首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Cross-ecosystem movements of material and energy, particularly reciprocal resource fluxes across the freshwater-land interface, have received major attention. Freshwater ecosystems may receive higher amounts of subsidies (i.e., resources produced outside the focal ecosystem) than terrestrial ecosystems, potentially leading to increased secondary production in freshwaters. Here we used a meta-analytic approach to quantify the magnitude and direction of subsidy inputs across the freshwater-land interface and to determine subsequent responses in recipient animals. Terrestrial and freshwater ecosystems differed in the magnitude of subsidies they received, with aquatic ecosystems generally receiving higher subsidies than terrestrial ecosystems. Surprisingly, and despite the large discrepancy in magnitude, the contribution of these subsidies to animal carbon inferred from stable isotope composition did not differ between freshwater and terrestrial ecosystems, likely due to the differences in subsidy quality. The contribution of allochthonous subsidies was highest to primary consumers and predators, suggesting that bottom-up and top-down effects may be affected considerably by the input of allochthonous resources. Future work on subsidies will profit from a food web dynamic approach including indirect trophic interactions and propagating effects.  相似文献   

2.
Spatial resource subsidies can greatly affect the composition and dynamics of recipient communities. Caves are especially tractable for studying spatial subsidies because primary productivity is absent. Here, we performed an ecosystem-level manipulation experiment to test the direct influence of detrital subsidies on community structure in terrestrial cave ecosystems. After performing baseline censuses of invertebrates, we removed all organic material from 12 caves and constructed exclusion boxes to prevent natural resource inputs. Next, we stocked each cave with standardized quantities of two major natural subsidies to caves: leaves (leaf packs) and carcasses (commercially supplied rodents), and measured the invertebrate colonization and utilization of these resources for 23 months. Over the course of the experiment, 102 morphospecies were observed. Diplopods and collembolans were most abundant on leaf packs, and dipteran larvae and collembolans were most abundant on the rats. On average, caves receiving either treatment did not differ in species richness, but abundance was significantly higher in rat caves over both the duration of the experiment and the temporal "life" of the individual resources, which were restocked upon exhaustion. Post-manipulation invertebrate communities differed predictably depending on the type of subsidy introduced. Over the course of the experiment, caves that received the same subsidy clustered together based on community composition. In addition, the invertebrate community utilizing the resource changed over the duration of the two-year experiment, and evidence of succession (i.e., directional change) was observed. Results from this study demonstrate how allochthonous resources can drive the community dynamics of terrestrial invertebrates in cave ecosystems and highlight the need for consideration of the surface environment when managing and protecting these unique habitats.  相似文献   

3.
Marcarelli AM  Baxter CV  Mineau MM  Hall RO 《Ecology》2011,92(6):1215-1225
Although the study of resource subsidies has emerged as a key topic in both ecosystem and food web ecology, the dialogue over their role has been limited by separate approaches that emphasize either subsidy quantity or quality. Considering quantity and quality together may provide a simple, but previously unexplored, framework for identifying the mechanisms that govern the importance of subsidies for recipient food webs and ecosystems. Using a literature review of > 90 studies of open-water metabolism in lakes and streams, we show that high-flux, low-quality subsidies can drive freshwater ecosystem dynamics. Because most of these ecosystems are net heterotrophic, allochthonous inputs must subsidize respiration. Second, using a literature review of subsidy quality and use, we demonstrate that animals select for high-quality food resources in proportions greater than would be predicted based on food quantity, and regardless of allochthonous or autochthonous origin. This finding suggests that low-flux, high-quality subsidies may be selected for by animals, and in turn may disproportionately affect food web and ecosystem processes (e.g., animal production, trophic energy or organic matter flow, trophic cascades). We then synthesize and review approaches that evaluate the role of subsidies and explicitly merge ecosystem and food web perspectives by placing food web measurements in the context of ecosystem budgets, by comparing trophic and ecosystem production and fluxes, and by constructing flow food webs. These tools can and should be used to address future questions about subsidies, such as the relative importance of subsidies to different trophic levels and how subsidies may maintain or disrupt ecosystem stability and food web interactions.  相似文献   

