首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Arsenic concentrations of 73 soil samples collected in the semi-arid Zimapán Valley range from 4 to 14 700 mg As kg(-1). Soil arsenic concentrations decrease with distance from mines and tailings and slag heaps and exceed 400 mg kg(-1) only within 500 m of these arsenic sources. Soil arsenic concentrations correlate positively with Cu, Pb, and Zn concentrations, suggesting a strong association with ore minerals known to exist in the region. Some As was associated with Fe and Mn oxyhydroxides, this association is less for contaminated than for uncontaminated samples. Very little As was found in the mobile water-soluble or exchangeable fractions. The soils are not arsenic contaminated at depths greater than 100 cm below the surface. Although much of the arsenic in the soils is associated with relatively immobile solid phases, this represents a long-term source of arsenic to the environment.  相似文献   

2.
Background concentrations of soil arsenic have been used as an alternative soil cleanup criterion in many states in the U.S. This research addresses issues related to the interpretation of background concentrations of arsenic in near pristine soils in Florida. Total arsenic was measured in 448 taxonomic and geographic representative surface soil samples using USEPA Method 3052 (HCl-HNO 3 -HF, microwave digestion) and graphite furnace atomic absorption spectrophotometry analysis procedure. Values were log-normally distributed, with geometric mean and baseline concentration (defined as 95% of the expected range of background concentrations) providing the most satisfactory statistical results. An upper baseline concentration of 6.21 mg As/kg was estimated for undisturbed soils (n=267) compared to 7.63 mg As/kg for disturbed soils (n=181). Temporal trend of total soil arsenic concentrations from 1967 to 1989 paralleled decreased usage of arsenic in U.S. agriculture. Soil arsenic background concentrations were generally higher in south Florida than in north and central Florida, and associated with wet soils. Individual high arsenic sites were scattered throughout the state, but the most highly concentrated of these occurred in the Leon-Lee belt along the Ocala uplift district extending to the southwestern flatwoods district. Extrapolation of the data using a single arsenic value regardless of the taxonomic and geographical differences in soil arsenic distribution would underestimate potential arsenic contamination in upland soils.  相似文献   

3.
Total of 260 soil profiles were reported to investigate the arsenic spatial distribution and vertical variation in Guangdong province. The arsenic concentration followed an approximately lognormal distribution. The arsenic geometric mean concentration of 10.4 mg/kg is higher than that of China. An upper baseline concentration of 23.4 mg/kg was estimated for surface soils. The influence of soil properties on arsenic concentration was not important. Arsenic spatial distributions presented similar patterns that high arsenic concentration mainly located in limestone, and sandshale areas, indicating that soil arsenic distribution was dependent on bedrock properties than anthropogenic inputs. Moreover, from A- to C-horizon arsenic geometric mean concentrations had an increasing tendency of 10.4, 10.7 to 11.3 mg/kg. This vertical variation may be related to the lower soil organic matter and soil degradation and erosion. Consequently, the soil arsenic export into surface and groundwaters would reach 1040 t year-1 in the study area.  相似文献   

4.
Domkal is one of the 19, out of 26 blocks in Murshidabad district where groundwater contains arsenic above 0.05 mg/l. Many millions of cubic meters of groundwater along with arsenic and other heavy metals are coming out from both the hand tubewells, used by the villagers for their daily needs and shallow big diameter tubewells, installed for agricultural irrigation and depositing on soil throughout the year. So there is a possibility of soil contamination which can moreover affect the food chain, cultivated in this area. A somewhat detailed study was carried out, in both micro- and macrolevel, to get an idea about the magnitude of soil contamination in this area. The mean concentrations (mg/kg) of As (5.31), Fe (6740), Cu (18.3), Pb (10.4), Ni (18.8), Mn (342), Zn (44.3), Se (0.53), Mg (534), V (44.6), Cr (33.1), Cd (0.37), Sb (0.29) and Hg (0.54) in fallow land soils are within the normal range. The mean As (10.7), Fe (7860) and Mg (733) concentrations (mg/kg) are only in higher side whereas Hg (0.17 mg/kg) is in lower side in agricultural land soils, compared to the fallow land soils. Arsenic concentrations (11.5 and 28.0 mg/kg respectively) are high in those agricultural land soils where irrigated groundwater contains high arsenic (0.082 and 0.17 mg/l respectively). The total arsenic withdrawn and mean arsenic deposition per land by the 19 shallow tubewells per year are 43.9 kg (mean: 2.31 kg, range: 0.53-5.88 kg) and 8.04 kg ha(-1) (range: 1.66-16.8 kg ha(-1)) respectively. For the macrolevel study, soil arsenic concentration decreases with increase of distance from the source and higher the water arsenic concentration, higher the soil arsenic at any distance. A proper watershed management is urgently required to save the contamination.  相似文献   

