首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 126 毫秒
1.
A trait-based test for habitat filtering: convex hull volume   总被引:11,自引:0,他引:11  
Cornwell WK  Schwilk LD  Ackerly DD 《Ecology》2006,87(6):1465-1471
Community assembly theory suggests that two processes affect the distribution of trait values within communities: competition and habitat filtering. Within a local community, competition leads to ecological differentiation of coexisting species, while habitat filtering reduces the spread of trait values, reflecting shared ecological tolerances. Many statistical tests for the effects of competition exist in the literature, but measures of habitat filtering are less well-developed. Here, we present convex hull volume, a construct from computational geometry, which provides an n-dimensional measure of the volume of trait space occupied by species in a community. Combined with ecological null models, this measure offers a useful test for habitat filtering. We use convex hull volume and a null model to analyze California woody-plant trait and community data. Our results show that observed plant communities occupy less trait space than expected from random assembly, a result consistent with habitat filtering.  相似文献   

2.
Freestone AL  Osman RW 《Ecology》2011,92(1):208-217
While communities are shaped by both local interactions and enrichment from the regional species pool, we propose a hypothesis that the balance of these forces shifts with latitude, with regional enrichment dominating at high latitudes and local interactions dominating at low latitudes. To test this hypothesis, we conducted a latitudinal-scale experiment with marine epifaunal communities. In four regions of the North Atlantic Ocean and Caribbean Sea, we used mimics of ecosystem engineers to manipulate biogenic structural complexity. We iteratively evaluated diversity patterns of experimental communities up to one year after deployment. Additional data were also collected from one of our tropical sites 2.5 years after initial deployment. As hypothesized, we found a reciprocal latitudinal gradient in the effects of the structurally complex mimics and regional enrichment. In the tropics, local diversity was always higher in association with the mimics than in exposed areas that were more open to predation. This effect was consistent across two spatial scales and beyond the one-year timescale of the experiment. In temperate communities, no consistent effects of the mimics on diversity were observed. However, the proportion of species from the regional species pool that were present at the local scale increased from the tropics to the temperate zone, consistent with the hypothesis that higher-latitude communities may experience greater influence from the regional species pool than communities at low latitudes. This study represents the first large-scale experimental demonstration that suggests that the relative impact of local interactions and regional enrichment on community diversity may depend on latitude.  相似文献   

3.
Karlson RH  Cornell HV  Hughes TP 《Ecology》2007,88(1):170-177
The spatial dispersion of individuals across multiple spatial scales can significantly influence biodiversity patterns. Here we characterize the dispersion of corals in reef assemblages distributed across a 10000-km longitudinal biodiversity gradient from Indonesia to the Society Islands, using a multiscale sampling design. Our results indicate that most coral species were aggregated among 10-m transect samples across this vast distance. Using observed and randomized species sampling curves, we show that aggregation reduced the number of species per transect, site, and island sample on average by 13-27%. Across site, island, and regional scales, aggregation also reduced the area under species sampling curves by an average of 2.7-6.5%. The level of aggregation was relatively constant across spatial scales within regions and did not vary among habitats. However, there was significant variation among regions using transect samples across individual sites. Specifically, aggregation reduced the species richness per transect and the area under species sampling curves nearly twice as much in the Indonesian biodiversity hotspot than in the Society Islands. As a significant component of the spatial structure of coral assemblages, aggregation should be integrated into our understanding of coral community dynamics and the development of conservation strategies designed to protect these communities.  相似文献   

