首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Attached algae play a minor role in conceptual and empirical models of lake ecosystem function but paradoxically form the energetic base of food webs that support a wide variety of fishes. To explore the apparent mismatch between perceived limits on contributions of periphyton to whole-lake primary production and its importance to consumers, we modeled the contribution of periphyton to whole-ecosystem primary production across lake size, shape, and nutrient gradients. The distribution of available benthic habitat for periphyton is influenced by the ratio of mean depth to maximum depth (DR = z/ z(max)). We modeled total phytoplankton production from water-column nutrient availability, z, and light. Periphyton production was a function of light-saturated photosynthesis (BPmax) and light availability at depth. The model demonstrated that depth ratio (DR) and light attenuation strongly determined the maximum possible contribution of benthic algae to lake production, and the benthic proportion of whole-lake primary production (BPf) declined with increasing nutrients. Shallow lakes (z < or =5 m) were insensitive to DR and were dominated by either benthic or pelagic primary productivity depending on trophic status. Moderately deep oligotrophic lakes had substantial contributions by benthic primary productivity at low depth ratios and when maximum benthic photosynthesis was moderate or high. Extremely large, deep lakes always had low fractional contributions of benthic primary production. An analysis of the world's largest lakes showed that the shapes of natural lakes shift increasingly toward lower depth ratios with increasing depth, maximizing the potential importance of littoral primary production in large-lake food webs. The repeatedly demonstrated importance of periphyton to lake food webs may reflect the combination of low depth ratios and high light penetration characteristic of large, oligotrophic lakes that in turn lead to substantial contributions of periphyton to autochthonous production.  相似文献   

2.
Zeug SC  Winemiller KO 《Ecology》2008,89(6):1733-1743
Algal carbon has been increasingly recognized as the primary carbon source supporting large-river food webs; however, many of the studies that support this contention have focused on lotic main channels during low-flow periods. The flow variability and habitat-heterogeneity characteristic of these systems has the potential to significantly influence food web structure and must be integrated into models of large-river webs. We used stable-isotope analysis and IsoSource software to model terrestrial and algal sources of organic carbon supporting consumer taxa in the main channel and oxbow lakes of the Brazos River, Texas, USA, during a period of frequent hydrologic connectivity between these habitat types. Standardized sampling was conducted monthly to collect production sources and consumer species used in isotopic analysis. Predictability of hydrologic connections between habitat types was based on the previous 30 years of flow data. IsoSource mixing models identified terrestrial C3 macrophytes (riparian origin) as the primary carbon source supporting virtually all consumers in the main channel and most consumers in oxbow lakes. Small-bodied consumers (<100 mm) in oxbow lakes assimilated large fractions of algal carbon whereas this pattern was not apparent in the main channel. Estimates of detritivore trophic positions based on delta15N values indicated that terrestrial material was likely assimilated via invertebrates rather than directly from detritus. High flows in the river channel influenced algal standing stock, and differences in the importance of terrestrial and algal production sources among consumers in channel vs. oxbow habitats were associated with patterns of flooding. The importance of terrestrial material contradicts the findings of recent studies of large-river food webs that have emphasized the importance of algal carbon and indicates that there can be significant spatial, temporal, and taxonomic variation in carbon sources supporting consumers in large rivers.  相似文献   

3.
Finlay JC  Vredenburg VT 《Ecology》2007,88(9):2187-2198
Trophic linkages between terrestrial and aquatic ecosystems are increasingly recognized as important yet poorly known features of food webs. Here we describe research to understand the dynamics of lake food webs in relation to a native riparian amphibian and its interaction with introduced trout. The mountain yellow-legged frog Rana muscosa is endemic to alpine watersheds of the Sierra Nevada Mountains and the Transverse Ranges of California, but it has declined to a small fraction of its historical distribution and abundance. Although remaining frogs and introduced trout feed in different habitats of alpine lakes, our stable-isotope analyses clearly show that the same resource base of benthic invertebrates sustains their growth. During one period, insect emergence from naturally fishless lakes was nearly 20-fold higher compared to adjacent lakes with trout, showing that fish reduce availability of aquatic prey to amphibious and terrestrial consumers. Although trout cannot prey on adult frogs due to gape limitation, foraging post-metamorphic frogs are 10 times more abundant in the absence of trout, suggesting an important role for competition for prey by trout in highly unproductive alpine watersheds. Most Sierran lakes contain fish, and those that do not are usually small isolated ponds; in our study, these two lake types supported the lowest densities of post-metamorphic frogs, and these frogs were less reliant on local, benthic sources of productivity. Since Rana muscosa was formerly the most abundant vertebrate in the Sierra Nevada, the reduction in energy flow from lake benthos to this consumer due to fish introductions may have had negative consequences for its numerous terrestrial predators, many of which have also declined. We suggest that disruptions of trophic connections between aquatic and terrestrial food webs are an important but poorly understood consequence of fish introduction to many thousands of montane lakes and streams worldwide and may contribute to declines of native consumers in riparian habitats.  相似文献   

