splendens. It was just above the nitracline during the day, and in the nitracline during the night, which concurs with our laboratory observations.  相似文献   

6.
Sagitta elegans and S. setosa are the two dominant chaetognaths in the North-East (NE) Atlantic. They are closely related and have a similar ecology and life history, but differ in distributional ranges. Sagitta setosa is a typical neritic species occurring exclusively above shelf regions, whereas S. elegans is a more oceanic species with a widespread distribution. We hypothesised that neritic species, because of smaller and more fragmented populations, would have been more vulnerable to population bottlenecks resulting from range contractions during Pleistocene glaciations than oceanic species. To test this hypothesis we compared mitochondrial Cytochrome Oxidase II DNA sequences of S. elegans and S. setosa from sampling locations across the NE Atlantic. Both species displayed very high levels of genetic diversity with unique haplotypes for every sequenced individual and an approximately three times higher level of nucleotide diversity in S. elegans (0.061) compared to S. setosa (0.021). Sagitta setosa mitochondrial DNA (mtDNA) haplotypes produced a star-like phylogeny and a uni-modal mismatch distribution indicative of a bottleneck followed by population expansion. In contrast, S. elegans had a deeper mtDNA phylogeny and a multi-modal mismatch distribution as would be expected from a more stable population. Neutrality tests indicated that assumptions of the standard neutral model were violated for both species and results from the McDonald-Kreitman test suggested that selection played a role in the evolution of their mitochondrial DNA. Congruent with these results, both species had much smaller effective population sizes estimated from genetic data when compared to census population sizes estimated from abundance data, with a factor of ~108–109 difference. Assuming that selective effects are comparable for the two species, we conclude that the difference in genetic signature can only be explained by contrasting demographic histories. Our data are consistent with the hypothesis that in the NE Atlantic, the neritic S. setosa has been more severely affected by population bottlenecks resulting from Pleistocene range shifts than the more oceanic S. elegans.  相似文献   

7.
The vertical distribution, diel gut pigment content and oxygen consumption of Calanus euxinus were studied in April and September 1995 in the Black Sea. Gut pigment content of C. euxinus females was associated with diel vertical migration of the individuals, and it varied with depth and time. Highest gut pigment content was observed during the nighttime, when females were in the chlorophyll a (chl a) rich surface waters, but significant feeding also occurred in the deep layer. Gut pigment content throughout the water column varied from 0.8 to 22.0 ng pigment female–1 in April and from 0.2 to 21 ng pigment female–1 in September 1995. From the diel vertical migration pattern, it was estimated that female C. euxinus spend 7.5 h day–1 in April and 10.5 h day–1 in September in the chl a rich surface waters. Daily consumption by female C. euxinus in chl a rich surface waters was estimated by taking into account the feeding duration and gut pigment concentrations. Daily carbon rations of female C. euxinus, derived from herbivorous feeding in the euphotic zone, ranged from 6% to 11% of their body carbon weight in April and from 15% to 35% in September. Oxygen consumption rates of female and copepodite stage V (CV) C. euxinus were measured at different temperatures and at different oxygen concentrations. Oxygen consumption rates at oxygen-saturated concentration ranged from an average of 0.67 g O2 mg–1 dry weight (DW) h–1 at 5°C to 2.1 g O2 mg–1 DW h–1 at 23°C for females, and ranged from 0.48 g O2 mg–1 DW h–1 at 5°C to 1.5 g O2 mg–1 DW h–1 at 23°C for CVs. The rate of oxygen consumption at 16°C varied from 0.62 g O2 mg–1 DW h–1 at 0.65 mg O2 l–1 to 1.57 g O2 mg–1 DW h–1 at 4.35 mg O2 l–1 for CVs, and from 0.74 g O2 mg–1 DW h–1 at 0.57 mg O2 l–1 to 2.24 g O2 mg–1 DW h–1 at 4.37 mg O2 l–1 for females. From the oxygen consumption rates, daily requirements for the routine metabolism of females were estimated, and our results indicate that the herbivorous daily ration was sufficient to meet the routine metabolic requirements of female C. euxinus in April and September in the Black Sea.Communicated by O. Kinne, Oldendorf/Luhe  相似文献   