4.
Greenwood MJ  McIntosh AR 《Ecology》2008,89(6):1489-1496
Landscape-driven processes impact the magnitude and direction of cross-ecosystem resource subsidies, but they may also control consumers' numerical and functional responses by altering habitat availability. We investigated effects of the interaction between habitat availability and subsidy level on populations of a riparian fishing spider, Dolomedes aquaticus, using a flood disturbance gradient in the Waimakariri River catchment, New Zealand. D. aquaticus predominantly eat aquatic prey as they hunt from the water surface. However, D. aquaticus biomass peaked at rivers with intermediate flood disturbance, rather than at less flood-prone rivers where the biomass of aquatic insect prey was markedly higher. Flooding positively influenced spider habitat quality, and an experimental manipulation at stable rivers indicated that unembedded cobbles, preferred D. aquaticus habitat, were a limiting factor, preventing response to the increased prey resource at stable sites. Potential terrestrial prey abundance was low, did not vary across the disturbance gradient, and is likely to have been a much smaller component of the fishing spiders' diet than aquatic insect prey. Thus landscape-driven factors not only controlled the magnitude of resource subsidies, but also influenced the ability of consumers to respond to them by altering the physical nature of the ecosystem boundary.  相似文献   

5.
Matthews B  Mazumder A 《Ecology》2006,87(11):2800-2812
The significance of spatial subsidies depends on consumer resource interactions in the recipient habitat. Lakes are subsidized by terrestrial carbon sources, but the pathways of allochthonous carbon through lake food webs are complex and not well understood. Zooplankton vertically partition resources within stratified lakes in response to life history trade-offs that are governed by predators, the quantity and quality of food, and abiotic conditions (e.g., UV, temperature, and viscosity). We measured habitat specialization of zooplankton in an oligotrophic lake where allochthonous and autochthonous resources varied with depth. During stratification, the quantity and quality of zooplankton food was highest in the hypolimnion. We used a yearlong time series of the delta13C of zooplankton and particulate organic matter (POM) to determine which zooplankton species exploited hypolimnetic rather than epilimnetic resources. Because the delta13C of POM decreased with depth, we used the delta13C of zooplankton to detect inter- and intraspecific variation in habitat selection. We incubated Daphnia pulex at discrete depths in the water column to confirm that the delta13C of zooplankton can indicate habitat specialization. Zooplankton that specialized in the epilimnion relied more on allochthonous carbon sources than those that specialized in the hypolimnion. Therefore, the fate of allochthonous carbon subsidies to lakes depends on spatially explicit consumer-resource interactions.  相似文献   

6.
In classical theory, species are assumed to achieve dominance through competitive exclusion, but if food resources are limiting, cross-habitat trophic subsidies could also underpin dominance. The impact of dominant species on community dynamics may depend on the energy base of population size. We report on an unusual, spatially subsidized population of a tropical, stream-dwelling crab that dominates the benthic fauna of a Kenyan stream. Diet and stable isotope analyses indicated that this crab is a true omnivore, with terrestrial subsidies dominating both plant and animal resources. Unusually, the animal prey included almost no aquatic invertebrates. Instead, a single species of ant constituted approximately 35% of the annual diet (stomach contents analysis) and up to 90% of assimilated nitrogen (estimates from stable isotope analysis). Ants may be pivotal to enabling crab dominance, and this crab may be largely disconnected from the local trophic network for its dietary needs. The paucity of other invertebrates in the stream community suggests that this super-dominant crab is a strong interactor that suppresses aquatic invertebrate populations. Common stabilizing attributes of spatially subsidized food webs (e.g., asynchronous prey availability, wide feeding niche, consumer migration) were absent from this system, and although apparently stable, it may be vulnerable to disturbance in the donor habitat.  相似文献   