5.
Background concentrations of soil arsenic have been used as an alternative soil cleanup criterion in many states in the U.S. This research addresses issues related to the interpretation of background concentrations of arsenic in near pristine soils in Florida. Total arsenic was measured in 448 taxonomic and geographic representative surface soil samples using USEPA Method 3052 (HCl-HNO3-HF, microwave digestion) and graphite furnace atomic absorption spectrophotometry analysis procedure. Values were log-normally distributed, with geometric mean and baseline concentration (defined as 95% of the expected range of background concentrations) providing the most satisfactory statistical results. An upper baseline concentration of 6.21 mg As/kg was estimated for undisturbed soils (n = 267) compared to 7.63 mg As/kg for disturbed soils (n = 181). Temporal trend of total soil arsenic concentrations from 1967 to 1989 paralleled decreased usage of arsenic in U.S. agriculture. Soil arsenic background concentrations were generally higher in south Florida than in north and central Florida, and associated with wet soils. Individual high arsenic sites were scattered throughout the state, but the most highly concentrated of these occurred in the Leon-Lee belt along the Ocala uplift district extending to the southwestern flatwoods district. Extrapolation of the data using a single arsenic value regardless of the taxonomic and geographical differences in soil arsenic distribution would underestimate potential arsenic contamination in upland soils.  相似文献   

6.
Pot experiments were carried out to investigate the potential of phytoremediation with the arsenic hyperaccumulator Pteris vittata in a range of soils contaminated with As and other heavy metals, and the influence of phosphate and lime additions on As hyperaccumulation by P. vittata. The fern was grown in 5 soils collected from Cornwall (England) containing 67-4550 mg As kg(-1) and different levels of metals. All soils showed a similar distribution pattern of As in different fractions in a sequential extraction, with more than 60% of the total As being associated with the fraction thought to represent amorphous and poorly-crystalline hydrous oxides of Fe and Al. The concentration of As in the fronds ranged from 84 to 3600 mg kg(-1), with 0.9-3.1% of the total soil As being taken up by P. vittata. In one soil which contained 5500 mg Cu kg(-1) and 1242 mg Zn kg(-1), P. vittata suffered from phytotoxicity and accumulated little As (0.002% of total). In a separate experiment, neither phosphate addition (50mg P kg(-1) soil) nor liming (4.6 g CaCO3 kg(-1) soil) was found to affect the As concentration in the fronds of P. vittata, even though phosphate addition increased the As concentration in the soil pore water. Between 4 and 7% of the total soil As was taken up by P. vittata in 4 cuttings in this experiment. The results indicate that P. vittata can hyperaccumulate As from naturally contaminated soils, but may be suitable for phytoremediation only in the moderately contaminated soils.  相似文献   

7.
Spatial distribution of heavy metals in urban soils of Naples city (Italy)   总被引:42,自引:0,他引:42  
Concentrations of surface and sub-surface soil Cu, Cr, Pb and Zn in the Naples city urban area were measured in 1999. Contourmaps were constructed to describe the metals spatial distribution. In the most contaminated soil samples, metals were speciated by means of the European Commission sequential extraction procedure. At twelve sites, Cu, Pb and Zn levels in soil were compared with those from a 1974 sampling. Many surface soils from the urban area as well as from the eastern industrial district contained levels of Cu, Pb and Zn that largely exceeded the limits (120, 100 and 150 mg kg(-l) for Cu, Pb and Zn, respectively) set for soils of public, residential and private areas by the Italian Ministry of Environment. Chromium values were never above regulatory limits(120 mg kg(-1)). Copper apparently accumulates in soils contiguous to railway lines and tramway. Cu and Cr existed in soil mainly inorganic forms (-68%), whereas Pb occurs essentially as residual mineral phases (77%). The considerable presence of Zn in the soluble, exchangeable and carbonate bound fraction (23%) suggests this element has high potential bioavailability and leachability through the soil. Concentrations of Cu, Pb and Zn have greatly increased since the 1974 sampling, with higher accumulation in soils from roadside fields.  相似文献   

