首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In recent years, interest has grown in the potential to utilize more natural materials in the food industry. Shrimp waste is an important natural resource with functional properties and no known side effects. The major components of shrimp waste are protein, chitin, minerals and carotenoids. In the present study, the extraction of carotenoids was performed with two methods, the use of proteolytic enzymes and extraction by alkaline and enzyme treatment, and the total amount of carotenoids present in the waste was determined. Furthermore, the effectiveness of the method was evaluated through the inhibition of lipid peroxidation. Inhibition of lipid peroxidation was effectively done with carotenoid extracted by trypsin and alkaline treatment.  相似文献   

2.
采用络合萃取法从维生素B12发酵废液中回收丙酸   总被引:2,自引:2,他引:2  
采用络合萃取法回收维生素B12发酵废液中的丙酸,确定了络合萃取的最佳工艺条件:以0.5mol/L的磷酸三丁酯(TBP)为络合剂,油水比(体积比)为1:2,常温下萃取30min。在最佳工艺条件下单级萃取率为56%左右,四级萃取率可达98%以上。络合萃取过程中使用的有机溶剂可反复使用,使成本大大降低。  相似文献   

3.
Europium and yttrium metals and some valuable salts were recovered from the powder coating the inner surface of the glass tubes of fluorescent lamps. The tubes were broken under 30% aqueous acetone to avoid emission of mercury vapor to the atmosphere, and the powder was collected by brushing. Metals available in the powder were pressure leached using sulfuric/nitric acid mixture. Sulphate salt of europium and yttrium so obtained was converted to thiocyanate. Trimethyl-benzylammonium chloride solvent was used to selectively extract Eu and Y from the thiocyanate solution. The metal loaded in the organic solvent was recovered by N-tributylphosphate in 1M nitric acid to produce nitrate salts of Eu and Y. Europium nitrate was separated from yttrium nitrate by dissolving in ethyl alcohol. The isolated powder contained 1.62% europium oxide, 1.65% yttrium oxide, 34.48% calcium sulphate, 61.52% Ca orthophosphate and 0.65% other impurity metals by weight. Autoclave digestion of the powder in the acid mixture for 4h at approximately 125 degrees C and 5 MPa dissolved 96.4% of the yttrium and 92.8% of the europium. Conversion of the sulphate to thiocyanate is favoured at low temperature. Extraction of Eu and Y from the thiocyanate solution attained its maximum at approximately 80 degrees C. N-tributylphosphate in 1N nitric acid at 125 degrees C achieved a stripping extent of 99%. Thermal reduction using hydrogen gas at 850 degrees C and 1575 degrees C produced europium and yttrium metals, respectively. A metal separation factor of 9.4 was achieved. Economic estimation revealed that the suggested method seemed feasible for industrial applications.  相似文献   

4.
Currently, there is increasing competition for waste as feedstock for the growing number of biogas plants. This has led to fluctuation in feedstock supply and biogas plants being operated below maximum capacity. The feasibility of supplementing a protein/lipid-rich industrial waste (pig manure, slaughterhouse waste, food processing and poultry waste) mesophilic anaerobic digester with carbohydrate-rich energy crops (hemp, maize and triticale) was therefore studied in laboratory scale batch and continuous stirred tank reactors (CSTR) with a view to scale-up to a commercial biogas process. Co-digesting industrial waste and crops led to significant improvement in methane yield per ton of feedstock and carbon-to-nitrogen ratio as compared to digestion of the industrial waste alone. Biogas production from crops in combination with industrial waste also avoids the need for micronutrients normally required in crop digestion. The batch co-digestion methane yields were used to predict co-digestion methane yield in full scale operation. This was done based on the ratio of methane yields observed for laboratory batch and CSTR experiments compared to full scale CSTR digestion of industrial waste. The economy of crop-based biogas production is limited under Swedish conditions; therefore, adding crops to existing industrial waste digestion could be a viable alternative to ensure a constant/reliable supply of feedstock to the anaerobic digester.  相似文献   