7.
Hein AM  Gillooly JF 《Ecology》2011,92(3):549-555
Ecological theory suggests that both dispersal limitation and resource limitation can exert strong effects on community assembly. However, empirical studies of community assembly have focused almost exclusively on communities with a single trophic level. Thus, little is known about the combined effects of dispersal and resource limitation on assembly of communities with multiple trophic levels. We performed a landscape-scale experiment using spatially arranged mesocosms to study effects of dispersal and resource limitation on the assembly dynamics of aquatic invertebrate communities with two trophic levels. We found that interplay between dispersal and resource limitation regulated the assembly of predator and prey trophic levels in these pond communities. Early in assembly, predators and prey were strongly dispersal limited, and resource (i.e., prey) availability did not influence predator colonization. Later in assembly, after predators colonized, resource limitation was the strongest driver of predator abundance, and dispersal limitation played a negligible role. Thus, habitat isolation affected predators directly by reducing predator colonization rate, and indirectly through the effect of distance on prey availability. Dispersal and resource limitation of predators resulted in a transient period in which predators were absent or rare in isolated habitats. This period may be important for understanding population dynamics of vulnerable prey species. Our findings demonstrate that dispersal and resource limitation can jointly regulate assembly dynamics in multi-trophic systems. They also highlight the need to develop a temporal picture of the assembly process in multi-trophic communities because the availability and spatial distribution of limiting resources (i.e., prey) and the distribution of predators can shift radically over time.  相似文献   

8.
Paetzold A  Smith M  Warren PH  Maltby L 《Ecology》2011,92(9):1711-1716
Resource subsidies between habitats are common and create the potential for the propagation of environmental impacts across system boundaries. However, recent understanding of the potential for subsidy-mediated cross-system impact propagations is limited and primarily based on passive flows of nutrients and detritus or short-term effects. Here, we assess the effects of sustained alterations in aquatic insect emergence (active subsidy pathway), due to chronic stream pollution, for riparian spiders. The sustained reduction in aquatic insect densities at the polluted reaches resulted in a marked decline in web spider population density and a shift in spider community composition. Our results provide the first evidence that stream pollution can control populations and community structure of terrestrial predators via sustained alterations in aquatic subsidies, emphasizing the role of subtle trophic linkages in the transmission of environmental impacts across ecosystem boundaries.  相似文献   

9.
Habitat loss, trophic collapse, and the decline of ecosystem services   总被引:8,自引:0,他引:8  
The provisioning of sustaining goods and services that we obtain from natural ecosystems is a strong economic justification for the conservation of biological diversity. Understanding the relationship between these goods and services and changes in the size, arrangement, and quality of natural habitats is a fundamental challenge of natural resource management. In this paper, we describe a new approach to assessing the implications of habitat loss for loss of ecosystem services by examining how the provision of different ecosystem services is dominated by species from different trophic levels. We then develop a mathematical model that illustrates how declines in habitat quality and quantity lead to sequential losses of trophic diversity. The model suggests that declines in the provisioning of services will initially be slow but will then accelerate as species from higher trophic levels are lost at faster rates. Comparison of these patterns with empirical examples of ecosystem collapse (and assembly) suggest similar patterns occur in natural systems impacted by anthropogenic change. In general, ecosystem goods and services provided by species in the upper trophic levels will be lost before those provided by species lower in the food chain. The decrease in terrestrial food chain length predicted by the model parallels that observed in the oceans following overexploitation. The large area requirements of higher trophic levels make them as susceptible to extinction as they are in marine systems where they are systematically exploited. Whereas the traditional species-area curve suggests that 50% of species are driven extinct by an order-of-magnitude decline in habitat abundance, this magnitude of loss may represent the loss of an entire trophic level and all the ecosystem services performed by the species on this trophic level.  相似文献   

10.
It has been suggested that differences in body size between consumer and resource species may have important implications for interaction strengths, population dynamics, and eventually food web structure, function, and evolution. Still, the general distribution of consumer-'resource body-size ratios in real ecosystems, and whether they vary systematically among habitats or broad taxonomic groups, is poorly understood. Using a unique global database on consumer and resource body sizes, we show that the mean body-size ratios of aquatic herbivorous and detritivorous consumers are several orders of magnitude larger than those of carnivorous predators. Carnivorous predator-prey body-size ratios vary across different habitats and predator and prey types (invertebrates, ectotherm, and endotherm vertebrates). Predator-prey body-size ratios are on average significantly higher (1) in freshwater habitats than in marine or terrestrial habitats, (2) for vertebrate than for invertebrate predators, and (3) for invertebrate than for ectotherm vertebrate prey. If recent studies that relate body-size ratios to interaction strengths are general, our results suggest that mean consumer-resource interaction strengths may vary systematically across different habitat categories and consumer types.  相似文献   

