首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Satellite telemetry was used to study the movements and behaviour of ten blue sharks and one individual each of shortfin mako, thresher and bigeye thresher off eastern Australia. The tracks showed latitudinal movements of up to 1,900 km, but none of the sharks travelled away from the eastern Australian region. Tracking periods did not exceed 177 days. All species showed oscillatory dive behaviour between the surface layers to as deep as 560–1,000 m. Blue sharks spent 35–58% of their time in <50 m depths and 10–16% of their time in >300 m. Of these four species, the bigeye thresher spent the least time in the surface layers and the most time at >300 m depth. All four species showed clear diel behaviour generally occupying shallower depths at night than during the day. Blue sharks were mainly in 17.5–20.0°C water, while the thresher sharks showed a more bimodal temperature distribution.  相似文献   

2.
Tiger sharks are important predators in the seagrass ecosystem of Shark Bay, Australia. Although sharks appear to return to a long-term study site within the Eastern Gulf periodically, the extent of their long-term movements is not known. Five sharks fitted with satellite transmitters showed variable movement patterns. Three sharks remained within the Shark Bay region and another made a 500 km round-trip excursion to oceanic waters northwest of the bay. These four sharks showed relatively low displacement rates relative to sharks tracked over shorter time periods, suggesting that sharks move through large home ranges that include Shark Bay. Although no reliable position fixes were obtained for the fifth shark, we were able to use the timing of satellite uplinks and the position of the satellite to determine that it had moved at least 8,000 km to the coastal waters of southeast Africa in 99 days—the longest recorded movement by a tiger shark. This movement and previously documented trans-Atlantic movements suggest that tiger shark populations may mix across ocean basins and that tiger sharks are subject to anthropogenic effects at great distances from protected waters. Finally, our method for using single satellite uplinks may be useful in estimating movements for wide-ranging species that rarely provide high quality location estimates.  相似文献   

3.
Whale sharks (Rhincodon typus Smith) aggregate seasonally (March–June) to feed in coastal waters off Ningaloo Reef, Western Australia. Pop-up archival tags were attached to 19 individuals (total lengths 4.5–11.0 m) at this location in early May of 2003 and 2004 to examine their horizontal and vertical movements. The long-term movement patterns of six whale sharks were documented, all of which travelled northeast into the Indian Ocean after departing Ningaloo Reef. They used both inshore and offshore habitats and made extensive vertical movements, occasionally to a depth of at least 980 m. Frequent up-and-down movements, diel vertical migration, and crepuscular descents were evident in the depth records. The sharks experienced ambient temperatures ranging between 4.2 and 28.7°C and encountered gradients of up to 20.8°C on dives.  相似文献   

4.
Satellite telemetry studies of 20 adult and sub-adult white sharks (360–530 cm estimated total length (TL)) in the eastern North Pacific during 1999–2005 revealed long distance seasonal migrations from the coast of California to an offshore focal area 2,500 km west of the Baja Peninsula, as well as the Hawaii Islands. Three tags were recovered allowing detailed behavioral analyses, including one shark’s migration cycle from the coast to the offshore focal area and back. While near pinniped rookeries in autumn and winter, sharks avoided the surface and used water to 50 m depth, consistent with a silhouette-based hunting strategy. Offshore migrations were initiated during November–March and followed periods of decreasing pinniped abundance. Migrations were highly directed, taking 23 ± 5 days to reach the offshore focal area along similar paths among sharks and years, defining a migration corridor. Sharks exhibited a broad depth distribution (0–644 m) in the offshore focal area, and remained there for up to 167 days during spring and summer, though primary productivity and fishery data suggest that forage resources are scarcer there than in other regions of the eastern North Pacific. Archival data from one shark revealed intensive oscillatory movements while in the offshore focal area, a behavior that may be related to foraging or mating. Sharks traveling to Hawaii remained near the islands up to 122 days, potentially feeding on pelagic fishes and marine mammals that concentrate around the islands. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