4.
Myers JA  Harms KE 《Ecology》2011,92(3):676-686
Two prominent mechanisms proposed to structure biodiversity are niche-based ecological filtering and chance arrival of propagules from the species pool. Seed arrival is hypothesized to play a particularly strong role in high-diversity plant communities with large potential species pools and many rare species, but few studies have explored how seed arrival and local ecological filters interactively assemble species-rich communities in space and time. We experimentally manipulated seed arrival and multiple ecological filters in high-diversity, herbaceous-dominated groundcover communities in longleaf pine savannas, which contain the highest small-scale species richness in North America (up to > 40 species/m2). We tested three hypotheses: (1) local communities constitute relatively open-membership assemblages, in which increased seed arrival from the species pool strongly increases species richness; (2) ecological filters imposed by local fire intensity and soil moisture influence recruitment and richness of immigrating species; and (3) ecological filters increase similarity in the composition of immigrating species. In a two-year factorial field experiment, we manipulated local fire intensity by increasing pre-fire fuel loads, soil moisture using rain shelters and irrigation, and seed arrival by adding seeds from the local species pool. Seed arrival increased species richness regardless of fire intensity and soil moisture but interacted with both ecological filters to influence community assembly. High-intensity fire decreased richness of resident species, suggesting an important abiotic filter. In contrast, high-intensity fire increased recruitment and richness of immigrating species, presumably by decreasing effects of other ecological filters (competition and resource limitation) in postfire environments. Drought decreased recruitment and richness of immigrating species, whereas wet soil conditions increased recruitment but decreased or had little effect on richness. Moreover, some ecological filters (wet soil conditions and, to a lesser extent, high-intensity fire) increased similarity in the composition of immigrating species, illustrating conditions that influence deterministic community assembly in species-rich communities. Our experiment provides insights into how dispersal-assembly mechanisms may interact with niche-assembly mechanisms in space (spatial variation in disturbance) and time (temporal variation in resource availability) to structure high-diversity communities and can help guide conservation of threatened longleaf pine ecosystems in the face of habitat fragmentation and environmental change.  相似文献   

5.
Shipley B  Paine CE  Baraloto C 《Ecology》2012,93(4):760-769
Although niche-based and stochastic processes, including dispersal limitation and demographic stochasticity, can each contribute to community assembly, it is difficult to quantify the relative importance of each process in natural vegetation. Here, we extend Shipley's maxent model (Community Assembly by Trait Selection, CATS) for the prediction of relative abundances to incorporate both trait-based filtering and dispersal limitation from the larger landscape and develop a statistical decomposition of the proportions of the total information content of relative abundances in local communities that are attributable to trait-based filtering, dispersal limitation, and demographic stochasticity. We apply the method to tree communities in a mature, species-rich, tropical forest in French Guiana at 1-, 0.25- and 0.04-ha scales. Trait data consisted of species' means of 17 functional traits measured over both the entire meta-community and separately in each of nine 1-ha plots. Trait means calculated separately for each site always gave better predictions. There was clear evidence of trait-based filtering at all spatial scales. Trait-based filtering was the most important process at the 1-ha scale (34%), whereas demographic stochasticity was the most important at smaller scales (37-53%). Dispersal limitation from the meta-community was less important and approximately constant across scales (-9%), and there was also an unresolved association between site-specific traits and meta-community relative abundances. Our method allows one to quantify the relative importance of local niche-based and meta-community processes and demographic stochasticity during community assembly across spatial and temporal scales.  相似文献   

6.
The problem and promise of scale dependency in community phylogenetics   总被引:1,自引:0,他引:1  
The problem of scale dependency is widespread in investigations of ecological communities. Null model investigations of community assembly exemplify the challenges involved because they typically include subjectively defined "regional species pools." The burgeoning field of community phylogenetics appears poised to face similar challenges. Our objective is to quantify the scope of the problem of scale dependency by comparing the phylogenetic structure of assemblages across contrasting geographic and taxonomic scales. We conduct phylogenetic analyses on communities within three tropical forests, and perform a sensitivity analysis with respect to two scaleable inputs: taxonomy and species pool size. We show that (1) estimates of phylogenetic overdispersion within local assemblages depend strongly on the taxonomic makeup of the local assemblage and (2) comparing the phylogenetic structure of a local assemblage to a species pool drawn from increasingly larger geographic scales results in an increased signal of phylogenetic clustering. We argue that, rather than posing a problem, "scale sensitivities" are likely to reveal general patterns of diversity that could help identify critical scales at which local or regional influences gain primacy for the structuring of communities. In this way, community phylogenetics promises to fill an important gap in community ecology and biogeography research.  相似文献   