8.
The ontogeny of behaviour relevant to dispersal was studied in situ with reared pelagic larvae of three warm temperate, marine, demersal fishes: Argyrosomus japonicus (Sciaenidae), Acanthopagrus australis and Pagrus auratus (both Sparidae). Larvae of 5–14 mm SL were released in the sea, and their swimming speed, depth and direction were observed by divers. Behaviour differed among species, and to some extent, among locations. Swimming speed increased linearly at 0.4–2.0 cm s−1 per mm size, depending on species. The sciaenid was slower than the sparids by 2–6 cm s−1 at any size, but uniquely, it swam faster in a sheltered bay than in the ocean. Mean speeds were 4–10 body lengths s−1. At settlement size, mean speed was 5–10 cm s−1, and the best performing individuals swam up to twice the mean speed. In situ swimming speed was linearly correlated (R 2=0.72) with a laboratory measure of swimming speed (critical speed): the slope of the relationship was 0.32, but due to a non-zero intercept, overall, in situ speed was 25% of critical speed. Ontogenetic vertical migrations of several metres were found in all three species: the sciaenid and one sparid descended, whereas the other sparid ascended to the surface. Overall, 74–84% of individual larvae swam in a non-random way, and the frequency of directional individuals did not change ontogenetically. Indications of ontogenetic change in orientated swimming (i.e. the direction of non-random swimming) were found in all three species, with orientated swimming having developed in the sparids by about 8 mm. One sparid swam W (towards shore) when <10 mm, and changed direction towards NE (parallel to shore) when >10 mm. These results are consistent with limited in situ observations of settlement-stage wild larvae of the two sparids. In situ, larvae of these three species have swimming, depth determination and orientation behaviour sufficiently well developed to substantially influence dispersal trajectories for most of their pelagic period.  相似文献   

9.
The transport of eel early life stages may be critical to their population dynamics. This transport from ocean spawning to freshwater, estuarine and coastal nursery areas is a combination of physical and biological processes (including swimming behavior). In New Jersey, USA, the American eel (Anguilla rostrata) enters estuaries as glass eels (48.7–68.1 mm TL) in contrast to the Conger eel (Conger oceanicus) that enters as larger (metamorphosing) leptocephali (68.3–117.8 mm TL). To begin to understand the mechanisms of cross-shelf transport for these species, we measured the potential swimming capability (critical swimming speed, U crit) under ambient conditions throughout the ingress season. A. rostrata glass eels were collected over many months (January–June) at a range of temperatures (4–21°C), with relative condition declining over the course of the ingress period as temperatures warmed. C. oceanicus occurred later in the season (April–June) and at warmer temperatures (14–24.5°C). Mean U crit values for A. rostrata (11.7–13.3 cm s−1) and C. oceanicus (14.7–18.6 cm s−1) were comparable, but variable, with portions of the variability explained by water temperature, relative condition, ontogenetic stage, and fish length. Travel times to Little Egg Inlet, New Jersey, estimated using 50% U crit values, indicate it would take A. rostrata ~30 and ~60 days to swim from the shelf edge and Gulf Stream, respectively. Travel times for C. oceanicus were shorter, ~20 days from the shelf edge, and ~45 days from the Gulf Stream. Despite differences in life stage, our results indicate both species are competent swimmers, and suggest they are capable of swimming from the Gulf Stream and/or edge of the continental shelf to estuarine inlets.  相似文献   

10.
The diel vertical distribution patterns of Japanese common squid, Todarodes pacificus, paralarvae were examined using a Multiple Opening Closing Net and Environmental Sensing System (MOCNESS) in the southwest Sea of Japan near the Oki Islands (Japan) during five late-autumn surveys in 1998–2002. A total of 1,511 paralarvae ranging in mantle length (ML) from 0.7 to 7.3 mm were collected at 63 of the 68 stations surveyed. Most (84%) were collected above 75 m depth and in the mixed layer. The vertical distribution patterns varied little between day and night. Hatchling-sized (<1.0 mm ML) paralarvae were abundant at 0–25 m depth, and paralarval ML increased with increasing sampling depth. Our results suggest that T. pacificus paralarvae do not exhibit large diel vertical migration patterns, but as they increase in size, paralarvae gradually descend in the water column and the variability in depth increases with ontogeny.  相似文献   