5.
Oxidatively degradable polyethylene is finding widespread use, particularly in applications such as single use packaging and agriculture. However, the key question which still remains unanswered is the ultimate fate and biodegradability of these polymers. During a short-time frame only the oxidized low molecular weight fraction will be amenable to significant biodegradation. The short-time frame biodegradation potential of different LDPE-transition metal formulations was, thus, explored through a simple chemical extraction of oxidized fraction. In addition the effectiveness of different transitions metals was evaluated by comparing the extractable fractions. Blown LDPE films modified with different transition metal based pro-oxidants were thermo-oxidized at 60 °C over extended periods. The structural changes occurring in the polymer were monitored and the oxidized degradation products formed as a result of the aging process were estimated by extractions with water and acetone. The extractable fraction first increased to approximately 22 % as a result of thermo-oxidative aging and then leveled off. The extractable fraction was approximately two times higher after acetone extraction compared to extraction with water and as expected, it was higher for the samples containing pro-oxidants. Based on our results in combination with existing literature we propose that acetone extractable fraction gives an estimation of the maximum short-term biodegradation potential of the material, while water extractable fraction indicates the part that is easily accessible to microorganisms and rapidly assimilated. The final level of biodegradation under real environmental conditions will of course be highly dependent on the specific environment, material history and degradation time.  相似文献   

6.
选取了6种有代表性的挥发性有机化合物(VOCs),异丙醇、二氯甲烷、乙酸乙烯酯、正己烷、苯和四氯化碳,实测了这些VOCs在气体采样罐(SUMMA罐)中的存储稳定性。结果表明:苯、正己烷和二氯甲烷在采样罐中均较稳定,其含量在84 d的存储期内基本无变化;乙酸乙烯酯在6个VOCs中最不稳定,在普通和惰性采样罐中含量均明显下降;异丙醇和四氯化碳的稳定性与采样罐的类型有关,在普通采样罐内含量下降明显,而在惰性采样罐内则相对稳定。实际监测工作中,为提高VOCs分析的准确性,如目标分析物有含氧类(醇,酮,酯等)或含卤素类VOCs,则采样后需尽快分析,同时尽量选择惰性采样罐为采样容器。  相似文献   

7.
Pectin from the cladode flour of Opuntia ficus indica was extracted at different ethylenediaminetetraacetate concentrations (10 or 20 %), temperatures (40 or 80 °C), pH values (2 or 11), and times (10, 20, 30 40, 50 or 60 min). The effects of the extraction conditions on the yield, purity, and chemical composition of pectin were assessed. The highest pectin yield was observed for pectin obtained under alkaline conditions and 20 % of EDTA. However, pectin produced from alkaline extractions had a lower content of GalA than pectin produced from acid extractions. Higher temperatures favored the extraction of pectin under acid conditions, but these conditions diminished the arabinose content of pectins in a time-dependent manner. The tested extraction conditions caused only slight changes in the molecular weight of the extracted pectin as a function of time.  相似文献   

8.
Polyvinylchloride (PVC) was successfully recycled through the solvent extraction from waste pipe with an extraction yield of ca. 86%. The extracted PVC was pyrolyzed by a two-stage process (260 and 410 degrees C) to obtain free-chlorine PVC based pitch through an effective removal of chlorine from PVC during the heat-treatment. As-prepared pitch (softening point: 220 degrees C) was spun, stabilized, carbonized into carbon fibers (CFs), and further activated into activated carbon fibers (ACFs) in a flow of CO2. As-prepared CFs show comparable mechanical properties to commercial CFs, whose maximum tensile strength and modulus are 862 MPa and 62 GPa, respectively. The resultant ACFs exhibit a high surface area of 1200 m2/g, narrow pore size distribution and a low oxygen content of 3%. The study provides an effective insight to recycle PVC from waste PVC and develop a carbon precursor for high performance carbon materials such as CFs and ACFs.  相似文献   