7.
Trait-based community assembly theory suggests that trait variation among co-occurring species is shaped by two main processes: abiotic filtering, important in stressful environments and promoting similarity, and competition, more important in productive environments and promoting dissimilarity. Previous studies have indeed found trait similarity to decline along productivity gradients. However, these studies have always been done on single trophic levels. Here, we investigated how interactions between trophic levels affect trait similarity patterns along environmental gradients. We propose three hypotheses for the main drivers of trait similarity patterns of plants and herbivores along environmental gradients: (1) environmental control of both, (2) bottom-up control of herbivore trait variation, and (3) top-down control of grass trait variation. To test this, we collected data on the community composition and trait variation of grasses (41 species) and grasshoppers (53 species) in 50 plots in a South African savanna. Structural equation models were used to investigate how the range and spacing of within-community functional trait values of both grasses and their insect herbivores (grasshoppers; Acrididae) respond to (1) rainfall and fire frequency gradients and (2) the trait similarity patterns of the other trophic level. The analyses revealed that traits of co-occurring grasses became more similar toward lower rainfall and higher fire frequency (environmental control), while showing little evidence for top-down control. Grasshopper trait range patterns, on the other hand, were mostly directly driven by vegetation structure and grass trait range patterns (bottom-up control), while environmental factors had mostly indirect effects via plant traits. Our study shows the potential to expand trait-based community assembly theory to include trophic interactions.  相似文献   

8.
Species interactions are widely assumed to be stronger at lower latitudes, but surprisingly few experimental studies test this hypothesis, and none ties these processes to observed patterns of species richness across latitude. We report here the first experimental field test that predation is both stronger and has a disproportionate effect on species richness in the tropics relative to the temperate zone. We conducted predator-exclusion experiments on communities of sessile marine invertebrates in four regions, which span 32 degrees latitude, in the western Atlantic Ocean and Caribbean Sea. Over a three-month timescale, predation had no effect on species richness in the temperate zone. In the tropics, however, communities were from two to over ten times more species-rich in the absence of predators than when predators were present. While micro-and macro-predators likely compete for the limited prey resource in the tropics, micropredators alone were able to exert as much pressure on the invertebrate communities as the full predator community. This result highlights the extent to which exposure to even a subset of the predator guild can significantly impact species richness in the tropics. Patterns were consistent in analyses that included relative and total species abundances. Higher species richness in the absence of predators in the tropics was also observed when species occurrences were pooled across two larger spatial scales, site and region, demonstrating a consistent scaling relationship. These experimental results show that predation can both limit local species abundances and shape patterns of regional coexistence in the tropics. When preestablished diverse tropical communities were then exposed to predation for different durations, ranging from one to several days, species richness was always reduced. These findings confirmed that impacts of predation in the tropics are strong and consistent, even in more established communities. Our results offer empirical support for the long-held prediction that predation pressure is stronger at lower latitudes. Furthermore, we demonstrate the magnitude to which variation in predation pressure can contribute to the maintenance of tropical species diversity.  相似文献   

9.
Nearshore fish faunas from 32 sites along 1500 km coastline of temperate south-western Australia were sampled by seine net between 1991 and 1992 to examine the species composition in sandy surf zones along this region, and to determine whether it is influenced by adjacent nearshore habitats and the warm southward flowing Leeuwin Current. Although the ichthyofauna was diverse, with 95 species from 47 families recorded, it was numerically dominated by only a few species. Species of Atherinidae, Mugilidae, Tetraodontidae, Clupeidae and Pomatomidae, such as Atherinomorus ogilbyi, Leptatherina presbyteroides, Mugil cephalus, Aldrichetta forsteri, Torquigener pleurogramma, Hyperlophus vittatus, Spratelloides robustus and Pomatomus saltatrix, were often common to these surf zones. When the species composition of the surf zones was compared with that found in adjacent nearshore habitats, 38 and 42% of the species were shared with reefs and seagrass beds, respectively, and 22% were present in all three habitats. Classification and ordination demonstrated that the faunal composition on the west coast was distinct from that on the south coast, and within each of these regions there were discrete assemblages. There was a marked decline in the number of species on the south coast, with 20 to 66 species reported from the six west-coast assemblages and 11 to 16 species collected from the four south-coast assemblages. A high proportion of resident species was found in the surf zones on both coasts; however, there was a smaller contribution of transient species on the south coast than on the west coast. This decline in transient species was associated with the absence of tropical species on the latter coast. Benthic invertevores were dominant on both coasts, while trophic diversity decreased and the proportion of zooplanktivores increased on the south coast. These differences in the characteristics of the fish fauna between the two coasts can be related to the presence of seagrass beds and limestone patch reef adjacent to sandy surf-zone areas on the west coast which provide more microhabitats for fish. The presence of inshore limestone reefs along the west coast moderates wave energy, producing more sheltered and temporally stable surf zones. The lower number of species on the south coast can also be attributed to the reduced influence of the Leeuwin Current. This southward flowing current acts as a mechanism for the dispersal of tropical species which display no regular association with the surf zones on the lower west coast.  相似文献   