5.
The degree to which white sharks, Carcharodon carcharias, are social while hunting is unclear. Our aim was to describe the behavior and interactions among white sharks hunting seals near a seal colony. We attached ultrasonic beacons to five adult white sharks, 4.5–5.2?m long, and recorded their movements and behavior toward each other over a 15-day period in October 1997 at Año Nuevo Island, California. This site is home to colonies of four species of seals and sea lions. Two additional sharks, females 5.5 and 4.7?m in length, were later tracked intensively during periods of 12 and 3?days during October 1998 and November 1999, respectively. We recorded stomach temperature (indicative of feeding on warm-bodied seals) and swimming depths from the 5.5-m female, swimming speed and depth from the 4.7-m female. We monitored the movements and behavior of these sharks using an array of sonobuoys moored near the island; the receptive field measured 1?km2. Our principal findings were: (1) the sharks spent a mean time of 39.5% of each day patrolling within the receptive field; (2) no shark ever moved far out of it; (3) the sharks spent an equal amount of time and activity in the receptive field at all times of the day, daytime, twilight, and nighttime; (4) movements with respect to the island rookery were most often back and forth parallel to the shoreline, (5) tracks of three sharks, tagged at the same time and place, overlapped more often than those of the other two sharks; and (6) some sharks patrolled certain areas in the field preferentially, but there was no conclusive evidence that they defended these areas as territories. Feeding appeared to be infrequent: only two likely feeding bouts occurred during a cumulative 78-day/shark period that individuals were monitored at Año Nuevo Island. The behavior and movements of the sharks were consistent with a hunting strategy, in which individuals search for prey independently but, at the same time, remain close enough to each other to “sense” and exploit a kill by any one of them by joining in on the kill to feed.  相似文献   

6.
The attraction or provisioning of sharks for the purpose of tourism is a lucrative and popular industry that remains controversial regarding its possible risks to target species and impacts on local ecosystems. The long-term impacts of such activities on the behaviour and movement patterns of sharks have typically been difficult to establish as most studies investigate contemporary behaviour concurrent with existing operations and thus have no comparative base from which to compare effects. We compared patterns of residency and behaviour of acoustic-tagged white sharks at the Neptune Islands in South Australia between periods before and after an abrupt and sustained doubling of cage-diving effort that occurred in 2007. The number of sharks reported by cage-dive operators significantly increased after 2007. Comparisons also revealed there were significant increases in sharks’ periods of residency, the periods spent within areas where shark cage-diving operations occur and changes in sharks’ diel pattern of habitat use. Changes were site-specific with no significant differences in shark behaviour revealed over the same period at an island group 12 km from regular shark cage-dive sites. The results suggest that cage-diving operations can lead to long-term changes in the site-specific behaviour of a highly vagile shark species which may need to be considered in the context of their conservation and in managing the impacts of the industry.  相似文献   

7.
We equipped individual tiger (Galeocerdo cuvier Péron and Lesueur, 1822) and Galapagos (Carcharhinus galapagensis Snodgrass and Heller, 1905) sharks with both acoustic and satellite transmitters to quantify their long-term movements in the Papahanaumokuakea Marine National Monument (Northwestern Hawaiian Islands). Tiger sharks exhibited two broad patterns of behavior. Some individuals were detected at French Frigate Shoals (FFS) year round, whereas others visited FFS atoll in summer to forage on fledging albatross, then swam thousands of kilometers along the Hawaiian chain, or out into open ocean to the North Pacific transition zone chlorophyll front, before returning to FFS in subsequent years. These patterns suggest tiger sharks may use cognitive maps to navigate between distant foraging areas. Different patterns of spatial behavior may arise because cognitive maps are built up through individual exploration, and each tiger shark learns a unique combination of foraging sites. Galapagos shark detections were all associated with FFS, suggesting these sharks may be more resident around oceanic islands. Both Galapagos and tiger sharks primarily used the mixed layer (<100 m depth) and made occasional deeper dives through the thermocline down to 680 m. Results show reef-associated sharks utilize a wide variety of habitats ranging from shallow atoll lagoons to deep reefs and open ocean and may provide important trophic links between these habitats.  相似文献   

8.
B. J. Hill 《Marine Biology》1994,120(3):379-384
The portunid crabScylla serrata (Forskål) is shown to migrate offshore to spawn. Records of 447S. serrata caught as bycatch by trawlers in the tropical waters of northern Australia were analysed with respect to area, depth, distance offshore and month of capture as well as the sex and size of the crabs and whether the females were ovigerous. The crabs were caught mainly in three areas that correspond to the tiger prawn trawl fishery, at between 10 and 60 m depth (mean 28.5 m), 3 to 95 km offshore (mean 17.9 km). Most (87%) of the crabs were captured in October and November, which suggests they move offshore in September and October. No crabs were reported from offshore by February. Over 97% of the crabs caught offshore were female, of these 61.5% were ovigerous. The size range of females (100–109 to 200–209 mm carapace-width size classes) and males (120–129 to 200–209 mm carapace-width size classes) caught was similar. The frequent occurrence in coastal waters of females that are larger than the modal size at spawning, as well as mature females with spent ovaries, suggests that many females return to the coast after spawning. Although some species of portunid crab are euryhaline, mature females of estuarine species migrate to the sea to spawn. The migration byS. serrata described here is far more extensive than would be required to reach sea water salinities; it probably provides a dispersal mechanism for larvae to enable the megalopa stage to recruit to habitats distant from those of the parents.  相似文献   