9.
The corrosion from pyrolysis of PVC in plastic waste was reduced by copyrolysis of PVC with cattle manure. The optimization of pyrolysis conditions between PVC and cattle manure was studied via a statistical method, the Box-Behnken model. The pyrolysis reaction was operated in a tubular reactor. Heating rate, reaction temperature and the PVC:cattle manure ratio were optimized in the range of 1-5 degrees C/min, 250-450 degrees C and the ratio of 1:1-1:5, respectively. The suitable conditions which provided the highest HCl reduction efficiency were the lowest heating rate of 1 degrees C/min, the highest reaction temperature of 450 degrees C, and the PVC:cattle manure ratio of 1:5, with reliability of more than 90%. The copyrolysis of the mixture of PVC-containing plastic and cattle manure was operated at optimized conditions and the synergistic effect was studied on product yields. The presence of manure decreased the oil yield by about 17%. The distillation fractions of oil at various boiling points from both the presence and absence of manure were comparable. The BTX concentration decreased rapidly when manure was present and the chlorinated hydrocarbon was reduced by 45%. However, the octane number of the gasoline fraction was not affected by manure and was in the range of 99-100.  相似文献   

10.
This study investigated the recovery of oil from waste grease through the process of thermal degradation in an aqueous solution of potassium hydroxide (KOH) followed by solvent extraction. Waste high temperature metal bearing grease was dissolved in a 15 w/w% KOH solution at 80 °C while being agitated at 2000 rpm using a shear action agitator for a period of 15 min. Two distinct layers were observed after 8 min of settling time. The top layer being of dark brown oil and the bottom layer was a heterogeneous mixture. The two layers were separated by decantation. The bottom layer was cooled down to 45 °C followed by slow addition of toluene (C7H8) while agitating at 1200 rpm for 15 min to prevent solids settling and minimise rapid volatilisation of the organic compounds in the mixture. Two distinct layers were also formed, the top homogeneous mixture of light brown oil–toluene mixture and the bottom sludge layer. The solvent was recovered from the oil for re-use by fractional distillation of the homogenous mixture. It was observed that 15 w/w% potassium hydroxide solution can chemically degrade the soap matrix in the grease and extract up to 49 w/w% of the fuel oil when subjected to high shear stress at a temperature of 80 °C. The 26 w/w% extraction of oil in the remaining sludge was obtained by solvent extraction process with mass ratios of sludge to solvent of 2:1. Solvent recovery of 88% by mass was obtained via fractional distillation method. The combined extraction processes brought an overall oil yield of 75 w/w% from the waste grease. The fuel oil obtained from this process has similar properties to paraffin oil and can be blended with other oils as an alternative energy source.  相似文献   

11.
Thermal cracking of oils from waste plastics   总被引:2,自引:0,他引:2  
Thermal cracking of decomposed waste plastic oil produces a good yield of olefins. The solvent extraction of such waste plastic oil seems to be efficient for increasing gas yields and recycling monomers. To assess the potential of monomer recovery from municipal waste plastics, the oils were cracked using a laboratory-scale quartz-tube reactor. The waste plastic oils were provided by two commercial plants of the Sapporo Plastic Recycle Co. and the Dohoh Recycle Center Co. in Japan. A model waste plastic oil made in a laboratory was also examined. Yields of ethene, propene, and other products were measured at different temperatures. Two-step pyrolysis reduces coking compared with the direct thermal degradation of plastics. The raffinates from waste plastic oils extracted by sulfolane were also cracked. The primary products were almost the same as those from nontreated oils. The maximum total gas yield was 78wt%–85wt% at 750°C, an increase of about 20wt% compared with that of nonextracted oil. Solvent extraction removes stable aromatic hydrocarbons such as styrene, which is more coked than cracked.  相似文献   

12.
建立了液液萃取(LLE)—气相色谱-质谱(GC-MS)法同时测定石化废水中双酚A(BPA)和邻苯二甲酸二乙酯(DEP)的新方法,对液液萃取条件进行了优化。最佳的液液萃取条件为:萃取剂为乙酸乙酯,水样调成酸性(pH<2),每次加入萃取剂0.1 mL/mL、盐析剂NaCl 0.1 g/mL,萃取次数为6次,每次萃取时间为2 min。实验结果表明:在质量浓度1~100 mg/L的范围内,BPA和DEP测定标准曲线的线性关系良好;BPA和DEP的检出限(LOD)分别为5.18 μg/L和0.89 μg/L,定量限(LOQ)分别为17.11 μg/L和2.96 μg/L,回收率为81.4 %~124.9 %,相对标准偏差(RSD)(n=7)小于5.5 %。  相似文献   