11.
The temporal occurrence of parasites in Sagitta setosa J. Müller, caught one to three times a month during 1982 and 1983 off Plymouth, England, was investigated. S. setosa was infected by eight parasitic species: one nematode, five trematodes, one cestode and, possibly, one protozoon. Infection by a single parasite, normally found in the body coelom, was the rule. The nematode Hysterothylacium aduncum, as III-stage larva, was by far the most common parasite (56% of all parasites found), followed by the metacercariae of three non-encysted trematodes: Derogenes varicus, a didymozoid species and a Lecithochirium species. Two trematode species new to Chaetognatha were found. The percentage of infected S. setosa specimens ranged from 0 to 7%. Absence or low numbers of parasites from June to November were correlated to the disappearance of large S. setosa and the appearance of a new S. setosa generation. Trematodes may show great annual and seasonal differences in occurrence in S. setosa. No injuries due to parasites were seen. The reproduction of the S. setosa populations off Plymouth did not seem to be affected by parasite infections during 1982–1983.  相似文献   

12.
The behavioral responses of fishes to temperature variation have received less attention than physiological responses, despite their direct implications for predator–prey dynamics in aquatic ecosystems. In this paper, we describe the temperature dependence of swimming performance and behavioral characteristics of juvenile Pacific cod (Gadus macrocephalus; 75–125 mm total length). Maximum swimming speeds increased with temperature and body size. Routine swimming speeds of Pacific cod in small groups of similarly sized fish (N = 6) increased with body size and were 34 % faster at 9 °C than at 2 °C. The response to temperature was opposite that previously described for juvenile walleye pollock (Theragra chalcogramma), reflecting species-specific differences in behavioral responses. In a separate experiment, we demonstrated the effect of temperature on habitat selection of juvenile Pacific cod: Use of an artificial eelgrass patch in a 5-m-long laboratory tank was significantly greater at 9 °C than at 2 °C. These results illustrate that temperature affects a range of behavioral traits that play important roles in determining the frequency and outcomes of predator–prey interactions.  相似文献   

13.
The pattern of diel vertical migration and the trophic interactions of moon jelly (Aurelia sp.) were investigated in the sea lakes of Mljet Island (Adriatic Sea) where this scyphomedusa is present throughout the year. Water column characteristics, plankton and in situ behaviour of Aurelia were followed over several 24-h cycles (6–8 times during each cycle) from the surface to the bottom (44 m). Aurelia exhibited a consistent pattern of diel vertical migration. Most of the time Aurelia were located at the bottom of the thermocline layer at temperatures lower than 19°C. Aurelia migrated towards the surface at dusk when the majority was found within the thermocline or just above it. During the night the medusae sank into the deepest layers below 25 m. The main medusa food items inferred from stomach contents were small adult copepods like Oithona nana and Paracalanus parvus and copepodites of small calanoids and cyclopids. In addition, in situ feeding experiments indicated high clearance rates for nauplii and naked ciliates and clear response of bacterial populations pointing to indirect cascade effects of Aurelia on microbial in addition to classical food web.  相似文献   

14.
Determining the scale of larval dispersal and population connectivity in demersal fishes is a major challenge in marine ecology. Historically, considerations of larval dispersal have ignored the possible contributions of larval behaviour, but we show here that even young, small larvae have swimming, orientation and vertical positioning capabilities that can strongly influence dispersal outcomes. Using young (11–15 days), relatively poorly developed (8–10 mm), larvae of the pomacentrid damselfish, Amblyglyphidodon curacao (identified using mitochondrial DNA), we studied behaviour relevant to dispersal in the laboratory and sea on windward and leeward sides of Lizard Island, Great Barrier Reef. Behaviour varied little with size over the narrow size range examined. Critical speed was 27.5 ± 1.0 cm s−1 (30.9 BL s−1), and in situ speed was 13.6 ± 0.6 cm s−1. Fastest individuals were 44.6 and 25.0 cm s−1, for critical and in situ speeds, respectively. In situ speed was about 50% of critical speed and equalled mean current speed. Unfed larvae swam 172 ± 29 h at 8–10 cm s−1 (52.0 ± 8.6 km), and lost 25% wet weight over that time. Vertical distribution differed between locations: modal depth was 2.5–5.0 and 10.0–12.5 m at leeward and windward sites, respectively. Over 80% of 71 larvae observed in situ had directional swimming trajectories. Larvae avoided NW bearings, with an overall mean SE swimming direction, regardless of the direction to nearest settlement habitat. Larvae made smaller changes between sequential bearings of swimming direction when swimming SE than in other directions, making it more likely they would continue to swim SE. When swimming NW, 62% of turns were left (more than in other directions), which would quickly result in swimming direction changing away from NW. This demonstrates the larvae knew the direction in which they were swimming and provides insight into how they achieved SE swimming direction. Although the cues used for orientation are unclear, some possibilities seemingly can be eliminated. Thus, A. curacao larvae near Lizard Island, on average swam into the average current at a speed equivalent to it, could do this for many hours, and chose different depths in different locations. These behaviours will strongly influence dispersal, and are similar to behaviour of other settlement-stage pomacentrid larvae that are older and larger.  相似文献   