4.
The concept of trophic levels is one of the oldest in ecology and informs our understanding of energy flow and top-down control within food webs, but it has been criticized for ignoring omnivory. We tested whether trophic levels were apparent in 58 real food webs in four habitat types by examining patterns of trophic position. A large proportion of taxa (64.4%) occupied integer trophic positions, suggesting that discrete trophic levels do exist. Importantly however, the majority of those trophic positions were aggregated around integer values of 0 and 1, representing plants and herbivores. For the majority of the real food webs considered here, secondary consumers were no more likely to occupy an integer trophic position than in randomized food webs. This means that, above the herbivore trophic level, food webs are better characterized as a tangled web of omnivores. Omnivory was most common in marine systems, rarest in streams, and intermediate in lakes and terrestrial food webs. Trophic-level-based concepts such as trophic cascades may apply to systems with short food chains, but they become less valid as food chains lengthen.  相似文献   

5.
The relative contribution of aquatic vs. terrestrial organic matter to the diet of consumers in fluvial environments and its effects on bioaccumulation of contaminants such as mercury (Hg) remain poorly understood. We used stable isotopes of carbon and nitrogen in a gradient approach (consumer isotope ratio vs. periphyton isotope ratio) across temperate streams that range in their pH to assess consumer reliance on aquatic (periphyton) vs. terrestrial (riparian vegetation) organic matter, and whether Hg concentrations in fish and their prey were related to these energy sources. Taxa varied in their use of the two sources, with grazing mayflies (Heptageniidae), predatory stoneflies (Perlidae), one species of water strider (Metrobates hesperius), and the fish blacknose dace (Rhinichthys atratulus) showing strong connections to aquatic sources, while Aquarius remigis water striders and brook trout (Salvelinus fontinalis) showed a weak link to in-stream production. The aquatic food source for consumers, periphyton, had higher Hg concentrations in low-pH waters, and pH was a much better predictor of Hg in predatory invertebrates that relied mainly on this food source vs. those that used terrestrial C. These findings suggest that stream biota relying mainly on dietary inputs from the riparian zone will be partially insulated from the effects of water chemistry on Hg availability. This has implications for the development of a whole-system understanding of nutrient and material cycling in streams, the choice of taxa in contaminant monitoring studies, and in understanding the fate of Hg in stream food webs.  相似文献   

6.
Comparing resource pulses in aquatic and terrestrial ecosystems   总被引:3,自引:0,他引:3  
Nowlin WH  Vanni MJ  Yang LH 《Ecology》2008,89(3):647-659
Resource pulses affect productivity and dynamics in a diversity of ecosystems, including islands, forests, streams, and lakes. Terrestrial and aquatic systems differ in food web structure and biogeochemistry; thus they may also differ in their responses to resource pulses. However, there has been a limited attempt to compare responses across ecosystem types. Here, we identify similarities and differences in the causes and consequences of resource pulses in terrestrial and aquatic systems. We propose that different patterns of food web and ecosystem structure in terrestrial and aquatic systems lead to different responses to resource pulses. Two predictions emerge from a comparison of resource pulses in the literature: (1) the bottom-up effects of resource pulses should transmit through aquatic food webs faster because of differences in the growth rates, life history, and stoichiometry of organisms in aquatic vs. terrestrial systems, and (2) the impacts of resource pulses should also persist longer in terrestrial systems because of longer generation times, the long-lived nature of many terrestrial resource pulses, and reduced top-down effects of consumers in terrestrial systems compared to aquatic systems. To examine these predictions, we use a case study of a resource pulse that affects both terrestrial and aquatic systems: the synchronous emergence of periodical cicadas (Magicicada spp.) in eastern North American forests. In general, studies that have examined the effects of periodical cicadas on terrestrial and aquatic systems support the prediction that resource pulses transmit more rapidly in aquatic systems; however, support for the prediction that resource pulse effects persist longer in terrestrial systems is equivocal. We conclude that there is a need to elucidate the indirect effects and long-term implications of resource pulses in both terrestrial and aquatic ecosystems.  相似文献   