9.
We measured the horizontal and vertical movements of five adult yellowfin tuna (Thunnus albacares, estimated body mass 64 to 93 kg) near the main Hawaiian Islands, while simultaneously gathering data on oceanographic conditions and currents. Fish movements were recorded by means of ultrasonic depth-sensitive transmitters. Depth–temperature and depth–oxygen profiles were measured with vertical conductivity–temperature–depth (CTD) casts, and the current-velocity field was surveyed using an acoustic Doppler current profiler (ADCP). Large adult yellowfin tuna spent ≃60 to 80% of their time in or immediately below the relatively uniform-temperature surface-layer (i.e. above 100 m), a behavior pattern similar to that previously reported for juvenile yellowfin tuna, blue marlin (Makaira nigricans), and striped marlin (Tetrapturus audax) tracked in the same area. In all three species, maximum swimming depths appear to be limited by water temperatures 8 C° colder than the surface-layer water temperature. Therefore, neither large body mass, nor the ability to maintain elevated swimming-muscle temperatures due to the presence of vascular counter-current heat exchangers in tunas, appears to permit greater vertical mobility or the ability to remain for extended periods below the thermocline. In those areas where the decrease in oxygen with depth is not limiting, the vertical movements of yellowfin tuna, blue marlin and striped marlin all appear to be restricted by the effects of water temperature on cardiac muscle function. Like juvenile yellowfin tuna, but unlike blue marlin and striped marlin, adult yellowfin tuna remained within 18.5 km of the coast and became associated with floating objects, including anchored fish-aggregating devices (FADs) and the tracking vessel. Like juvenile yellowfin tuna, large adult yellowfin repeatedly re-visit the same FAD, and appear able to navigate precisely between FADs that are up to 18 km apart. The median speed over ground ranged from 72 to 154 cm s−1. Neither speed nor direction was strongly influenced by currents. Received: 27 March 1998 / Accepted: 13 November 1998  相似文献   

10.
The aim of this study was to determine whether the composition of the demersal fish fauna in coastal marine waters in temperate Australia changes markedly with increasing water depth and distance from the shore and whether the composition of the fish fauna in water depths of 5 to 35 m undergoes cyclic, seasonal changes. Samples of demersal fishes were therefore collected by trawling over the predominantly sandy substrate at nine sites located in water depths of 5 to 15 m or 20 to 35 m and within 20 km of the shore in four regions along ∼200 km on the lower west coast of Australia. The sampling regime involved trawling for fishes at each site at night in seven consecutive seasons between the summer of 1990/1991 and winter of 1992. A total of 72 435 fishes, representing 77 families, 143 genera and 172 species was caught. The compositions of the fish faunas in offshore waters with depths of 5 to 35 m were shown to differ markedly from those previously recorded for nearshore marine waters in the same regions. However, as some species, such as Sillago burrus, S. vittata, S. bassensis and Rhabdosargus sarba, increase in size, they move out from their nursery areas in nearshore waters into deeper and more offshore waters, where spawning occurs. Ordination showed that, in each of the four regions, the composition of the fish fauna in depths of 5 to 15 m differs from that in depths of 20 to 35 m. This difference is attributable to the fact that some species, such as  S. burrus, S. vittata and Upeneichthys lineatus, are far more abundant in depths of 5 to 15 m, whereas other species, such as S. robusta, U. stotti and Lepidotrigla modesta, occur predominantly in depths of 20 to 35 m. However, the samples collected from the single site that was inshore but in deeper water demonstrate that the composition of the fish fauna is influenced by distance from shore as well as by water depth. The compositions of the fish faunas differed with latitude, largely due to the fact that some subtropical species, such as Polyspina piosae, S. burrus and  S. robusta, did not extend down into the more southern regions. Ordination also showed that the composition of the fish faunas at all but one of the nine sites underwent pronounced and consistent cyclic, seasonal changes. This seasonal cyclicity at the different sites was attributable to sequential patterns of immigrations and emigrations by a number of fish species during the course of the year. These seasonal migrations involved, inter alia (1) movements of certain species from their nursery areas into these deeper waters, e.g.  S. bassensis and Scobinichthys granulatus; (2) migrations into and off the sandy areas of the inner continental shelf, e.g. Arnoglossus muelleri; (3) migrations to spawning areas, e.g. Sillago robusta; and (4) movements into areas where detached macrophytes accumulate in winter, e.g. Cnidoglanis macrocephalus and Apogon rueppellii. Received: 21 August 1998 / Accepted: 9 February 1999  相似文献   