10.
Karlson RH  Connolly SR  Hughes TP 《Ecology》2011,92(6):1282-1291
Species assemblages vary in structure due to a wide variety of processes operating at ecological and much broader biogeographical scales. Cross-scale studies of assemblage structure are necessary to fully understand this variability. Here, we evaluate the abundance and occupancy patterns of hierarchically sampled coral assemblages in three habitats (reef flat, crest, and slope) and five regions (Indonesia, Papua New Guinea, the Solomon Islands, American Samoa, and the Society Islands) across the west-central Pacific Ocean. Specifically, we compare two alternative models that unify spatial variance and occupancy via the negative binomial distribution. The first assumes a power-law scaling between the mean and variance of abundance; the second assumes a quadratic variance-mean relationship and a constant abundance-invariant aggregation parameter. Surprisingly, the well-established power-law model performs worse than the model assuming abundance-invariant aggregation, for both variance-mean and occupancy-abundance relationships. We also find strong evidence for regional and habitat variation in these relationships and in the levels of aggregation estimated by the abundance-invariant aggregation model. Among habitats, corals on reef flats exhibited lower occupancy and higher levels of aggregation compared to reef crests and slopes. Among regions, low occupancy and high aggregation were most pronounced across all habitats in American Samoa. These patterns may be related to habitat and regional differences in disturbance and recovery processes. Our results suggest that the spatial scaling of abundance and occupancy is sensitive to processes operating among these habitats and at regional scales. However, the consistency of these relationships across species within assemblages suggests that a theoretical unification of spatial variance and occupancy patterns is indeed possible.  相似文献   

11.
Ecologically relevant traits of organisms in an assemblage determine an ecosystem's functional fingerprint (i.e., the shape, size, and position of multidimensional trait space). Quantifying changes in functional fingerprints can therefore provide information about the effects of diversity loss or gain through time on ecosystem condition and is a promising approach to monitoring ecological integrity. This, however, is seldom possible owing to limitations in historical surveys and a lack of data on organismal traits, particularly in diverse tropical regions. Using data from detailed bird surveys from 4 periods across more than a century, and morphological and ecological traits of 233 species, we quantified changes in the avian functional fingerprint of a tropical montane forest in the Andes of Colombia. We found that 78% of the variation in functional space, regardless of period, was described by 3 major axes summarizing body size, dispersal ability (indexed by wing shape), and habitat breadth. Changes in species composition significantly altered the functional fingerprint of the assemblage and functional richness and dispersion decreased 35–60%. Owing to species extirpations and to novel additions to the assemblage, functional space decreased over time, but at least 11% of its volume in the 2010s extended to areas of functional space that were unoccupied in the 1910s. The assemblage now includes fewer large-sized species, more species with greater dispersal ability, and fewer habitat specialists. Extirpated species had high functional uniqueness and distinctiveness, resulting in large reductions in functional richness and dispersion after their loss, which implies important consequences for ecosystem integrity. Conservation efforts aimed at maintaining ecosystem function must move beyond seeking to sustain species numbers to designing complementary strategies for the maintenance of ecological function by identifying and conserving species with traits conferring high vulnerability such as large body size, poor dispersal ability, and greater habitat specialization. Article impact statement: Changes in functional fingerprints provide a means to quantify the integrity of ecological assemblages affected by diversity loss or gain.  相似文献   