8.
This study monitored the influence of arsenic-contaminated irrigation water on alkaline soils and arsenic uptake in agricultural plants at field level. The arsenic concentrations in irrigation water ranges from <0.005 to 1.014 mg L(-1) where the arsenic concentrations in the soils were measured from 6.1 to 16.7 mg As kg(-1). The arsenic content in different parts of plants are found in the order of roots>shoots>leaves>edible parts. The mean arsenic content of edible plant material (dry weight) were found in the order of onion leaves (0.55 mg As kg(-1))>onion bulb (0.45 mg As kg(-1))>cauliflower (0.33 mg As kg(-1))>rice (0.18 mg As kg(-1))>brinjal (0.09 mg As kg(-1))>potato (<0.01 mg As kg(-1)).  相似文献   

9.
Sarkar D  Datta R  Sharma S 《Chemosphere》2005,60(2):188-195
A laboratory incubation study was conducted to estimate geochemical speciation and in vitro bioavailability of arsenic as a function of soil properties. Two chemically-variant soil types were chosen, based on their potential differences with respect to arsenic reactivity: an acid sand with minimal arsenic retention capacity and a sandy loam with relatively high concentration of amorphous Fe/Al-oxides, considered a sink for arsenic. The soils were amended with dimethylarsenic acid (DMA) at three rates: 45, 225, and 450 mg/kg. A sequential extraction scheme was employed to identify the geochemical forms of arsenic in soils, which were correlated with the "in vitro" bioavailable fractions of arsenic to identify the most bioavailable species. Arsenic bioavailability and speciation studies were done at 0 time (immediately after spiking the soils with pesticide) and after four-months incubation. Results show that soil properties greatly impact geochemical speciation and bioavailability of DMA; soils with high concentrations of amorphous Fe/Al oxides retain more arsenic, thereby rendering them less bioavailable. Results also indicate that the use of organic arsenicals as pesticides in mineral soils may not be a safe practice from the viewpoint of human health risk.  相似文献   

10.
Leaching of arsenic (As) from chromated copper arsenate (CCA)-treated wood may elevate soil arsenic levels. Thus, an environmental concern arises regarding accumulation of As in vegetables grown in these soils. In this study, a greenhouse experiment was conducted to evaluate As accumulation by vegetables from the soils adjacent to the CCA-treated utility poles and fences and examine the effects of soil amendments on plant As accumulation. Carrot (Daucus carota L.) and lettuce (Lactuca sativa L.) were grown for ten weeks in the soil with or without compost and phosphate amendments. As expected, elevated As concentrations were observed in the pole soil (43 mg kg(-1)) and in the fence soil (27 mg kg(-1)), resulting in enhanced As accumulation of 44 mg kg(-1) in carrot and 32 mg kg(-1) in lettuce. Addition of phosphate to soils increased As accumulation by 4.56-9.3 times for carrot and 2.45-10.1 for lettuce due to increased soil water-soluble As via replacement of arsenate by phosphate in soil. However, biosolid compost application significantly reduced plant As uptake by 79-86%, relative to the untreated soils. This suppression is possibly because of As adsorbed by biosolid organic mater, which reduced As phytoavailability. Fractionation analysis showed that biosolid decreased As in soil water-soluble, exchangeable, and carbonate fraction by 45%, whereas phosphate increased it up to 2.61 times, compared to the untreated soils. Our results indicate that growing vegetables in soils near CCA-treated wood may pose a risk of As exposure for humans. Compost amendment can reduce such a risk by reducing As accumulation by vegetables and can be an important strategy for remediating CCA-contaminated soils. Caution should be taken for phosphate application since it enhances As accumulation.  相似文献   