11.
In coastal areas of the North Pacific Ocean, annual returns of spawning salmon provide a substantial influx of nutrients and organic matter to streams and are generally believed to enhance the productivity of recipient ecosystems. Loss of this subsidy from areas with diminished salmon runs has been hypothesized to limit ecosystem productivity in juvenile salmon rearing habitats (lakes and streams), thereby reinforcing population declines. Using five to seven years of data from an Alaskan stream supporting moderate salmon densities, we show that salmon predictably increased stream water nutrient concentrations, which were on average 190% (nitrogen) and 390% (phosphorus) pre-salmon values, and that primary producers incorporated some of these nutrients into tissues. However, benthic algal biomass declined by an order of magnitude despite increased nutrients. We also measured changes in stream ecosystem metabolic properties, including gross primary productivity (GPP) and ecosystem respiration (ER), from three salmon streams by analyzing diel measurements of oxygen concentrations and stable isotopic ratios (delta O-O2) within a Bayesian statistical model of oxygen dynamics. Our results do not support a shift toward higher primary productivity with the return of salmon, as is expected from a nutrient fertilization mechanism. Rather, net ecosystem metabolism switched from approximately net autotrophic (GPP > or = ER) to a strongly net heterotrophic state (GPP < ER) in response to bioturbation of benthic habitats by salmon. Following the seasonal arrival of salmon, GPP declined to <12% of pre-salmon rates, while ER increased by over threefold. Metabolism by live salmon could not account for the observed increase in ER early in the salmon run, suggesting salmon nutrients and disturbance enhanced in situ heterotrophic respiration. Salmon also changed the physical properties of the stream, increasing air-water gas exchange by nearly 10-fold during peak spawning. We suggest that management efforts to restore salmon ecosystems should consider effects on ecosystem metabolic properties and how salmon disturbance affects the incorporation of marine-derived nutrients into food webs.  相似文献   

12.
We present a new explanation and empirical evidence showing that rural subsidies to large farmers tend to be associated with low land productivity and excessive deforestation. We develop a lobbying model where wealthy farmers trade bribes or political contributions to government politicians in exchange for subsidies; farmers are able to tilt the terms of the bargaining game with policy makers in their favor by pre-committing to an inefficient choice of semi-fixed inputs. Government proneness to accept political contributions or bribes and its willingness to provide subsidies cause farmers to adopt inefficient modes of production as a mechanism to capture such subsidies. Our predictions are consistent with stylized facts on land use in Latin America, and suggest that subsidy schemes have been counterproductive—distorting and constraining development, and triggering excessive depletion of natural resources. We validate some of the predictions of the model through econometric analyses using a new data set for nine countries in Latin America.  相似文献   

13.
Fluxes of organic matter across habitat boundaries are common in food webs. These fluxes may strongly influence community dynamics, depending on the extent to which they are used by consumers. Yet understanding of basal resource use by consumers is limited, because describing trophic pathways in complex food webs is difficult. We quantified resource use for zooplankton, zoobenthos, and fishes in four low-productivity lakes, using a Bayesian mixing model and measurements of hydrogen, carbon, and nitrogen stable isotope ratios. Multiple sources of uncertainty were explicitly incorporated into the model. As a result, posterior estimates of resource use were often broad distributions; nevertheless, clear patterns were evident. Zooplankton relied on terrestrial and pelagic primary production, while zoobenthos and fishes relied on terrestrial and benthic primary production. Across all consumer groups terrestrial reliance tended to be higher, and benthic reliance lower, in lakes where light penetration was low due to inputs of terrestrial dissolved organic carbon. These results support and refine an emerging consensus that terrestrial and benthic support of lake food webs can be substantial, and they imply that changes in the relative availability of basal resources drive the strength of cross-habitat trophic connections.  相似文献   