11.
Six Greenland sharks, Somniosus microcephalus (Bloch and Schneider, 1801), 190–355 cm fork length, were tracked under land-fast sea ice off northern Baffin Island (73.2°N; 85.3°W) between 16 and 28 May 1999, using ultrasonic telemetry. The sharks were tracked continuously for periods of 5.5–13.0 h, with the tracks of two individuals lasting 31.4 and 42.8 h, respectively, each with an interval when the track was lost. Several sharks dove after release and moved along the ocean bottom for the duration of the tracking period, while others varied their movements regarding course and depth. Two sharks made repeated visits to within 11 m of the ice–water interface from deeper water. The tracked sharks exhibited no apparent depth or temperature preferences, and pooled data indicated that sharks remained deep during the morning and gradually moved into shallower depths through the afternoon and night. Rates of descent (average=0.099 m s–1) were significantly greater than rates of ascent (average=0.058 m s–1) for all sharks, and the average rate of horizontal movement over ground was estimated as 0.215 m s–1. Based on the movements of tracked sharks and information contained in the literature, S. microcephalus may prey on seals in areas covered by land-fast sea ice.Communicated by J.P. Grassle, New Brunswick  相似文献   

12.
The ontogeny of behaviour relevant to dispersal was studied in situ with reared pelagic larvae of three warm temperate, marine, demersal fishes: Argyrosomus japonicus (Sciaenidae), Acanthopagrus australis and Pagrus auratus (both Sparidae). Larvae of 5–14 mm SL were released in the sea, and their swimming speed, depth and direction were observed by divers. Behaviour differed among species, and to some extent, among locations. Swimming speed increased linearly at 0.4–2.0 cm s−1 per mm size, depending on species. The sciaenid was slower than the sparids by 2–6 cm s−1 at any size, but uniquely, it swam faster in a sheltered bay than in the ocean. Mean speeds were 4–10 body lengths s−1. At settlement size, mean speed was 5–10 cm s−1, and the best performing individuals swam up to twice the mean speed. In situ swimming speed was linearly correlated (R 2=0.72) with a laboratory measure of swimming speed (critical speed): the slope of the relationship was 0.32, but due to a non-zero intercept, overall, in situ speed was 25% of critical speed. Ontogenetic vertical migrations of several metres were found in all three species: the sciaenid and one sparid descended, whereas the other sparid ascended to the surface. Overall, 74–84% of individual larvae swam in a non-random way, and the frequency of directional individuals did not change ontogenetically. Indications of ontogenetic change in orientated swimming (i.e. the direction of non-random swimming) were found in all three species, with orientated swimming having developed in the sparids by about 8 mm. One sparid swam W (towards shore) when <10 mm, and changed direction towards NE (parallel to shore) when >10 mm. These results are consistent with limited in situ observations of settlement-stage wild larvae of the two sparids. In situ, larvae of these three species have swimming, depth determination and orientation behaviour sufficiently well developed to substantially influence dispersal trajectories for most of their pelagic period.  相似文献   

13.
The short-term movements and behaviour of whale sharks (Rhincodon typus Smith, 1828) during March 1994 and April 1997 are reported from data collected by acoustic tracking and archival tags at Ningaloo Reef on the north west coast of Western Australia. Sharks were tracked for up to 26 h and generally swam slowly at ≃0.7 m s−1 parallel to the reef edge; occasionally they swam in a wide arc adjacent to passes in the reef. All tracked sharks made regular dives through the water column, mostly from the surface to near the bottom. These dives did not appear to be related to hydrographic features, and the sharks were probably searching the water column for food. Most sharks were accompanied by other fishes, usually the golden trevally Gnathanodon speciosus. Received: 19 January 1999 / Accepted: 22 June 1999  相似文献   