11.
Contamination of industrial sites by wood preservatives such as chromated copper arsenate (CCA) may pose a serious threat to groundwater quality. The objective of this study was to characterise the spatial variability of As and Cr concentrations in the solid phase and in the soil water at a former wood impregnation plant and to reveal the fundamental transport processes. The soil was sampled down to a depth of 2m. The soil water was extracted in situ from the vadose zone over a period of 10 months at depths of 1 and 1.5m, using large horizontally installed suction tubes. Groundwater was sampled from a depth of 4.5m. Results showed that arsenic and chromium had accumulated in the upper region of the profile and exhibited a high spatial variability (As: 21-621 mg kg(-1); Cr: 74-2872 mg kg(-1)). Concentrations in the soil water were high (mean As 167 microg L(-1); Cr: 62 microg L(-1)) and also showed a distinct spatial variability, covering concentration ranges up to three orders of magnitude. The variability was caused by the severe water-repellency of the surface soil, induced by the concurrent application of creosote wood preservatives, which leads to strong preferential flow as evident from a dye experiment. In contrast to soil water concentrations, only low As concentrations (<12 microg L(-1)) were detected in the groundwater. High Cr concentrations in the groundwater (approx. 300 microg L(-1)), however, illustrated the pronounced mobility of chromium. Our study shows that at sites with a heterogeneous flow system in the vadose zone a disparity between flux-averaged and volume-averaged concentrations may occur, and sampling of soil water might not be adequate for assessing groundwater concentrations. In these cases long-term monitoring of the groundwater appears to be the best strategy for a groundwater risk assessment.  相似文献   

12.
The influence of soil characteristics on the phytoremediation potential of Thlaspi caerulescens is not well understood. We investigated the effect of soil pH and Cd concentration on plant Cd uptake on one soil type, and the variation in Cd uptake using a range of field contaminated soils. On soils with total Cd concentrations of 0.6-3.7 mg kg(-1), T. caerulescens (the Ganges ecotype) produced greater biomass in the pH range 5.1-7.6 than at pH 4.4. The highest plant Cd concentration (236 mg kg(-1)) and Cd uptake (228 microg pot(-1)) were observed at pH 5.1. On soils with total Cd concentrations of 2.6-314.8 mg kg(-1), shoot Cd concentrations were 10.9-1,196 mg kg(-1). Multiple regression analysis indicated that higher Cd in soil, low pH (within the range of >5) and coarser texture were associated with higher Cd concentration and Cd uptake by T. caerulescens.  相似文献   

13.
This study measured antioxidative responses of Chinese brake fern (Pteris vittata L.) upon exposure to arsenic (As) of different concentrations. Chinese brake fern was grown in an artificially-contaminated soil containing 0 to 200 mg As kg(-1) (Na2HAsO4) for 12 weeks in a greenhouse. Soil As concentrations at < or =20 mg kg(-1) enhanced plant growth, with 12-71% biomass increase compared to the control. Such beneficial effects were not observed at >20 mg As kg(-1). Plant As concentrations increased with soil As concentrations, with more As being accumulated in the fronds (aboveground biomass) than in the roots and with maximum frond As concentration being 4675 mg kg(-1). Arsenic uptake by Chinese brake enhanced uptake of nutrient elements K, P, Fe, Mn, and Zn except Ca and Mg, whose concentrations mostly decreased. The contents of non-enzymatic antioxidants (glutathione, acid-soluble thiol) followed similar trends as plant As concentrations, increasing with soil As concentrations, with greater contents in the fronds than in the roots especially when exposed to high As concentrations (>50 mg kg(-1)). The activities of enzymatic antioxidants (superoxide dismutase, catalase, ascorbate peroxidase, guaiacol peroxidase) in Chinese brake followed the same trends as plant biomass, increasing with soil As up to 20 mg kg(-1) and then decreased. The results indicated though both enzymatic and non-enzymatic antioxidants played significant roles in As detoxification and hyperaccumulation in Chinese brake, the former is more important at low As exposure (< or =20 mg kg(-1)), whereas the latter is more critical at high As exposure (50-200 mg kg(-1)).  相似文献   