12.
Functional peculiarities of pelagic communities from temperate and tropical zones of the ocean have been investigated in terms of food-web interrelations and balance sheets of matter and energy of the major populations and ecological groupings. Ranging from temperate or epiplankton ecosystems to tropical oceanic or deepwater ones, as well as from upwelling zones to stable oceanic oligotrophic regions, the following regular changes in the communities' main functional indices have been established: (1) enlargement of the food spectrum, omnivorousness and predatory activity; (2) reduction of rations and rates of organic matter accumulation in the lower heterotrophic levels with simultaneous increase of energy expenditure; (3) increased trophic complexity and stability of communities. Epiplanktonic systems of low stability proved to be richer and commercially more profitable.  相似文献   

13.
Pärtel M  Laanisto L  Zobel M 《Ecology》2007,88(5):1091-1097
The relationship between net primary productivity and biological diversity has been a central topic in ecology for several decades. The unimodal ("hump-back") relationship has been the most widely accepted for plants with the decrease in diversity at high productivity usually attributed to competitive exclusion. However, the relatively small species pool size under high productivity conditions may account for this pattern as well. Small species pool sizes for highly productive habitats are characteristic of temperate regions, where productive habitats for speciation and species migration have historically been rare. In contrast, productive habitats in the tropics have been relatively common during evolutionary history, resulting in large species pools. We hypothesize that evolutionary history contributes to the observed productivity-diversity relationship of plants, and that the productivity-diversity relationship differs between temperate and tropical regions. We investigated the productivity-diversity relationship patterns from 163 case studies throughout the world. Latitude described approximately 80% of the variation in the shape of the relationships. The unimodal relationship was found to dominate in the temperate zone, whereas the positive relationship was significantly more common in the tropics. We detected no influence due to methods of productivity measurement, but unimodal or positive productivity-diversity relationships were more likely within larger ranges of productivity. The length of the productivity gradient did not affect the latitudinal influence. In summary, the shape of the productivity-diversity relationship differs between temperate and tropical regions and the different evolutionary history of the local species pools is a probable cause for the difference.  相似文献   

14.
Bryant JA  Stewart FJ  Eppley JM  DeLong EF 《Ecology》2012,93(7):1659-1673
Oxygen minimum zones (OMZs) are natural physical features of the world's oceans. They create steep physiochemical gradients in the water column, which most notably include a dramatic draw down in oxygen concentrations over small vertical distances (<100 m). Microbial communities within OMZs play central roles in ocean and global biogeochemical cycles, yet we still lack a fundamental understanding of how microbial biodiversity is distributed across OMZs. Here, we used metagenomic sequencing to investigate microbial diversity across a vertical gradient in the water column during three seasons in the Eastern Tropical South Pacific (ETSP) OMZ. Based on analysis of small subunit ribosomal RNA (SSU rRNA) gene fragments, we found that both taxonomic and phylogenetic diversity declined steeply along the transition from oxygen-rich surface water to the permanent OMZ. We observed similar declines in the diversity of protein-coding gene categories, suggesting a decrease in functional (trait) diversity with depth. Metrics of functional and trait dispersion indicated that microbial communities are phylogenetically and functionally more overdispersed in oxic waters, but clustered within the OMZ. These dispersion patterns suggest that community assembly drivers (e.g., competition, environmental filtering) vary strikingly across the oxygen gradient. To understand the generality of our findings, we compared OMZ results to two marine depth gradients in subtropical oligotrophic sites and found that the oligotrophic sites did not display similar patterns, likely reflecting unique features found in the OMZ. Finally, we discuss how our results may relate to niche theory, diversity-energy relationships and stress gradients.  相似文献   