14.
The Hawaiian stingray, Dasyatis lata, is a common benthic elasmobranch in nearshore Hawaiian waters. Acoustic telemetry was used to track the movements of seven rays in Kaneohe Bay, Oahu, Hawaii. Rays were tracked continuously over 31-74 h periods. Geographical movements were analyzed to determine space utilization and rate of movement. Rays were found to utilize significantly larger activity spaces at night (0.83ǂ.70 km2) (mean-SD) than during the day (0.12ǂ.15 km2). Mean total activity space for rays tracked was 1.32ǂ.75 km2. Rates of movement were also significantly higher at night (0.34ǂ.30 km h-1) than during the day (0.15ǂ.22 km h-1). Average straight-line swimming speed was 0.64ǂ.16 km h-1, with a maximum observed swimming speed of 1.9 km h-1. Tidal stage had no effect on rate of movement. Comparison with previously published data on juvenile scalloped hammerhead sharks, Sphyrna lewini, in Kaneohe Bay revealed a high degree of overlap in habitat use and time of activity, suggesting possible ecological interactions between these two species.  相似文献   

15.
The post-release behaviour of eight black marlin (Makaira indica), caught by standard sportfishing techniques off the Great Barrier Reef, Australia, was investigated using ultrasonic telemetry. Five marlin between 100 and 420 kg were successfully tracked for periods of 8 to 27 h. Of the three others tagged, one was killed by a shark and two shed their tags, probably as the result of poor attachment. The black marlin spent most of their time within 10 m of the surface, both day and night. During the day, however, they also spent some time between 40 and 140 m depth. They rarely penetrated the thermocline, and then only briefly, remaining at temperatures no more than 8 C° below that of surface waters. The deepest dives were to 178 m. Four of the five marlin tracked, initially moved offshore before heading parallel to the shore, whereas the other marlin stayed close to the reef edge. The average mean swimming speeds over the ground for entire tracks ranged from 0.7 to 1.02 m s−1. Received: 17 January 1997 / Accepted: 16 June 1999  相似文献   

16.
Partial migration is considered ubiquitous among vertebrates, but little is known about the movements of oceanodromous apex predators such as sharks, particularly at their range extents. PAT-Mk10 and SPOT5 electronic tags were used to investigate tiger shark (Galeocerdo cuvier) spatial dynamics, site fidelity and habitat use off eastern Australia between April 2007 and May 2013. Of the 18 tags deployed, 15 recorded information on depth and/or temperature, and horizontal movements. Tracking times ranged between four and 408 days, with two recovered pop-up archival tags allowing 63 days of high-resolution archived data to be analysed. Overall mean proportions of time-at-depth revealed that G. cuvier spent the majority of time-at-depths of <20 m, but undertook dives as deep as 920 m. Tagged sharks occupied ambient water temperatures from 29.5 °C at the surface to 5.9 °C at depth. Deep dives (>500 m) occurred mostly around dawn and dusk, but no definitive daily dive patterns were observed. Horizontal movements were characterised by combinations of resident and transient behaviour that coincided with seasonal changes in water temperature. While the majority of movement activity was focused around continental slope waters, large-scale migration was evident with one individual moving from offshore Sydney, Australia, to New Caledonia (c. 1,800 km) in 48 days. Periods of tiger shark residency outside of Australia’s fisheries management zones highlight the potential vulnerability of the species to unregulated fisheries and the importance of cross-jurisdictional arrangements for species’ management and conservation.  相似文献   

17.
Determining the scale of larval dispersal and population connectivity in demersal fishes is a major challenge in marine ecology. Historically, considerations of larval dispersal have ignored the possible contributions of larval behaviour, but we show here that even young, small larvae have swimming, orientation and vertical positioning capabilities that can strongly influence dispersal outcomes. Using young (11–15 days), relatively poorly developed (8–10 mm), larvae of the pomacentrid damselfish, Amblyglyphidodon curacao (identified using mitochondrial DNA), we studied behaviour relevant to dispersal in the laboratory and sea on windward and leeward sides of Lizard Island, Great Barrier Reef. Behaviour varied little with size over the narrow size range examined. Critical speed was 27.5 ± 1.0 cm s−1 (30.9 BL s−1), and in situ speed was 13.6 ± 0.6 cm s−1. Fastest individuals were 44.6 and 25.0 cm s−1, for critical and in situ speeds, respectively. In situ speed was about 50% of critical speed and equalled mean current speed. Unfed larvae swam 172 ± 29 h at 8–10 cm s−1 (52.0 ± 8.6 km), and lost 25% wet weight over that time. Vertical distribution differed between locations: modal depth was 2.5–5.0 and 10.0–12.5 m at leeward and windward sites, respectively. Over 80% of 71 larvae observed in situ had directional swimming trajectories. Larvae avoided NW bearings, with an overall mean SE swimming direction, regardless of the direction to nearest settlement habitat. Larvae made smaller changes between sequential bearings of swimming direction when swimming SE than in other directions, making it more likely they would continue to swim SE. When swimming NW, 62% of turns were left (more than in other directions), which would quickly result in swimming direction changing away from NW. This demonstrates the larvae knew the direction in which they were swimming and provides insight into how they achieved SE swimming direction. Although the cues used for orientation are unclear, some possibilities seemingly can be eliminated. Thus, A. curacao larvae near Lizard Island, on average swam into the average current at a speed equivalent to it, could do this for many hours, and chose different depths in different locations. These behaviours will strongly influence dispersal, and are similar to behaviour of other settlement-stage pomacentrid larvae that are older and larger.  相似文献   