7.
Stable isotopes (particularly C and N) are widely used to make inferences regarding food web structure and the phenology of consumer diet shifts, applications that require accurate isotopic characterization of trophic resources to avoid biased inferences of feeding relationships. For example, most isotope mixing models require that endmembers be adequately represented by a single probability distribution; yet, there is mounting evidence that the isotopic composition of aquatic organisms often used as mixing model endmembers can change over periods of weeks to months. A review of the literature indicated that the delta13C values of five aquatic primary consumer taxa, commonly used as proxies of carbon production sources (i.e., trophic baselines), express seasonally dynamic cycles characterized by an oscillation between summer maxima and winter minima. Based on these results, we built a dynamic baseline mixing model that allows a growing consumer to track temporal gradients in the isotopic baselines of a food web. Simulations showed that the ability of a consumer to maintain or approach isotopic equilibrium with its diet over a realistic growth season was strongly affected by both the rate of change of the isotopic baseline and equilibration rate of the consumer. In an empirical application, mixing models of varying complexity were used to estimate the relative contribution of benthic vs. pelagic carbon sources to nine species of juvenile fish in a fluvial lake of the St. Lawrence River system (Québec, Canada). Estimates of p (proportion of carbon derived from benthic sources) derived from a static mixing model indicated broad interspecific variation in trophic niche, ranging from complete benthivory to > 95% reliance on pelagic food webs. Output from the more realistic dynamic baseline mixing model increased estimated benthivory by an average of 36% among species. Taken together, our results demonstrate that failing to identify dynamic baselines when present, and (or) matching consumers with baseline taxa that possess substantially different equilibration rates can seriously bias interpretation of stable isotope data. Additionally, by providing a formalized framework that allows both resources and consumers to shift their isotopic value through time, our model demonstrates a feasible approach for incorporating temporally dynamic isotope conditions in trophic studies of higher consumers.  相似文献   

8.
Cross WF  Wallace JB  Rosemond AD  Eggert SL 《Ecology》2006,87(6):1556-1565
Although the effects of nutrient enrichment on consumer-resource dynamics are relatively well studied in ecosystems based on living plants, little is known about the manner in which enrichment influences the dynamics and productivity of consumers and resources in detritus-based ecosystems. Because nutrients can stimulate loss of carbon at the base of detrital food webs, effects on higher consumers may be fundamentally different than what is expected for living-plant-based food webs in which nutrients typically increase basal carbon. We experimentally enriched a detritus-based headwater stream for two years to examine the effects of nutrient-induced changes at the base of the food web on higher metazoan (predominantly invertebrate) consumers. Our paired-catchment design was aimed at quantifying organic matter and invertebrate dynamics in the enriched stream and an adjacent reference stream for two years prior to enrichment and two years during enrichment. Enrichment had a strong negative effect on standing crop of leaf litter, but no apparent effect on that of fine benthic organic matter. Despite large nutrient-induced reductions in the quantity of leaf litter, invertebrate secondary production during the enrichment was the highest ever reported for headwater streams at this Long Term Ecological Research site and was 1.2-3.3 times higher than predicted based on 15 years of data from these streams. Abundance, biomass, and secondary production of invertebrate consumers increased significantly in response to enrichment, and the response was greater among taxa with larval life spans < or = 1 yr than among those with larval life spans >1 yr. Production of invertebrate predators closely tracked the increased production of their prey. The response of invertebrates was largely habitat-specific with little effect of enrichment on food webs inhabiting bedrock outcrops. Our results demonstrate that positive nutrient-induced changes to food quality likely override negative changes to food quantity for consumers during the initial years of enrichment of detritus-based stream ecosystems. Longer-term enrichment may impact consumers through eventual reductions in the quantity of detritus.  相似文献   