14.
The effects of Cd, Ni, Pb, and Zn on arsenic accumulation by the arsenic hyperaccumulator Pteris vittata were investigated in a greenhouse study. P. vittata was grown for 8 weeks in an arsenic-contaminated soil (131 mg As kg(-1)), which was spiked with 50 or 200 mg kg(-1) Cd, Ni, Pb, or Zn (as nitrates). P. vittata was effective in taking up arsenic (up to 4100 mg kg(-1)) and transporting it to the fronds, but little of the metals. Arsenic bioconcentration factors ranged from 14 to 36 and transfer factors ranged from 16 to 56 in the presence of the metals, both of which were reduced with increasing metal concentration. Fern biomass increased as much as 12 times compared to the original dry weight after 8 weeks of growth (up to 19 g per plant). Greater concentrations of Cd, Ni, and Pb resulted in greater catalase activity in the plant. Most of the arsenic in the plant was present as arsenite, the reduced form, indicating little impact of the metals on plant arsenic reduction. This research demonstrates the capability of P. vittata in hyperaccumulating arsenic from soils in the presence of heavy metals.  相似文献   

15.
A glass house experiment was conducted to investigate the effect of soil arsenic on photosynthetic pigments, chlorophyll-a and -b, and their correlations with rice yield and growth. The experiment was designed with three replications of six arsenic treatments viz. control, 10, 20, 30, 60, 90 mg of As kg(-1) soil. Arsenic concentration in initial soil, to which the above mentioned concentrations of arsenic were added, was 6.44+/-0.24 mg kg(-1). Both chlorophyll-a and -b contents in rice leaf decreased significantly (p<0.05) with the increase of soil arsenic concentrations. No rice plant survived up to maturity stage in soil treated with 60 and 90 mg of As kg(-1). The highest chlorophyll-a and -b contents were observed in control treatment (2.62+/-0.24 and 2.07+/-0.14 mg g(-1) were the average values of chlorophyll-a and -b, respectively of the five rice varieties) while 1.50+/-0.20 and 1.04+/-0.08 mg g(-1) (average of five rice varieties) of chlorophyll-a and -b, respectively were the lowest. The content of photosynthetic pigments in these five rice varieties did not differ significantly (p>0.05) from each other in control treatment though they differed significantly (p<0.05) from each other in 30 mg of As kg(-1) soil treatment. Among the five rice varieties, chlorophyll content in BRRI dhan 35 was found to be mostly affected with the increase of soil arsenic concentration while BRRI hybrid dhan 1 was least affected. Well correlations were observed between chlorophyll content and rice growth and yield suggesting that arsenic toxicity affects the photosynthesis which ultimately results in the reduction of rice growth and yield.  相似文献   

16.
Much research has focused on changes in solubility and mobility of trace metals in soils under incubation. In this experiment, changes in solubility and mobility of trace metals (Pb, Cu and As) and Fe in two contaminated soils from Tampa, Florida and Montreal, Canada were examined. Soils of 30 g were packed in columns and were incubated for 3-80 days under water-flooding incubation. Following incubation, metal concentrations in pore water (water soluble) and in 0.01 M CaCl2 leachates (exchangeable+water soluble) were determined. While both soils were contaminated with Pb (1600-2500 mg kg(-1)), Tampa soil was also contaminated with As (230 mg kg(-1)). Contrast to the low pH (3.8) of Tampa soil, Montreal soil had an alkaline pH of 7.7 and high Ca of 1.6%. Concentrations of Fe(II) increased with incubation time in the Tampa soil mainly due to reductive Fe dissolution, but decreased in the Montreal soil possibly due to formation of FeCO3. The inverse relationship between concentrations of Pb and Fe(II) in pore water coupled with the fact that Fe(II) concentrations were much greater than those of Pb in pore water may suggest the importance of Fe(II) in controlling Pb solubility in soils. However, changes in concentrations of Fe(II), Pb, Cu and As in pore water with incubation time were similar to those in leachate, i.e. water soluble metals were positively related to exchangeable metals in the two contaminated soils. This research suggests the importance of Fe in controlling metal solubility and mobility in soils under water-flooded incubation.  相似文献   

17.
Chromated copper arsenate (CCA)-treated wood has been widely used in the Southeastern United States to protect wood products from microbial and fungal decay. The aims of this study were to (1). determine the distribution of arsenic (As), chromium (Cr), and copper (Cu), in soils surrounding CCA-treated wood structures such as decks, fences and poles; and (2). evaluate the impacts of these structures on As, Cr and Cu loading of the soils. Profile and lateral soil samples were collected under CCA-treated decks and adjacent to poles and fences. The results showed elevation of As, Cr and Cu concentrations close to and under the structures, with mean As concentrations as high as 23 mg x kg(-1) close to utility poles compared with less than 3 mg x kg (-1) at distances of about 1.5 m away. Concentrations of As, Cr, and Cu decreased with depth in areas close to CCA-treated poles. However, these results were only apparent in relatively new structures. A combination of weathering and leaching with time may have reduced the impact in older poles. Increased concentrations of As, Cu and Cr were also observed close to CCA-treated decks and fences, with age showing a similar impact. These results are helpful for CCA-treated wood product users to determine the safe use of these structures.  相似文献   

