首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 858 毫秒
1.
This article discusses the appropriateness of using landfills as part of remediating hazardous chemical and Superfund sites, with particular emphasis on providing for true long‐term public health and environmental protection from the wastes and contaminated soils that are placed in the landfills. On‐site landfilling or capping of existing wastes is typically the least expensive approach for gaining some remediation of existing hazardous chemical/Superfund sites. The issues of the deficiencies in US EPA and state landfilling approaches discussed herein are also applicable to the landfilling of municipal and industrial solid “nonhazardous” wastes. These deficiencies were presented in part as “Problems with Landfills for Superfund Site Remediation” at the US EPA National Superfund Technical Assistance Grant Workshop held in Albuquerque, New Mexico, in February 2003. They are based on the author's experience in investigating the properties of landfill liners and the characteristics of today's landfills, relative to their ability to prevent groundwater pollution and to cause other environmental impacts. Discussed are issues related to both solid and hazardous waste landfills and approaches for improving the ability of landfills to contain wastes and monitor for leachate escape from the landfill for as long as the wastes in the landfill will be a threat. © 2004 Wiley Periodicals, Inc.  相似文献   

2.
Sediment dredge disposal options were reviewed to improve cost‐effectiveness and environmental safety for dredging of coastal sediments at the Department of Fisheries and Oceans Small Craft Harbours (DFO‐SCH) program in Canada. Historically, contaminated dredge sediments exceeding federal guidelines were disposed of in nearby landfills. Recent federal regulatory changes in sediment quality guidelines adopted by provincial regulators in Canada has resulted in updates to guidelines for disposal of contaminated solids in landfills. Updates now require specific and general disposal options for contaminated dredge material destined for land‐based disposal, resulting in more expensive disposal in containment cells (if contaminated sediments exceed federal guidelines). However, as part of this study, a leachate testing method was applied to contaminated sediments to simulate migration of potential contaminants in groundwater. Using this approach, leachate quality was compared to federal freshwater criteria and drinking water quality guidelines for compliance with new regulations. Leachate testing performed on the highest sediment contaminant concentrations triggered less than 2 percent potable water exceedances, meaning that most dredge spoils could be disposed of in privately owned or provincially operated landfill sites, providing less expensive disposal options compared to containment cell disposal. Current dredge disposal practices were reviewed at 35 harbor sites across Nova Scotia and their limitations identified in a gap analysis. Improved site management was developed following this review and consultation with interested marine stakeholders. New disposal options and chemical analyses were proposed, along with improvements to cost efficiencies for management of dredged marine sediments in Atlantic Canada. © 2013 Wiley Periodicals, Inc.  相似文献   

3.
The Gowanus Canal Superfund Site in Brooklyn, New York, is an approximately 1.5‐mile (1.61‐km) long estuary that was historically converted into a canal for industrial and commercial purposes. Three manufactured gas plants (MGPs) were formerly located on the Gowanus Canal and discharged waste into it. Surface sediments remain highly contaminated with polycyclic aromatic hydrocarbons (PAHs) long after the MGPs were razed. A hydrogeologic assessment indicates that groundwater passes through the deeper coal tar–contaminated sediment prior to discharging to the canal. This study was undertaken to investigate if groundwater passing through coal tar–contaminated sediment could be responsible for the ongoing contamination of both surface sediments and surface water in the canal. PAH compound distributions in surface water samples collected from the tidal canal at low tide were compared with PAH compounds found in adjacent groundwater‐monitoring wells, point sources (combined sewer overflows [CSOs]), and surface sediments. The results indicate a strong correlation between PAH contaminant distributions in groundwater, sediment, and surface water, indicating that contaminated groundwater passing through the deeper coal tar–contaminated sediments is the primary mechanism contributing to the contamination of both surface sediment and surface water in the canal. Therefore, any sediment remediation efforts in the Gowanus Canal that fail to evaluate and control the upward transport processes have a high chance of failure due to recontamination from below.  ©2016 Wiley Periodicals, Inc.  相似文献   