14.
We present a new explanation and empirical evidence showing that rural subsidies to large farmers tend to be associated with low land productivity and excessive deforestation. We develop a lobbying model where wealthy farmers trade bribes or political contributions to government politicians in exchange for subsidies; farmers are able to tilt the terms of the bargaining game with policy makers in their favor by pre-committing to an inefficient choice of semi-fixed inputs. Government proneness to accept political contributions or bribes and its willingness to provide subsidies cause farmers to adopt inefficient modes of production as a mechanism to capture such subsidies. Our predictions are consistent with stylized facts on land use in Latin America, and suggest that subsidy schemes have been counterproductive—distorting and constraining development, and triggering excessive depletion of natural resources. We validate some of the predictions of the model through econometric analyses using a new data set for nine countries in Latin America.  相似文献   

15.
Anderson WB  Wait DA  Stapp P 《Ecology》2008,89(3):660-670
As the theoretical bases for the dynamics of spatially subsidized communities emerge, ecologists question whether spatially subsidized communities exhibit similar structure or dynamics to communities that receive strongly pulsed resources. In both cases, communities may be structured by responses to resources that are potentially absent at any given point in time (pulsed communities) or space (subsidized communities), even if pulsed resources are part of the in situ productivity of the system or the subsidies arrive as a relatively constant input from a nearby system. The potential for significant spatial or temporal resource limitation, therefore, may be a key factor influencing in similar ways the persistence of populations, the structure and dynamics of communities, and the evolution of specific life history traits. In most complex systems, however, multiple resources may arrive for various trophic entities at various points in time and from various points in space, and thus it may be difficult to separate or compare the dynamics of spatially subsidized and pulsed systems. In this paper, we explore the effects of interactions between pulses and subsidies in plant and animal populations and communities on highly pulsed and variably subsidized islands in the Gulf of California. While many of the plant and animal communities on the unsubsidized islands in this system respond to pulses of rain in classic ways, responses to these rain pulses on islands subsidized by seabird guano or other marine resources are quite different and variable, and depend on a combination of life history characteristics, physiology, competitive interactions, and trophic relationships. These variable responses to rain pulses then translate into large differences in dynamics and community structure of subsidized vs. unsubsidized islands. Indeed, most systems experience both temporal pulses and spatial subsidies. When considered in tandem, complementary or synergistic effects of the multiple, temporally and spatially variable resources may emerge that help explain complex food web structure and dynamics.  相似文献   

16.
The importance of allochthonous carbon to the productivity of stream ecosystems in temperate ecozones is well understood, but this relationship is less established in oligotrophic lakes. The nearshore littoral zones, at the interface of terrestrial and aquatic systems, are areas where the influence of terrestrial subsidies is likely greatest. We investigated the response of nearshore communities to variation in the quantity and composition of allochthonous materials, determined the landscape characteristics that regulate the variation of this subsidy, and explored the potential for terrestrial restoration practices to influence the export of organic matter to lakes. Stepwise multiple regressions revealed that diversity of nearshore macroinvertebrate families increased with the amount of fine particulate organic matter (FPOM) captured in sediment traps. The quantity of FPOM (g) increased with forest cover, and the relative amount of FPOM (percentage of total particulate material) in the traps increased with surface area of wetland in the catchments. These models suggest that terrestrially derived subsidies are important in smelter-impacted watersheds, and that the restoration of forests and wetlands will speed the return of nearshore consumer community diversity in industrially damaged lakes.  相似文献   

17.
《Ecological modelling》2003,161(3):183-194
We present a model of macroinvertebrate trophic structure, detrital cycling, and dissolved oxygen (DO) dynamics in shallow freshwater wetlands with varying allochthonous subsidies. The model is based on field data of primary and secondary production in municipal wastewater-fed and river-fed constructed wetlands in central Ohio, USA. State variables for primary production include macrophyte, periphyton, and metaphyton biomass. Macroinvertebrate biomass is segregated by functional feeding group and includes collectors, scrapers, shredders, and predators. Model simulations demonstrate the association of water column dissolved oxygen, primary production, allochthonous organic matter, and the structure of the macroinvertebrate community. The quality and quantity of allochthonous carbon is shown to have considerable importance, not only as a food source but also as an oxygen sink. Allochthonous carbon equivalent to 5% of autochthonous production increases the macroinvertebrate standing crop by 4–17%, depending on particle size. A large allochthonous subsidy also reduces the simulated average diel dissolved oxygen and increases the percentage of hypoxia-tolerant macroinvertebrates. Simulations show both the heterotrophic response and the changes in community structure brought about by an allochthonous subsidy.  相似文献   