9.
Predicting the dynamics of ecosystems requires an understanding of how trophic interactions respond to environmental change. In Antarctic marine ecosystems, food web dynamics are inextricably linked to sea ice conditions that affect the nature and magnitude of primary food sources available to higher trophic levels. Recent attention on the changing sea ice conditions in polar seas highlights the need to better understand how marine food webs respond to changes in such broad-scale environmental drivers. This study investigated the importance of sea ice and advected primary food sources to the structure of benthic food webs in coastal Antarctica. We compared the isotopic composition of several seafloor taxa (including primary producers and invertebrates with a variety of feeding modes) that are widely distributed in the Antarctic. We assessed shifts in the trophic role of numerically dominant benthic omnivores at five coastal Ross Sea locations. These locations vary in primary productivity and food availability, due to their different levels of sea ice cover, and proximity to polynyas and advected primary production. The delta15N signatures and isotope mixing model results for the bivalves Laternula elliptica and Adamussium colbecki and the urchin Sterechinus neumeyeri indicate a shift from consumption of a higher proportion of detritus at locations with more permanent sea ice in the south to more freshly produced algal material associated with proximity to ice-free water in the north and east. The detrital pathways utilized by many benthic species may act to dampen the impacts of large seasonal fluctuations in the availability of primary production. The limiting relationship between sea ice distribution and in situ primary productivity emphasizes the role of connectivity and spatial subsidies of organic matter in fueling the food web. Our results begin to provide a basis for predicting how benthic ecosystems will respond to changes in sea ice persistence and extent along environmental gradients in the high Antarctic.  相似文献   

10.
Fatty acid biomarkers and stable isotope signatures were used to identify the sources of particulate and sedimentary organic matter and its input into the food web through the dominant consumer within the mangrove-dominated Rufiji estuary, Tanzania. Specific fatty acids were used to identify the preferred basal sources of dominant fauna (i.e. filter feeder bivalves, snails, crabs, shrimps, and three fish species), and their presence in the water and sediment samples in the estuary. Both fatty acid and stable isotope results revealed that food web in the Rufiji estuary depended on a variety of carbon sources (mangroves, allochthonous terrestrial inputs, macroalgae, and phytoplankton), contributing to a different degree into the diets of primary consumers and members of near-shore fish, but none of them were obligatory for the survival of these species. The δ15N values of major primary producers and consumers/predators revealed a trend for δ15N enrichment with increasing trophic level. The ratio of docosahexaenoic acid to eicosapentaenoic acid (DHA:EPA) decreased from pelagic to benthic feeding fish. This indicated that fish with different feeding modes derived their fatty acids from different primary sources of nutrition, and suggested that the DHA:EPA ratio may be a useful indicator of feeding mode.  相似文献   

11.
Matthews B  Mazumder A 《Ecology》2006,87(11):2800-2812
The significance of spatial subsidies depends on consumer resource interactions in the recipient habitat. Lakes are subsidized by terrestrial carbon sources, but the pathways of allochthonous carbon through lake food webs are complex and not well understood. Zooplankton vertically partition resources within stratified lakes in response to life history trade-offs that are governed by predators, the quantity and quality of food, and abiotic conditions (e.g., UV, temperature, and viscosity). We measured habitat specialization of zooplankton in an oligotrophic lake where allochthonous and autochthonous resources varied with depth. During stratification, the quantity and quality of zooplankton food was highest in the hypolimnion. We used a yearlong time series of the delta13C of zooplankton and particulate organic matter (POM) to determine which zooplankton species exploited hypolimnetic rather than epilimnetic resources. Because the delta13C of POM decreased with depth, we used the delta13C of zooplankton to detect inter- and intraspecific variation in habitat selection. We incubated Daphnia pulex at discrete depths in the water column to confirm that the delta13C of zooplankton can indicate habitat specialization. Zooplankton that specialized in the epilimnion relied more on allochthonous carbon sources than those that specialized in the hypolimnion. Therefore, the fate of allochthonous carbon subsidies to lakes depends on spatially explicit consumer-resource interactions.  相似文献   