4.
Investigations conducted at three inactive hazardous waste sites in New York State have confirmed the co‐presence of polychlorinated hiphenyls (PCBs) and polychlorinated terphenyls (PCTs) in soils, sediments, and biota. The PCTs at all three sites were positively identified as Aroclor 5432, with the most probable source being the hydraulic fluid Pydraul 312A utilized for high‐temperature applications. The identification of the lower‐chlorinated PCT formulations in environmental samples is problematical, since PCT Aroclors 5432 and 5442 are not chromatographically distinct from the higher‐chlorinated (PCB) Aroclors 1254, 1260, 1262, and 1268 using conventional gas chromatography–electron capture detection. Results from this study indicate that U.S. Environmental Protection Agency (USEPA) approved PCB methods routinely utilized by most commercial laboratories based on Florisil adsorption column chromatography cleanup are inadequate to produce valid chromatographic separation and quantitative results with soils, sediment, and biota samples containing both PCBs and PCTs. The presence of co‐eluting PCBs and PCTs precludes accurate quantitation due to significant differences in PCB/PCT electron capture detector response factors, and the potential for misidentification of PCT Aroclors as higher chlorinated PCB Aroclors. A method based on alumina column adsorption chromatography was used, allowing for the accurate identification and quantitation of PCB and PCT Aroclors. The results of this study suggest that the utilization of alumina adsorption column separation may have applicability and regulatory significance to other industrially contaminated sites which historically used Pydraul 312A. Inferences.  相似文献   

5.
This article summarizes a study conducted by the U.S. Army Engineer Waterways Experiment Station to develop technical information and to evaluate the engineering feasibility of restoration alternatives for DDT-and PCB-contaminated sediments on the Palos Verdes shelf and slope near Los Angeles, California. The study evaluated the nonremoval alternative of in-place capping of contaminated sediments on the shelf and slope; removal of contaminated sediments using conventional and specialized dredging equipment and deep ocean mining equipment; treatment of contaminated sediments; and disposal of contaminated sediments in confined (diked) disposal facilities (CDFs), contained aquatic disposal (CAD) sites, upland landfills, and deep ocean basin sites. Cost estimates of the various alternatives were also prepared. This article concludes that restoration of the contaminated sediments is technically feasible. Sediments on the shelf and slope can be removed using available dredging technologies for deep water environments. In-place capping, CAD, and CDF alternatives are technically feasible. The deep ocean basin disposal alternative is not feasible from the technical or regulatory standpoint. The treatment alternative is not feasible from the implementability and economic standpoint.  相似文献   

6.
The infiltration of rainfall into contaminated soils and wastes provides the mechanism whereby hazardous chemical and radionuclide constituents of concern are leached and transported to underlying groundwater and potential human and ecological receptors. The application of engineered covers to reduce rainfall infiltration is an approach that is often selected for the remediation of contaminated sites. Evapotranspiration, or water‐balance, cover designs have been shown to be effective ways of preventing infiltration in arid and semiarid climates. This particular design relies on evaporation and vegetative transpiration to reduce potential infiltration to acceptable levels. In this article, we identify and examine the dominant ecological processes that affect the performance of evapotranspiration cover designs. © 2012 Wiley Periodicals, Inc.  相似文献   

7.
This article presents the results of demonstration of Geosafe Corporation's in-situ vitrification (ISV) technology at the Parsons Chemical/ETM Enterprises Superfund site in Grand Ledge, Michigan. The primary focus of this article is on the EPA's Superfund Innovative Technology Evaluation (SITE) Program assessment of the sixth melt. A total of eight melts were performed during this project. This demonstration was part of the SITE Program Demonstration (USEPA, 1994), which helped develop innovative hazardous waste treatment technologies, especially those offering permanent remedies for contaminated Superfund and other hazardous waste sites. The demonstration results are not only applicable to this particular project, but are also indicative of other Geosafe project experiences and demonstrate the current state of the ISV technology. The demonstration included two phases. In the first phase, the ISV technology was used to treat the Parsons contaminated soil. In the second phase, post-testing and analysis were conducted about one year after the ISV technology was applied to confirm that the vitrification was completed and that no contamination migration had occurred.  相似文献   