15.
High levels of polyphloroglucinol phenolics in marine brown algae are usually interpreted as a defensive response to herbivory. However, tropical brown algae generally contain very low levels of phenolics, even though herbivory in many tropical systems (e.g. coral reefs) is intense. This apparent paradox would be explained if polyphenolics did not deter tropical herbivores, in which case selection by herbivores for high levels of phenolics in tropical algae would be weak. To examine this hypothesis, in February 1989 we presented mixed assemblages of herbivorous fishes on the Great Barrier Reef with tropical, phenolic-poor brown algae (primarilySargassum spp.) and closely related (conspecifics in one instance) phenolic-rich temperate species. Different species of brown algae were eaten at very different rates, but these differences were not correlated with variation in the phenolic levels among the plants. TLC and NMR analyses showed no evidence of other, non-polar, metabolites in these algae, with the exception of the temperate speciesHomoeostrichus sinclairii. Thus, variation in non-polar metabolites also did not explain the differences in susceptibility to herbivores among these algae. We conclude that the herbivorous fishes studied here were not deterred by phenolic-rich algae, which suggests that levels of phenolics in many tropical algae may generally be low due to their ineffectiveness as defences. However, alternative explanations for the pattern are possible, and these are discussed.  相似文献   

16.
Cornell HV  Karlson RH  Hughes TP 《Ecology》2007,88(7):1707-1715
Community similarity is the proportion of species richness in a region that is shared on average among communities within that region. The slope of local richness (alpha diversity) regressed on regional richness (gamma diversity) can serve as an index of community similarity across regions with different regional richness. We examined community similarity in corals at three spatial scales (among transects at a site, sites on an island, and islands within an island group) across a 10 000-km longitudinal diversity gradient in the west-central Pacific Ocean. When alpha diversity was regressed on gamma diversity, the slopes, and thus community similarity, increased with scale (0.085, 0.261, and 0.407, respectively) because a greater proportion of gamma diversity was subsumed within alpha diversity as scale increased. Using standard randomization methods, we also examined how community similarity differed between observed and randomized assemblages and how this difference was affected by spatial separation of species within habitat types and specialization of species to three habitat types (reef flats, crests, and slopes). If spatial separation within habitat types and/or habitat specialization (i.e., underdispersion) occurs, fewer species are shared among assemblages than the random expectation. When the locations of individual coral colonies were randomized within and among habitat types, community similarity was 46-47% higher than that for observed assemblages at all three scales. We predicted that spatial separation of coral species within habitat types should increase with scale due to dispersal/extinction dynamics in this insular system, but that specialization of species to different habitat types should not change because habitat differences do not change with scale. However, neither habitat specialization nor spatial separation within habitat types differed among scales. At the two larger scales, each accounted for 22-24% of the difference in community similarity between observed and randomized assemblages. At the smallest scale (transect-site), neither spatial separation within habitat types nor habitat specialization had significant effects on community similarity, probably due to the small size of transect samples. The results suggest that coral species can disperse among islands in an island group as easily as they can among sites on an island over time scales that are relevant to their establishment and persistence on reefs.  相似文献   

17.
Howeth JG  Leibold MA 《Ecology》2010,91(9):2727-2741
Metacommunity theory suggests that relationships between diversity and ecosystem stability can be determined by the rate of species dispersal among local communities. The predicted relationships, however, may depend upon the relative strength of local environmental processes and disturbance. Here we evaluate the role of dispersal frequency and local predation perturbations in affecting patterns of diversity and stability in pond plankton metacommunities. Pond metacommunities were composed of three mesocosm communities: one of the three communities maintained constant "press" predation from a selective predator, bluegill sunfish (Lepomis macrochirus); the second community maintained "press" conditions without predation; and the third community experienced recurrent "pulsed" predation from bluegill sunfish. The triads of pond communities were connected at either no, low (0.7%/d), or high (20%/d) planktonic dispersal. Richness and composition of zooplankton and stability of plankton biomass and ecosystem productivity were measured at local and regional spatial scales. Dispersal significantly affected diversity such that local and regional biotas at the low dispersal rate maintained the greatest number of species. The unimodal local dispersal-diversity relationship was predator-dependent, however, as selective press predation excluded species regardless of dispersal. Further, there was no effect of dispersal on beta diversity because predation generated local conditions that selected for distinct community assemblages. Spatial and temporal ecosystem stability responded to dispersal frequency but not predation. Low dispersal destabilized the spatial stability of producer biomass but stabilized temporal ecosystem productivity. The results indicate that selective predation can prevent species augmentation from mass effects but has no apparent influence on stability. Dispersal rates, in contrast, can have significant effects on both species diversity and ecosystem stability at multiple spatial scales in metacommunities.  相似文献   