15.
E. Mutlu  F. Bingel 《Marine Biology》1999,135(4):589-601
The distribution of Pleurobrachia pileus Müller, 1776 in the Black Sea was determined using plankton samples collected above the anoxic zone (maximum of 200 m) in the winter, spring, and summer of 1991 to 1995. The summer samples were collected in 1991 to 1993 (for a previous) and are included in this paper for comparative purposes. High concentrations of P. pileus were found at the northern edges of anticyclonic eddies along the southern coastal regions. The biomass and abundance of P. pileus increased from winter through spring to a peak in summer. The highest mean wet weight during a sampling period was 250 g m−2, while the maximum wet weight was 1429 g m−2. P. pileus was mostly found in a layer extending from the lower parts of the thermocline down to the anoxic zone, where the temperature was <8 °C. The vertical distribution of P. pileus biomass had two clear maxima at night: an upper maximum at 20 to 40 m was less pronounced than the lower maximum at 90 to 120 m depth. Mean body length of P. pileus did not exceed 12 mm. Smaller individuals (9 to 10 mm length) occurred in winter. P. pileus had two length classes in early spring (March 1995) and late summer (August 1993), indicating the presence of both newly hatched and larger individuals. Overall, the stomach contents of P. pileus consisted mainly of Copepoda (90%), Cladocera (1%), Mollusca (1%), fish eggs and larvae (1%), and other taxa (7%). The preferred food of P. pileus (frequency of occurrence) was: Calanus euxinus (39%), Pseudocalanus elongatus (30%), Acartia clausi (28%), Oithona similis (2%), and Paracalanus parvus (1%). The endoparasite Hysterothylacium aduncum was commonly found in P. pileus. Abundances of Mnemiopsis leidyi and P. pileus were either negatively correlated (r = −0.5 to −0.7) or positively correlated at a low significance level (r = 0.25 to 0.3) with abundance of A. clausi in different months of the year. Aurelia aurita abundance was correlated mainly with the abundance of C. euxinus from June 1991 to March/April 1995. Over the same period the abundance of P. pileus was significantly correlated with the abundance of P. elongatus, an important prey species. Received: 1 November 1997 / Accepted: 30 August 1999  相似文献   

16.
 To determine how fertilisation varied with sperm concentration for two species of scallop, Chlamys (Equichlamys) bifrons (Lamarck) and C. asperrima (Lamarck), we performed a simple series of sperm dilution experiments, and measured egg size and sperm swimming speeds. C. bifrons eggs were much larger (average diam=116.5 μm), and sperm swimming speeds faster (209.8 μm s−1), than C. asperrima (71.2 μm, 166.0 μm s−1). In both species, maximum fertilisation occurred at an ambient sperm concentration of around 100 sperm μl−1; the maximum proportion of eggs fertilised was less than 0.70 in the C. bifrons experiments, but nearer 1.0 with C. asperrima. At high sperm concentrations (>100 sperm μl−1), fertilisation decreased (presumably due to polyspermy) with increasing sperm concentration, but decreased more rapidly in C. bifrons than C. asperrima. A polyspermy-adjusted fertilisation kinetics model could be fitted to the experimental data, but unique parameter estimates could not be determined. Received: 7 October 1999 / Accepted: 8 July 2000  相似文献   