8.
In March 2011, the Interstate Technology & Regulatory Council (ITRC) Contaminated Sediments Team published a web‐based Technical and Regulatory Guidance on the concepts, processes, and uses of bioavailability in a risk decision‐making framework at a contaminated sediment site. Bioavailability processes, as defined by the National Research Council (NRC; 2003), are the “individual physical, chemical, and biological interactions that determine the exposure of plants and animals to chemicals associated with soils and sediments.” Bioavailability assessment tools aid in the assessment of human and ecological exposure and development of site‐specific remedial objectives. The guidance provides information on the processes that may affect contaminant bioavailability within sediments to understand exposure within ecological and human receptors; supports the development of conceptual site models (CSMs); and describes available tools (biological, chemical, and physical) and models that are used to measure and characterize the fate and transport and potential bioavailability of contaminants. Case studies, referenced throughout the document, demonstrate the practical application of bioavailability measures. The guidance will describe the proper application of traditional and emerging sediment remediation technologies to support the selection of a remedy that is protective of human health and the environment. © 2013 Wiley Periodicals, Inc.  相似文献   

9.
There are many well‐established bioremediation technologies applied commercially at contaminated sites. One such technology is the use of compost material. Composting matrices and composts are rich sources of microorganisms, which can degrade contaminants to innocuous compounds such as carbon dioxide and water. In this article, composting of contaminated soil and sediment was performed on a laboratory bench‐scale pile. Fertilizer was added to increase the nutrient content, and the addition of commercial compost provided a rich source of microorganisms. After maintaining proper composting conditions, the feasibility of composting was assessed by monitoring pH, total volatile solids, total microbial count, temperature, and organic contaminant concentration. The entire composting process occurred over a period of five weeks and resulted in the degradation of contaminants and production of compost with a high nutritional content that could be further used as inocula for the treatment of hazardous waste sites. © 2006 Wiley Periodicals, Inc.  相似文献   

10.
Contaminated groundwater and surface water have posed a great challenge in restoring wood preserving sites to beneficial use. Often contaminated groundwater plumes extend far beyond the legal property limits, adversely impacting drinking water supplies and crop lands. To contain, treat, and/or remediate these valuable resources is an important part of restoring these impacted sites. Various options are available for remediating the groundwater and other affected media at these sites. Frequently, pump and treat technologies have been used that can provide well‐head treatment at installed extraction wells. This approach has shown to be costly and excessively time consuming. Some of the technologies used for pump and treat are granular activated carbon (GAC), biotreatment, and chemical oxidation. Other approaches use in‐situ treatment applications that include enhanced bioremediation, monitored natural attenuation (biotic and abiotic), and chemical reduction/fixation. Ultimately, it may only be feasible, economically or practicably, to use hydraulic containment systems. Depending upon site‐specific conditions, these treatment approaches can be used in various combinations to offer the best remedial action. A comparison of water treatment system costs extrapolated from the treatability studies performed on contaminated groundwater from the McCormick/Baxter Superfund site in Stockton, California, yielded operation and maintenance costs of $1.19/1,000 gal. for carbon treatment and $7.53/1,000 gal. for ultraviolet (UV) peroxidation, respectively.  相似文献   

11.
Many public agencies and private entities are faced with assessing the risks to humans from contamination on their lands. The United States Department of Energy (US DOE) and Department of Defense are responsible for large holdings of contaminated land and face a long‐term and costly challenge to assure sustainable protectiveness. With increasing interest in the conversion of brownfields to productive uses, many former industrial properties must also be assessed to determine compatible future land uses. In the United States, many cleanup plans or actions are based on the Comprehensive Environmental Responsibility, Compensation, and Liability Act, which provides important but incomplete coverage of these issues, although many applications have tried to involve stakeholders at multiple steps. Where there is the potential for exposure to workers, the public, and the environment from either cleanup or leaving residual contamination in place, there is a need for a more comprehensive approach to evaluate and balance the present and future risk(s) from existing contamination, from remediation actions, as well as from postremediation residual contamination. This article focuses on the US DOE, the agency with the largest hazardous waste remediation task in the world. Presented is a framework extending from preliminary assessment, risk assessment and balancing, epidemiology, monitoring, communication, and stakeholder involvement useful for assessing risk to workers and site neighbors. Provided are examples of those who eat fish, meat, or fruit from contaminated habitats. The US DOE's contaminated sites are unique in a number of ways: (1) huge physical footprint size, (2) types of waste (mixed radiation/chemical), and (3) quantities of waste. Proposed future land uses provide goals for remediation, but since some contamination is of a type or magnitude that cannot be cleaned up with existing technology, this in turn constrains future land use options, requiring an iterative approach. The risk approaches must fit a range of future land uses and end‐states from leave‐in‐place to complete cleanup. This will include not only traditional risk methodologies, but also the assessment and surveillance necessary for stewards for long‐term monitoring of risk from historic and future exposure to maintain sustainable protectiveness. Because of the distinctiveness of DOE sites, application of the methodologies developed here to other waste site situations requires site‐specific evaluation © 2007 Wiley Periodicals, Inc.  相似文献   