18.
Genetic variation was reviewed in 106 species of marine teleosts. Two heterozygosity estimates were used, one including all protein and enzyme loci and a second excluding the non-enzymatic protein loci. Mean heterozygosities are 0.055±0.036 based on all loci in 106 species and 0.060+0.038 based on enzymatic loci in 89 species. A significant negative correlation was noted between heterozygosity and the proportion of general protein loci included in the estimate. A comparison was made of heterozygosities among taxonomic orders and families, life zones, reproductive mode, geographical range and size. High levels of genetic variation are found in Clupeiformes, Atheriniformes, Pleuronectiformes, temperate pelagic, tropical, intertidal-sublittoral and wide-range species. Low levels of genetic variation are found in Gadiformes, Scorpaeniformes, temperate demersal, polar, and narrowrange species. The most striking differences in heterozygosities are between temperate demersal flatfishes and temperate demersal round fishes. It is suggested that much of the data can be explained by a habitat specialist-generalist model, with high heterozygosities in specialists and low heterozygosities in generalists, but that this is only one of a mosaic of factors which influence genetic variation.  相似文献   

19.
● Riverine microbiomes exhibited hyperlocal variation within a single transect. ● Certain family-level taxa directionally associated with river center and bank. ● Taxon accumulation curves within a transect urges more nuanced sampling design. Microbial communities inhabiting river ecosystems play crucial roles in global biogeochemical cycling and pollution attenuation. Spatial variations in local microbial assemblages are important for detailed understanding of community assembly and developing robust biodiversity sampling strategies. Here, we intensely analyzed twenty water samples collected from a one-meter spaced transect from the near-shore to the near-center in the Meramec River in eastern Missouri, USA and examined the microbial community composition with 16S rRNA gene amplicon sequencing. Riverine microbiomes across the transect exhibited extremely high similarity, with Pearson’s correlation coefficients above 0.9 for all pairwise community composition comparisons. However, despite the high similarity, PERMANOVA revealed significant spatial differences between near-shore and near-center communities (p = 0.001). Sloan’s neutral model simulations revealed that within-transect community composition variation was largely explained by demographic stochasticity (R2 = 0.89). Despite being primarily explained by neutral processes, LefSe analyses also revealed taxa from ten families of which relative abundances differed directionally from the bank to the river center, indicating an additional role of environmental filtering. Notably, the local variations within a river transect can have profound impacts on the documentation of alpha diversity. Taxon-accumulation curves indicated that even twenty samples did not fully saturate the sampling effort at the genus level, yet four, six and seven samples were able to capture 80% of the phylum-level, family-level, and genus-level diversity, respectively. This study for the first time reveals hyperlocal variations in riverine microbiomes and their assembly mechanisms, demanding attention to more robust sampling strategies for documenting microbial diversity in riverine systems.  相似文献   

20.
Grace JB  Harrison S  Damschen EI 《Ecology》2011,92(1):108-120
In his classic study in the Siskiyou Mountains (Oregon, USA), one of the most botanically rich forested regions in North America, R. H. Whittaker (1960) foreshadowed many modern ideas on the multivariate control of local species richness along environmental gradients related to productivity. Using a structural equation model to analyze his data, which were never previously statistically analyzed, we demonstrate that Whittaker was remarkably accurate in concluding that local herb richness in these late-seral forests is explained to a large extent by three major abiotic gradients (soils, topography, and elevation), and in turn, by the effects of these gradients on tree densities and the numbers of individual herbs. However, while Whittaker also clearly appreciated the significance of large-scale evolutionary and biogeographic influences on community composition, he did not fully articulate the more recent concept that variation in the species richness of local communities could be explained in part by variation in the sizes of regional species pools. Our model of his data is among the first to use estimates of regional species pool size to explain variation in local community richness along productivity-related gradients. We find that regional pool size, combined with a modest number of other interacting abiotic and biotic factors, explains most of the variation in local herb richness in the Siskiyou biodiversity hotspot.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号