18.
Jin CW  Zheng SJ  He YF  Zhou GD  Zhou ZX 《Chemosphere》2005,59(8):1151-1159
The consumption of heavy metals is detrimental to human health and most countries restrict the concentration of metals such as lead (Pb) in food and beverages. Recent tests have detected high Pb concentrations in certain commercial brands of tea leaves and this finding has raised concerns for both producers and consumers. To investigate what factors may be contributing to the increase in Pb accumulation in the tea leaves we collected tea leaves and soils from tea producing areas and analyzed them for Pb concentration, pH and organic matter content. The result showed the Pb concentration of 47% investigated tea leaves samples was beyond 2 mg kg(-1), the permissible levels given by China. The total Pb concentration in the surface and subsurface soil layers averaged 36.4 and 32.2 mg kg(-1), respectively which fall below of the 60 mg kg(-1) limit provided for organic tea gardens in China. The pH of the tea garden soils was severely acidic with the lowest pH of 3.37. Soils under older tea gardens tended to have a lower pH and a higher Pb bioavailability which was defined as the amount of lead extracted by CaCl2 solution than those under younger tea gardens. We found that the concentration of bioavailable Pb and the percentage of bioavailable Pb (bioavailable Pb relative to total Pb concentration) were positively correlated with soil H+ activity and soil organic matter content, and the organic matter accumulation contribute more effects on Pb bioavailability in these two factors. We conclude that soil acidification and organic matter accumulation could contribute to increasing Pb bioavailability in soil and that these could increase Pb uptake and accumulation in the tea leaves.  相似文献   

19.
Vineyard soils have been contaminated by Cu as a consequence of the long-term use of Cu salts as fungicides against mildew. This work aimed at identifying which soil parameters were the best related to Cu bioavailability, as assessed by measuring the concentrations of Cu in shoots and roots of tomato cropped (in lab conditions) over a range of 29 (24 calcareous and five acidic) Cu-contaminated topsoils from a vine-growing area (22-398 mg Cu kg(-1)). Copper concentrations in tomato shoots remained in the adequate range and were independent of soil properties and soil Cu content. Conversely, strong, positive correlations were found between root Cu concentration, total soil Cu, EDTA- or K-pyrophosphate-extractable Cu and organic C contents in the 24 calcareous soils, suggesting a prominent role of organic matter in the retention and bioavailability of Cu. Such relations were not observed when including the five acidic soils in the investigated population, suggesting a major pH effect. Root Cu concentration appeared as a much more sensitive indicator of soil Cu bioavailability than shoot Cu concentration. Simple extractions routinely used in soil testing procedures (total and EDTA-extractable Cu) were adequate indicators of Cu bioavailability for the investigated calcareous soils, but not when different soil types were considered (e.g. acidic versus calcareous soils).  相似文献   

20.
Microbial biomass carbon (Cmic) and soil enzyme activities were measured at 12 sites along a gradient of former emissions of phosphate fertilizer production. Seven years after close down of operation, still moderate to high total concentrations of the dust constituents cadmium (up to 33 mg kg-1 dw), fluoride (5300 mg kg-1 dw) and phosphorous (120,000 mg kg-1 dw) were found in topsoils of contaminated sites. Accumulation of partially decomposed plant matter, soil respiration and dehydrogenase activity paralleled the increase of dust deposits, whereas microbial biomass decreased along the gradient. A significant negative correlation was obtained between the Cmic-to-Corg-ratio and the concentration of contaminants. In contrast, the Cmic-specific respiration (qCO2) and the dehydrogenase activity-to-Cmic-ratio were positively correlated. The low Cmic-values and the enhanced activities in the contaminated soils are suggested as a response of microbial communities to environmental stress or ecosystem disturbances. The apparently missing detrimental effects of the alkaline deposits on soil microbial activities are probably due to the low bioavailability of contaminants in the calcareous soil.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号