12.
Common deficiencies in the typical evaluation of the surface water quality impacts of hazardous chemical sites are discussed. Particular attention is given to deficiencies in monitoring stormwater runoff, as well as the input of contaminated groundwaters that lead to impairment of the beneficial uses of nearby surface waters because of site-derived hazardous and deleterious chemicals. An alternative approach, Evaluation Monitoring, is presented in this paper. Evaluation Monitoring shifts the monitoring program from periodic sampling and analysis of stormwater runoff and ambient waters for a suite of chemical parameters, to examining the receiving waters to determine what, if any, water quality use impairments are occurring in surface waters due to the runoff-associated constituents and shallow groundwater input.  相似文献   

13.
Although the area of urban river sediment quality has received increasing attention over the last 10 years, the presence of contaminated sediments in urban rivers and the potential risk to public health it poses has yet to be rigorously addressed within the urban river restoration context. This is an issue of particular concern at the current time, as the opening-up of urban rivers is being strongly promoted by many legislative and non-legislative bodies as a multi-benefit approach to tackling a range of urban challenges; from decreasing the risk of flooding to increasing the quality-of-life in urbanised areas. This paper brings together these two contrasting concepts; urban rivers as pollutant sinks and sources (presentation of data on urban river sediment quality) and urban rivers as sites of flood alleviation, amenity, recreation and wildlife value (review of the drivers and initiatives behind the increasing implementation of urban river rehabilitation schemes). In light of this combined assessment, the urgent need for a risk assessment of restored urban river sites to establish whether the presence of contaminated sediments poses a risk to public health is strongly recommended. Should such a risk be demonstrated, a tiered approach to supporting the identification and pro-active management of these risks is proposed as a way to inform and enable, rather than to prevent, the safe and appropriate use of the increasing number of urban river restoration schemes being implemented.  相似文献   

14.
A discussion of some of the deficiencies of Superfund and hazardous chemical site investigation and remediation is presented. Of concern is the adequacy of defining the constituents of concern; stormwater‐runoff monitoring; evaluating excessive bioaccumulation of hazardous chemicals in edible organisms; the extent and degree of groundwater pollution; modeling of pollutant transport in the vadose zone; translocation of subsurface pollutants to surface via plant roots, leaves, and flowers; protection of groundwater quality for nonpriority pollutants that impact aesthetic quality; and deficiencies in the quality of site data reports. Examples of these types of problems are discussed with suggestions on the approach that should be followed to improve the quality of site investigation and remediation. © 2004 Wiley Periodicals, Inc.  相似文献   

15.
1,4‐Dioxane is a synthetic industrial chemical frequently found at contaminated sites where 1,1,1‐trichloroethane was used for degreasing. It is a probable human carcinogen and has been found in groundwater at sites throughout the United States. The physical and chemical properties and behavior of 1,4‐dioxane create challenges for its characterization and treatment. It is highly mobile and has not been shown to readily biodegrade in the environment. In December 2006, the U.S. Environmental Protection Agency's Office of Superfund Remediation and Technology Innovation (OSRTI) prepared a report titled “Treatment Technologies for 1,4‐Dioxane: Fundamentals and Field Applications.” The report provides information about the chemistry of dioxane, cleanup goals, analytical methods, available treatment technologies, and site‐specific treatment performance data. The information may be useful to project managers, technology providers, consulting engineers, and members of academia faced with addressing dioxane at cleanup sites or in drinking water supplies. This article provides a synopsis of the US EPA report, which is available at http://cluin.org/542R06009 . © 2007 Wiley Periodicals, Inc.  相似文献   