18.
Wildlife tourism has become increasingly popular and is one of the fastest growing sectors of the tourism industry. A radio-acoustic positioning system was deployed to monitor the fine-scale movements of 21 white sharks (Carcharodon carcharias) and investigate the effects of shark cage-diving activities on their swimming behaviour and space use. This study contributes towards improving our understanding of the complex relationship between wildlife tourism and its effects on sharks, and assesses how tourism targeting sharks affects behaviour at a finer spatial scale than previously investigated. Our study demonstrated that shark cage-diving operators (SCDO) influenced the fine-scale three-dimensional spatial distribution and the rate of movement of white sharks at the Neptune Islands. White sharks stayed more than 30 m away from the SCDO on 21 % of the days detected, but spent a significant amount of time in close proximity to the SCDO on the remaining days. Individual variation was detected, with some sharks behaviourally responding to SCDO more than others. The degree of variation between individual sharks and the different levels of interaction (e.g. presence, proximity to SCDO, and consumption of tethered bait) highlights the complexity of the relationships between SCDO and the effects on sharks. To improve our understanding of these relationships, future monitoring of shark cage-diving operations requires proximity to SCDO to be recorded in addition to the presence within the area. Further work is needed to assess whether the observed behavioural changes would affect individual fitness and ultimately population viability, which are critical information to unambiguously assess the potential impacts of wildlife tourism targeting sharks.  相似文献   

19.
Mark-recapture techniques can be used to estimate white shark (Carcharodon carcharias) population abundance. These frameworks are based on assumptions that marks are conserved and animals are present at the sampling location over the entire duration of the study. Though these assumptions have been validated across short-time scales for white sharks, long-term studies of population trends are dependent on these assumptions being valid across longer periods. We use 22 years of photographic data from aggregation sites in central California to support the use of dorsal fin morphology as long-term individual identifiers. We identified five individuals over 16–22 years, which support the use of dorsal fins as long-time individual identifiers, illustrate strong yearly site fidelity to coastal aggregation sites across extended time periods (decades), and provide the first empirical validation of white shark longevity >22 years. These findings support the use of fin morphology in mark-recapture frameworks for white sharks.  相似文献   

20.
The movement patterns and long-term site-fidelity of primarily juvenile Caribbean reef sharks, Carcharhinus perezi, were investigated using tag-recapture and automated telemetry at an insular nursery area, the Fernando de Noronha Archipelago, Brazil. Of the 143 externally tagged juvenile sharks (<110 cm), 22 (15.3%) were recaptured between 0 and 5 km from the site of tagging after 5–800 days at liberty, suggesting some site-fidelity in young individuals of this species. Site-fidelity and movement patterns of ten juvenile sharks ranging from 78 to 110 cm total length (TL) and one opportunistically captured adult female (224 cm TL) were also investigated for periods of up to 2 years with an array of automated telemetry receivers. Tagging and telemetry data from both inside and outside a marine protected area (MPA) show that shark abundance and activity is greatest along the part of the archipelago’s coastline least disturbed by human activity. Telemetry tracking also showed that juvenile reef sharks demonstrated a high degree of site-fidelity and occupied specific locations along the coast throughout the year, with some evidence of an increase in activity space with ontogeny. Sharks appeared to range more widely at night and there were no seasonal variations in habitat use. Our results suggest that MPAs may be a useful conservation tool to protect young C. perezi and potentially other reef-dwelling carcharhinid sharks during their early life history.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号