13.
建立了一种基质固相分散萃取—气相色谱法测定土壤中8种有机氯农药含量的方法,优选了固相分散剂及其用量、洗脱溶剂以及土壤样品与分散剂的质量比。实验结果表明,在弗罗里硅土作为分散剂、正己烷和丙酮(体积比为1∶1)为洗脱溶剂、土壤样品与分散剂的质量比为1∶3的优化条件下,8种有机氯农药在50~250 μg/kg范围内表现出良好的线性关系,相关系数大于0.99,加标回收率为60.3%~94.3%,相对标准偏差为6.83%~8.95%。实际土壤质控样测试结果显示,本方法的测试结果在标准值的不确定度范围内,可满足土壤中有机氯农药残留的检测分析。  相似文献   

14.
Biomass such as woody waste and food waste can be converted to a renewable energy source by means of carbonization processes. The basic characteristics of woody waste and food waste, such as proximate analysis and heating value, were evaluated before carrying out carbonization tests. Carbonization tests were carried out to obtain the basic characteristics of carbonization residue on changing the proportion of food waste from 0% to 30% in the mixture of woody waste and food waste. The effect of the food waste was estimated by basic characteristics of the residue such as the heating value, yield, and fuel ratio. As increased the food waste content, the bulk density, yield and chlorine content of the carbonization residue increased, but fuel ratio, the carbon content and heating value of the residue decreased. From the results of the basic characteristics of the residue, the optimum food waste content in carbonization tests was found to be 20%. Even if food waste is combined with woody waste at levels up to 30%, the sulfur and chlorine concentrations in the residue were much lower than the regulatory standard levels. From the results for the fuel ratio and heating value of the residue, the carbonization residue is suitable for use as a renewable energy source and can be categorized by the second grade level of solid fuel products.  相似文献   

15.
Vermitechnology is gaining recognition as an environmental friendly waste management strategy. Its successful implementation requires that the key operational parameters like earthworm stocking density be established for each target waste/waste mixture. One target waste mixture in South Africa is waste paper mixed with cow dung and rock phosphate (RP) for P enrichment. This study sought to establish optimal Eisenia fetida stocking density for maximum P release and rapid bioconversion of RP enriched cow dung–paper waste mixtures. E. fetida stocking densities of 0, 7.5, 12.5, 17.5 and 22.5 g-worms kg?1 dry weight of cow dung–waste paper mixtures were evaluated. The stocking density of 12.5 g-worms kg?1 resulted in the highest earthworm growth rate and humification of the RP enriched waste mixture as reflected by a C:N ratio of <12 and a humic acid/fulvic acid ratio of >1.9 in final vermicomposts. A germination test revealed that the resultant vermicompost had no inhibitory effect on the germination of tomato, carrot, and radish. Extractable P increased with stocking density up to 22.5 g-worm kg?1 feedstock suggesting that for maximum P release from RP enriched wastes a high stocking density should be considered.  相似文献   

16.
In the present study, the flocculation behavior of crosslinked copolymer GrA-cl-poly(AAm) hydrogel has been studied for the removal of turbidity from waste water. Sodium borohydride has been used for the reduction of the Gum rosin acids by which it gets converted into rosin alcohols. The reduced Gum rosin alcohol was crosslinked by the use of MBA and copolymerized with acrylamide using KPS as a redox initiator. Synthesized sample was then optimized for reaction conditions like reaction time, reaction temperature and the amount of solvent, monomer concentration, initiator concentration and pH of the reaction medium in order to get maximum percentage swelling. Synthesized samples were characterized using Fourier transform infrared spectroscopy, scanning electron of microscopy and X-ray diffraction techniques. Response surface methodology (RSM) based central composite design was used to study the effect of pH of swelling medium and temperature to maximize the percentage swelling. A statistical model (ANOVA) predicted pH 7.0 and temperature 40?°C as optimum operating conditions in order to get maximu swelling. GrA-cl-poly(AAm) hydrogel was found to be pH and temperature sensitive. Kaolin has been employed as a coagulant. The flocculation efficiency of the synthesized polymer was studied as a function of polymer dose, temperature and pH of the solution. GrA-cl-poly(AAm) observed to show maximum flocculation efficiency (95%) with 70mgL?1 polymer dose in pH 5.0 at 30?°C. The adsorption capacity of malachite green dye removal (95%) was also studied with this synthesized polymer. The results validate that GrA-cl-poly(AAm) hydrogel has significant flocculation and dye removal properties and can be employed as an effective and low-cost material for removal of impurities from waste water.  相似文献   