16.
In situ solidification (ISS) has been used with increasing frequency as a remedial technology for source area treatment at upland sites impacted with a variety of organic contaminants, including coal tar, creosote, and other nonaqueous phase liquids (NAPLs). With several large, complex, urban water ways and rivers impacted with NAPLs, ISS is more recently being considered as a technology of choice to help reduce remedial costs, minimize short‐ and long‐term impacts of mobile NAPL, and lower the carbon footprint. This article presents the results of a successful pilot study of ISS at the Gowanus Canal Superfund site in Brooklyn, New York. This represents the first major sediment ISS field demonstration project in a saline environment and the first project to evaluate large‐scale implementation of ISS from a barge and through overlaying sediment. ©2016 Wiley Periodicals, Inc.  相似文献   

17.
Aquatic sediments often contain a large number of chemical contaminants that are potential pollutants. It is often presumed that such contaminants are released to the water column during sediment resuspension and, in there, adversely impact aquatic life and other beneficial uses of the water. However, extensive laboratory and field studies of about 100 contaminated sediments from across the United States that specifically addressed this type of release showed that of about 30 common heavy metals, organic compounds, and other potential pollutants, only manganese II and ammonia were released to then remain in the water column after sediment resuspension. These results indicated that the chemistry of aqueous iron controls the availability of many contaminants in resuspended sediment. The formation of ferric hydroxide during sediment suspension into the water column, as a result of the reaction between ferrous iron in the sediments and dissolved oxygen in the water column, leads to rapid scavenging of many contaminants in the Fe(OH)3 precipitate. The scavenged contaminants are redeposited in the sediments. This article reviews the role of the aqueous chemistry of iron as it relates to controlling the release of potential pollutants from resuspended sediments. © 2005 Wiley Periodicals, Inc.  相似文献   

18.
The Hazardous Substance Research Center (HSRC) was established by the U.S. Environmental Protection Agency (EPA) to assist in the implementation of Superfund and to address major hazardous substance environmental problems at a regional level. Over the past 12 years, the HSRC program has produced more than 1,200 peer‐reviewed technical articles, 27 patents and licenses, 21 new technologies for the remediation marketplace, and provided technical assistance to more than 300 communities. Research, technology transfer, and training are conducted by five regional multi‐university centers, which focus on different aspects of hazardous substance management. Areas of focus include urban environments, contaminated sediments, natural remediation and restoration technologies, abandoned mine lands, and chlorinated solvents in groundwater. This article provides an overview of the five HSRC programs including current areas of research, field studies, and technology transfer Internet links to access research results and remediation technology information. © 2003 Wiley Periodicals, Inc.  相似文献   

19.
A conceptual approach of a novel application of in‐situ thermal processes that would either use a steam injection process or a steam/surfactant injection process was considered to remediate petroleum contaminated sediment residing in an abandoned canal. Laboratory tests were conducted in an attempt to volatilize or mobilize contaminants of concern (selected polycyclic aromatic hydrocarbons [PAHs]) from the contaminated sediment into a phase that could be physically removed. The processes were operated above ambient temperature and pressure in an attempt to increase the removal of the contaminants of concern from the sediment. The ability of both the steam injection process and the steam/surfactant process to remove PAHs from the sediment was considered ineffective; as only two of the seventeen selected PAHs (naphthalene and C1 naphthalene) were associated with a percentage mass reduction greater than 34% for both treatments (four trials). The steam/surfactant injection process generally resulted in higher reductions than the steam injection process, but had larger variances within the two trials using the treatment type. This preliminary evaluation suggests that steam‐based injection processes for removing petroleum contamination from this canal sediment, using the surfactants selected, equipment set‐up, and operating conditions studied, would be considered ineffective. © 2010 Wiley Periodicals, Inc. *
  • 1 This article is a U.S. Government work and, as such, is in the public domain of the United States of America.
  •   相似文献   

    20.
    This study evaluated pilot‐scale active caps composed of apatite, organoclay, biopolymers, and sand for the remediation of metal‐contaminated sediments. The active caps were constructed in Steel Creek, at the Savannah River Site near Aiken, South Carolina. Monitoring was conducted for 12 months. Effectiveness of the caps was based on an evaluation of contaminant bioavailability, resistance to erosion, and impacts on benthic organisms. Active caps lowered metal bioavailability in the sediment during the one‐year test period. Biopolymers reduced sediment suspension during cap construction, increased the pool of carbon, and lowered the release of metals. This field validation showed that active caps can effectively treat contaminants by changing their speciation, and that caps can be constructed to include more than one type of amendment to achieve multiple goals. © 2012 Wiley Periodicals, Inc.  相似文献   

    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号