17.
A large-eddy simulation with transitional structure function(TSF) subgrid model we previously proposed was performed to investigate the turbulent flow with thermal influence over an inhomogeneous canopy, which was represented as alternative large and small roughness elements. The aerodynamic and thermodynamic effects of the presence of a layer of large roughness elements were modelled by adding a drag term to the three-dimensional Navier–Stokes equations and a heat source/sink term to the scalar equation, respectively. The layer of small roughness elements was simply treated using the method as described in paper (Moeng 1984, J. Atmos Sci. 41, 2052–2062) for homogeneous rough surface. The horizontally averaged statistics such as mean vertical profiles of wind velocity, air temperature, et al., are in reasonable agreement with Gao et al.(1989, Boundary layer meteorol. 47, 349–377) field observation (homogeneous canopy). Not surprisingly, the calculated instantaneous velocity and temperature fields show that the roughness elements considerably changed the turbulent structure within the canopy. The adjustment of the mean vertical profiles of velocity and temperature was studied, which was found qualitatively comparable with Belcher et al. (2003, J Fluid Mech. 488, 369–398)’s theoretical results. The urban heat island(UHI) was investigated imposing heat source in the region of large roughness elements. An elevated inversion layer, a phenomenon often observed in the urban area (Sang et al., J Wind Eng. Ind. Aesodyn. 87, 243–258)’s was successfully simulated above the canopy. The cool island(CI) was also investigated imposing heat sink to simply model the evaporation of plant canopy. An inversion layer was found very stable and robust within the canopy.  相似文献   

18.
We present results of simultaneous measurements of turbulent-dissipation rate, zooplankton vertical distribution and copepod gut pigments in the northern North Sea. Analysis shows that some, but not all, copepods (by species, sex and stage) exhibit significant dependence on turbulence in respect to vertical distribution and feeding rate. Oithona similis (female and copepodite stages) exhibits an avoidance of the surface layer when turbulence is strong there. For the range of turbulence (10−7 to 10−3 m2 s−3) and ambient chlorophyll concentration (0.5–0.8 μg l−1) encountered, Calanus spp. and Metridia lucens exhibited a significant negative response in feeding-rate index with increasing turbulence. Centropages typicus and Pseudocalanus spp. also exhibited a negative response but of less significance. Received: 12 October 2000 / Accepted: 11 December 2000  相似文献   

19.
Respiration rates and elemental composition (carbon and nitrogen) were determined for four dominant oncaeid copepods (Triconia borealis, Triconia canadensis, Oncaea grossa and Oncaea parila) from 0–1,000 m depth in the western subarctic Pacific. Across the four species of which dry weight (DW) varied from 2.0 to 32 μg, respiration rates measured at in situ temperature (3°C) increased with DW, ranging from 0.84 to 7.4 nl O2 individual−1 h−1. Carbon (C) and nitrogen (N) composition of the four oncaeid species ranged from 49–57% of DW and 7.0–10.3% of DW, respectively, and the resultant C:N ratios were 4.8–8.3. The high C contents and C:N ratios were reflected by large accumulation of lipids in their body. Specific respiration rates (SR, a fraction of body C respired per day) ranged between 0.5 and 1.3% day−1. Respiration rates adjusted to a body size of 1 mg body N (i.e. adjusted metabolic rates, AMR) of the four oncaeid species [0.6–1.1 μl O2 (mg body N)−0.8 h−1 at 3°C] were significantly lower than those (1.7–5.1) reported in the literature for oithonid and calanoid copepods at the same temperature. The present results indicate that lower metabolic expenditure due to less active swimming (pseudopelagic life mode) together with rich energy reserve in the body (as lipids) are the characters of oncaeid copepods inhabiting in the epi- and mesopelagic zones of this region.  相似文献   

20.
Whale sharks (Rhincodon typus Smith) aggregate seasonally (March–June) to feed in coastal waters off Ningaloo Reef, Western Australia. Pop-up archival tags were attached to 19 individuals (total lengths 4.5–11.0 m) at this location in early May of 2003 and 2004 to examine their horizontal and vertical movements. The long-term movement patterns of six whale sharks were documented, all of which travelled northeast into the Indian Ocean after departing Ningaloo Reef. They used both inshore and offshore habitats and made extensive vertical movements, occasionally to a depth of at least 980 m. Frequent up-and-down movements, diel vertical migration, and crepuscular descents were evident in the depth records. The sharks experienced ambient temperatures ranging between 4.2 and 28.7°C and encountered gradients of up to 20.8°C on dives.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号