17.
A comparison of waste and virgin polypropylene (PP) plastics under slow pyrolysis conditions is presented. Moreover, mixtures of waste PP with wastes of polyethylene (PE) and polystyrene (PS) were pyrolyzed under the same operating conditions. Not only the impact of waste on degradation products but also impacts of the variations in the mixing ratio were investigated. The thermogravimetric weight loss curves and their derivatives of virgin and waste PP showed differences due to the impurities which are dirt and food residues. The liquid yield distribution concerning the aliphatic, mono-aromatic and poly-aromatic compounds varies as the ratio of PP waste increases in the waste plastic mixtures. In addition to this, the alkene/alkane ratio of gas products shows variations depending on the mixing ratio of wastes.  相似文献   

18.
Oil extraction from the oil-bearing biomass and waste materials has been considered as one of the biggest challenges in the biodiesel production process because it has been considered as the most energy- and cost-demanding step. This work provides a promising approach for the direct transformation without oil extraction from calcined montmorillonite clay (CMC) and microalgae by means of the non-catalytic thermo-chemical process in conjunction with the real continuous flow system. The introduced method showed the high tolerance of water, impurities, and free fatty acids (FFAs), which enable the combination of the esterification of FFAs and transesterification of triglycerides into a single step without the lipid extraction. For example, this study showed that the maximum achievable yield of biodiesel via the introduced methodology was 97 ± 0.5 % at the temperature regime of 380–480 °C and this biodiesel yield was enhanced in the presence of CO2. Thus, the introduced methodology for producing biodiesel could be an alternative way of the methanol liquefaction and transesterification under supercritical conditions.  相似文献   

19.
Biodiesel is commonly produced from vegetable oils, mostly edible and more expensive than petroleum diesel. By considering the cost of the conversion processes, cheap feedstock such as triglycerides and fatty acids (FA) extracted from early stage of food waste liquefaction has become a better choice than vegetable oils, as it could provide high yield of biodiesel without any compromise to food supply and other resources. In this study, FA from early stage of food waste liquefaction was extracted and tested for use as feedstock for biodiesel synthesis. The raw material was not pretreated but extraction was done by dry and wet methods. It was found that wet method could minimized the lost of short and medium-chained FA as well as reducing the number of steps required, thus, yielding higher amount of FA as feedstock. The effects of mixing, methanol ratio, reaction time and catalyst content were investigated for the acid-catalyzed esterification. The maximum biodiesel conversion obtained was 97.4 %.  相似文献   

20.
耿凤华  张书武  宫磊 《化工环保》2018,38(2):217-221
选取甲苯、乙酸乙酯为目标污染物模拟印刷有机废气,采用生物滴滤塔对其进行处理。从某污水处理厂曝气池活性污泥中筛选出3株能够高效降解甲苯、乙酸乙酯的优势菌种,经鉴定分别为枯草芽孢杆菌(Bacillus subtilis)、蜡状芽胞杆菌(Bacillus cereus)和嗜麦芽寡养单胞菌(Stenotrophomonas maltophilia)。实验结果表明:增大乙酸乙酯配比对VOCs去除率影响不大,而增大甲苯配比导致VOCs去除率下降明显;在进气VOCs质量浓度为约800 mg/m3(甲苯与乙酸乙酯的体积比1∶1)、气体空床接触时间为300 s、菌液喷淋量为800 L/h、菌液温度为25 ℃的条件下,VOCs去除率可达约99%。生物滴滤塔运行一段时间后,对菌种进行再鉴定,结果与处理前一致。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号