18.
Within mosaic landscapes, many organisms depend on attributes of the environment that operate over scales ranging from a single habitat patch to the entire landscape. One such attribute is resource distribution. Organisms' reliance on resources from within a local patch vs. those found among habitats throughout the landscape will depend on local habitat quality, patch quality, and landscape composition. The ability of individuals to move among complementary habitat types to obtain various resources may be a critical mechanism underlying the dynamics of animal populations and ultimately the level of biodiversity at different spatial scales. We examined the effects that local habitat type and landscape composition had on offspring production and survival of the solitary bee Osmia lignaria in an agri-natural landscape in California (U.S.A.). Female bees were placed on farms that did not use pesticides (organic farms), on farms that did use pesticides (conventional farms), or in seminatural riparian habitats. We identified pollens collected by bees nesting in different habitat types and matched these to pollens of flowering plants from throughout the landscape. These data enabled us to determine the importance of different plant species and habitat types in providing food for offspring, and how this importance changed with landscape and local nesting-site characteristics. We found that increasing isolation from natural habitat significantly decreased offspring production and survival for bees nesting at conventional farms, had weaker effects on bees in patches of seminatural habitat, and had little impact on those at organic farm sites. Pollen sampled from nests showed that females nesting in both farm and seminatural habitats relied on pollen from principally native plant species growing in seminatural habitat. Thus connectivity among habitats was critical for offspring production. Females nesting on organic farms were buffered to isolation effects by switching to floral resources growing at the farm site when seminatural areas were too distant. Overall local habitat conditions (farm management practices) can help bolster pollinators, but maintaining functional connectivity among habitats will likely be critical for persistence of pollinator populations as natural habitats are increasingly fragmented by human activities.  相似文献   

19.
Habitat heterogeneity can generate intraspecific diversity through local adaptation of populations. While it is becoming increasingly clear that population diversity can increase stability in species abundance, less is known about how population diversity can benefit consumers that can integrate across population diversity in their prey. Here we demonstrate cascading effects of thermal heterogeneity on trout-salmon interactions in streams where rainbow trout rely heavily on the seasonal availability of anadromous salmon eggs. Water temperature in an Alaskan stream varied spatially from 5 degrees C to 17.5 degrees C, and spawning sockeye salmon showed population differentiation associated with this thermal heterogeneity. Individuals that spawned early in cool regions of the 5 km long stream were genetically differentiated from those spawning in warmer regions later in the season. Sockeye salmon spawning generates a pulsed resource subsidy that supports the majority of seasonal growth in stream-dwelling rainbow trout. The spatial and temporal structuring of sockeye salmon spawn timing in our focal stream extended the duration of the pulsed subsidy compared to a thermally homogeneous stream with a single population of salmon. Further, rainbow trout adopted movement strategies that exploited the multiple pulses of egg subsidies in the thermally heterogeneous stream. Fish that moved to track the resource pulse grew at rates about 2.5 times higher than those that remained stationary or trout in the reference stream with a single seasonal pulse of eggs. Our results demonstrate that habitat heterogeneity can have important effects on the population diversity of dominant species, and in turn, influence their value to species that prey upon them. Therefore, habitat homogenization may have farther-reaching ecological effects than previously considered.  相似文献   

20.
Seagrass meadows are among the most productive ecosystems in the marine environment. It has been speculated that much of this production is exported to adjacent ecosystems via the movements of organisms. Our study utilized stable isotopes to track seagrass-derived production into offshore food webs in the northeastern Gulf of Mexico. We found that gag grouper (Myctereoperca microlepis) on reefs as far as 90 km from the seagrass beds incorporate a significant portion of seagrass-derived biomass. The muscle tissue of gag grouper, a major fisheries species, was composed on average of 18.5–25% seagrass habitat-derived biomass. The timing of this annual seagrass subsidy appears to be important in fueling gag grouper egg production. The δ34S values of gag grouper gonad tissues varied seasonally and were δ34S depleted during the spawning season indicating that gag utilize the seagrass-derived biomass to support reproduction. If such large scale trophic subsidies are typical of temperate seagrass systems, then loss of seagrass production or habitat would result in a direct loss of offshore fisheries productivity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号