12.
Diversity in guilds of primary producers enhances temporal stability in provision of organic matter to consumers. In the Antarctic ecosystem, where temporal variability in phytoplankton production is high, sea ice contains a diatom and microbial community (SIMCO) that represents a pool of organic matter that is seasonally more consistent, although of relatively small magnitude. The fate of organic material produced by SIMCO in Antarctica is largely unknown but may represent an important link between sea ice dynamics and secondary production in nearshore food webs. We used whole tissue and compound-specific stable isotope analysis of consumers to test whether the sea ice microbial community is an important source of organic matter supporting nearshore communities in the Ross Sea. We found distinct gradients in delta13C and delta15N of SIMCO corresponding to differences in inorganic carbon and nitrogen acquisition among sites with different sea ice extent and persistence. Mass balance analysis of a suite of consumers demonstrated large fluxes of SIMCO into the nearshore food web, ranging from 5% to 100% of organic matter supplied to benthic species, and 0-10% of organic matter to upper water column or pelagic inhabitants. A delta13C analysis of nine fatty acids including two key biomarkers for diatoms, eicosapentaenoic acid (EPA, 20:5omega3), and docosahexaenoic acid (DHA, 22:6omega3), confirmed these patterns. We observed clear patterns in delta13C of fatty acids that are enriched in 13C for species that acquire a large fraction of their nutrition from SIMCO. These data demonstrate the key role of SIMCO in ecosystem functioning in Antarctica and strong linkages between sea ice extent and nearshore secondary productivity. While SIMCO provides a stabilizing subsidy of organic matter, changes to sea ice coverage associated with climate change would directly affect secondary production and stability of benthic food webs in Antarctica.  相似文献   

13.
S. Vizzini  A. Mazzola 《Marine Biology》2003,142(5):1009-1018
Stable carbon and nitrogen isotope ratios (13C/12C and 15N/14N) of primary producers and consumers were investigated seasonally throughout 1999, in order to describe the food web in a western Mediterranean coastal lagoon (Lake of Sabaudia, central Italy). Particulate organic matter and algal material (seagrass epiphytes and macroalgae) seem to constitute the main food sources for primary consumers (zooplankton and small benthic invertebrates, respectively) throughout the sampling year, while the seagrass Cymodocea nodosa appears to play a negligible trophic role. As regards the ichthyofauna, carbon stable isotopes differentiated between planktivore and benthivore fish species. However, a benthic-pelagic coupling seems to occur, with some fish of higher trophic levels feeding both on benthic and pelagic materials. Analysis of variance showed that the interaction between the three main factors (species2size2season) significantly affects the isotopic composition of fish, suggesting the presence of intra- and inter-specific resource partitioning. Wide seasonal variations in the isotopic composition were observed in organic matter sources, invertebrates and fish, with a general trend towards depleted values in winter and enriched values in summer. The winter depletion of organic matter sources may be due to several environmental factors and seems to be mirrored in the upper trophic levels. Primary producers and invertebrates are known to have shorter time-integrated isotopic signatures than vertebrates, yet fish also exhibited seasonal isotopic differences. We concluded that the examined fish species can assume a new muscle isotopic signature relatively quickly in response to changes in the isotopic composition of their diet and/or diet shifts.  相似文献   

14.
In estuaries, eelgrass meadows contribute to fundamental ecosystem functions of estuaries, providing food to several predators and buffering the negative effects of eutrophication. We asked whether the presence of the eelgrass Zostera noltii decreased the nitrogen concentration in the overlying water, affected the sources of nitrogen sequestrated by primary producers and changed the benthic and pelagic food web structures. We also studied the importance of these food webs in providing food to fish. We compared bare sediment to sediment covered by a Z. noltii meadow, and examined nutrient concentrations in the water column and δ15N in primary producers as indicators of anthropogenic inputs of nutrients. We then measured both δ13C and δ15N in the tissues of plants and consumers to establish food web structures. There were no differences in the concentrations and sources of nitrogen between sites. Rather, δ15N values indicated anthropogenic inputs of N (e.g. sewage discharges, agriculture) in both sites. There were no major differences in the structure of the planktonic food web, which was in part sustained by particulate organic matter and supported most predator fish, and in the structure of the benthic food web. Nonetheless, there were differences in the sources of food for omnivore consumers and for the detritivore Scrobicularia plana. Overall, the benthic food web did not use food derived from the eelgrass or macroalgae deposited on the substratum. Suspension feeders used particulate and sediment organic matter, whereas the δ13C and δ15N values of the other consumers indicated a likely contribution of benthic microalgae. Furthermore, in both habitats we found large variability in the isotope signatures of benthic macrofauna consumers, which did not allow distinguishing clearly different trophic groups and indicated a high level of omnivory and a mixed diet opportunistically making use of the availability of food in the surroundings.  相似文献   

15.
Marcarelli AM  Baxter CV  Mineau MM  Hall RO 《Ecology》2011,92(6):1215-1225
Although the study of resource subsidies has emerged as a key topic in both ecosystem and food web ecology, the dialogue over their role has been limited by separate approaches that emphasize either subsidy quantity or quality. Considering quantity and quality together may provide a simple, but previously unexplored, framework for identifying the mechanisms that govern the importance of subsidies for recipient food webs and ecosystems. Using a literature review of > 90 studies of open-water metabolism in lakes and streams, we show that high-flux, low-quality subsidies can drive freshwater ecosystem dynamics. Because most of these ecosystems are net heterotrophic, allochthonous inputs must subsidize respiration. Second, using a literature review of subsidy quality and use, we demonstrate that animals select for high-quality food resources in proportions greater than would be predicted based on food quantity, and regardless of allochthonous or autochthonous origin. This finding suggests that low-flux, high-quality subsidies may be selected for by animals, and in turn may disproportionately affect food web and ecosystem processes (e.g., animal production, trophic energy or organic matter flow, trophic cascades). We then synthesize and review approaches that evaluate the role of subsidies and explicitly merge ecosystem and food web perspectives by placing food web measurements in the context of ecosystem budgets, by comparing trophic and ecosystem production and fluxes, and by constructing flow food webs. These tools can and should be used to address future questions about subsidies, such as the relative importance of subsidies to different trophic levels and how subsidies may maintain or disrupt ecosystem stability and food web interactions.  相似文献   

16.
Cross WF  Wallace JB  Rosemond AD 《Ecology》2007,88(10):2563-2575
Most aquatic and terrestrial ecosystems are experiencing increased nutrient availability, which is affecting their structure and function. By altering community composition and productivity of consumers, enrichment can indirectly cause changes in the pathways and magnitude of material flows in food webs. These changes, in turn, have major consequences for material storage and cycling in the ecosystem. Understanding mechanisms and predicting consequences of nutrient-induced changes in material flows requires a quantitative food web approach that combines information on consumer energetics and consumer-resource stoichiometry. We examined effects of a whole-system experimental nutrient enrichment on the trophic basis of production and the magnitude and pathways of carbon (C), nitrogen (N), and phosphorus (P) flows in a detritus-based stream food web. We compared the response of the treated stream to an adjacent reference stream throughout the study. Dietary composition and elemental flows varied considerably among invertebrate functional feeding groups. During nutrient enrichment, increased flows of leaf litter and amorphous detritus to shredders and gatherers accounted for most of the altered flows of C from basal resources to consumers. Nutrient enrichment had little effect on patterns of material flows but had large positive effects on the magnitude of C, N, and P flows to consumers (mean increase of 97% for all elements). Nutrient-specific food webs revealed similar flows of N and P to multiple functional groups despite an order of magnitude difference among groups in consumption of C. Secondary production was more strongly related to consumption of nutrients than C, and increased material flows were positively related to the degree of consumer-resource C:P and C:N imbalances. Nutrient enrichment resulted in an increased proportion of detrital C inputs consumed by primary consumers (from -15% to 35%) and a decreased proportion of invertebrate prey consumed by predators (from -80% to 55%). Our results demonstrate that nutrient enrichment of detritus-based systems may reduce stoichiometric constraints on material flows, increase the contribution of consumers to C, N, and P cycling, alter the proportion of C inputs metabolized by consumers, and potentially lead to reduced ecosystem-level storage of C.  相似文献   

17.
Cross-ecosystem movements of material and energy, particularly reciprocal resource fluxes across the freshwater-land interface, have received major attention. Freshwater ecosystems may receive higher amounts of subsidies (i.e., resources produced outside the focal ecosystem) than terrestrial ecosystems, potentially leading to increased secondary production in freshwaters. Here we used a meta-analytic approach to quantify the magnitude and direction of subsidy inputs across the freshwater-land interface and to determine subsequent responses in recipient animals. Terrestrial and freshwater ecosystems differed in the magnitude of subsidies they received, with aquatic ecosystems generally receiving higher subsidies than terrestrial ecosystems. Surprisingly, and despite the large discrepancy in magnitude, the contribution of these subsidies to animal carbon inferred from stable isotope composition did not differ between freshwater and terrestrial ecosystems, likely due to the differences in subsidy quality. The contribution of allochthonous subsidies was highest to primary consumers and predators, suggesting that bottom-up and top-down effects may be affected considerably by the input of allochthonous resources. Future work on subsidies will profit from a food web dynamic approach including indirect trophic interactions and propagating effects.  相似文献   

18.
Ecosystem change often affects the structure of aquatic communities thereby regulating how much and by what pathways energy and critical nutrients flow through food webs. The availability of energy and essential nutrients to top predators such as seabirds that rely on resources near the water's surface will be affected by changes in pelagic prey abundance. Here, we present results from analysis of a 25-year data set documenting dietary change in a predatory seabird from the Laurentian Great Lakes. We reveal significant declines in trophic position and alterations in energy and nutrient flow over time. Temporal changes in seabird diet tracked decreases in pelagic prey fish abundance. As pelagic prey abundance declined, birds consumed less aquatic prey and more terrestrial food. This pattern was consistent across all five large lake ecosystems. Declines in prey fish abundance may have primarily been the result of predation by stocked piscivorous fishes, but other lake-specific factors were likely also important. Natural resource management activities can have unintended consequences for nontarget ecosystem components. Reductions in pelagic prey abundance have reduced the capacity of the Great Lakes to support the energetic requirements of surface-feeding seabirds. In an environment characterized by increasingly limited pelagic fish resources, they are being offered a Hobsonian choice: switch to less nutritious terrestrial prey or go hungry.  相似文献   

19.
The study investigated the spatial variation in the main sources of organic matter (OM) and trophic pathways for zooplanktivorous Hilsa kelee and phytodetritivorous Valamugil buchanani in fresh-water-influenced zone versus sea-water-dominated zone of Pangani estuary. The findings indicated significant inter-specific variations in δ13C and δ15N values (ANOVA, F?≥?84.3, p?F?≥?9.4, p?=?0.001) in both estuarine zones. Results also showed significant zonal-intraspecific variations in stable isotopes (δ13C and δ15N), FA profile and marginal differences in diet for the V. buchanani while no considerable differences were observed for H. kelee from two estuarine zones. The isotope mixing models and FA biomarkers revealed that the most important carbon sources to the nutrition of H. kelee were derived from microphytobenthos, macro-algae and sea grasses transferred through phytoplankton and detrital trophic pathways. In contrast, C3 terrestrial plants and microphytobenthos were the main carbon source to the diet of V. buchanani; and were transferred via the benthic and detrital trophic pathways. Therefore, both terrestrial and in-situ OM sources were the main trophic resources base fuelling the planktonic and benthic food webs in Pangani estuary.  相似文献   

20.
Loss of macroalgae habitats has been widespread on rocky marine coastlines of the eastern Korean peninsula, and efforts for restoration and creation of macroalgal beds have increasingly been made to mitigate these habitat losses. Deploying artificial reefs of concrete pyramids with kelps attached has been commonly used and applied in this study. As a part of an effort to evaluate structural and functional recovery of created and restored habitat, the macroalgal community and food web structure were studied about a year after the establishment of the artificial macroalgal bed, making comparisons with nearby natural counterparts and barren ground communities. Dominant species, total abundance, and community structure of macroalgal assemblage at the restored macroalgal bed recovered to the neighboring natural bed levels during the study period. The main primary producers (phytoplankton and macroalgae) were isotopically well separated. δ13C and δ15N values of consumers were very similar between restored and natural beds but varied greatly among functional feeding groups. The range of consumer δ13C was as wide as that of primary producers, indicating the trophic importance of both producers. There was a stepwise trophic enrichment in δ15N with increasing trophic level. A comparison of isotope signatures between primary producers and consumers showed that, while suspension feeders are highly dependent on pelagic sources, invertebrates of other feeding guilds and fishes mainly use macroalgae-derived organic matter as their ultimate nutritional sources in both macroalgal beds, emphasizing the high equivalency of trophic structure between both beds. Isotopic signatures of a few mollusks and sea urchins showed that they use different dietary items in macroalgal-barren grounds compared with macroalgal beds, probably reflecting their feeding plasticity according to the low macroalgal biomass. However, isotopic signatures of most of the consumers at the barren ground were consistent with those at the macroalgal beds, supporting the important trophic role of drifting algae. Our results revealed the recoveries of the macroalgal community and trophic structure at the restored habitat. Further studies on colonization of early settlers and the following succession progress are needed to better understand the process and recovery rate in the developing benthic community.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号