首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Within 2 years of trace gas measurements performed at Arosa (Switzerland, 2030 m above sea level), enhanced ozone mixing ratios were observed during south foehn events during summer and spring (5–10 ppb above the median value). The enhancements can be traced back to ozone produced in the strongly industrialized Po basin as confirmed by various analyses. Backward trajectories clearly show advection from this region during foehn. NOy versus O3 correlation and comparison of O3 mixing ratios between Arosa and Mt. Cimone (Italy, 2165 m asl) suggest that ozone is the result of recent photochemical production (+5.6 ppb on average), either directly formed during the transport or via mixing of air processed in the Po basin boundary layer. The absence of a correlation between air parcel residence times over Europe and ozone mixing ratios at Arosa during foehn events is in contrast to a previous analysis, which suggested such correlation without reference to the origin of the air. In the case of south foehn, the continental scale influence of pollutants emission on ozone at Arosa appears to be far less important than the direct influence of the Po basin emissions. In contrast, winter time displays a different situation, with mean ozone reductions of about 4 ppb for air parcels passing the Po basin, probably caused by mixing with ozone-poor air from the Po basin boundary layer.  相似文献   

2.
Ozone was measured in six- and NOx in five sampling periods in 1996–97, mostly during summer, at a 1070 m altitude site in northern Peloponnese. Mean values in each sampling period ranged from 43–48 ppb exceeding the European Union 24 h plant protection standard. The background ozone concentration of 43 ppb derived from the correlation of ozone with NOx also exceeded the EU plant protection standard. Ozone exhibited maxima in the afternoon and minima during the night; in certain 24–48 h periods, however, the ozone concentrations remained practically constant; in these short periods air mass back trajectories indicated air masses which originated in north Africa. NOx concentrations had maximum of 24 h around noon. Their mean concentrations ranged from 0.5–0.7 ppb, smaller than respective concentrations in north-central Europe.  相似文献   

3.
Analysis of the recent surface ozone data at four remote islands (Rishiri, Oki, Okinawa, and Ogasawara) in Japan indicates that East Asian anthropogenic emissions significantly influence the boundary layer ozone in Japan. Due to these regional-scale emissions, an increase of ozone concentration is observed during fall, winter, and spring when anthropogenically enhanced continental air masses from Siberia/Eurasia arrive at the sites. The O3 concentrations in the “regionally polluted” continental outflow among sites are as high as 41–46 ppb in winter and 54–61 ppb in spring. Meanwhile, marine air masses from the Pacific Ocean show as low as 13–14 ppb of O3 at Okinawa and Ogasawara in summer but higher O3 concentrations, 24–27 ppb, are observed at Oki and Rishiri due to the additional pollution mainly from Japan mainland. The preliminary analysis of the exceedances of ozone critical level using AOT40 and SUM06 exposure indices indicates that the O3 threshold were exceeded variously among sites and years. The highest AOT40 and SUM06 were observed at Oki in central Japan where the critical levels are distinctly exceeded. In the other years, the O3 exposures at Oki, Okinawa, and Rishiri are about or slightly higher than the critical levels. The potential risk of crop yields reduction from high level of O3 exposure in Japan might not be a serious issue during 1990s and at present because the traditional growing season in Japan are during the low O3 period in summer. However, increases of anthropogenic emission in East Asia could aggravate the situation in the very near future.  相似文献   

4.
The mixing ratios of surface ozone at two rural/remote sites in Thailand, Inthanon and Srinakarin, have been measured continuously for the first time. Almost identical seasonal variations of O3 with dry season maximum and a wet season minimum with a large seasonal amplitude are observed at both sites during 1996–1998. At Inthanon, the monthly averaged O3 mixing ratios range 9–55 ppb, with the annual average of 27 ppb. The ozone mixing ratios at Srinakarin are in the similar range, 9–45 ppb with annual average of 28 ppb. Based on trajectory analysis of O3 data at Inthanon, the long-range transport of O3 under Asian monsoon regime could primarily explain the low O3 mixing ratios of 13 ppb in clean marine air mass from Indian Ocean during wet season but only partly explain the relatively low O3 mixing ratios, 26 ppb or less, in continental air mass from northeast Asia either in wet or dry season. The highest O3 mixing ratios are found in air masses transported within southeast Asia, averaged 46 ppb in dry season. The high O3 mixing ratios during the dry season are suggested to be significantly due to the local/sub-regional scale O3 production triggered by biomass burning in southeast Asia rather than long-range transport effect.  相似文献   

5.
In this study, we investigate the benefit for European ozone simulation of using day-to-day varying chemical boundary conditions produced by a global chemical weather forecast platform instead of climatological monthly means at the frontiers of a regional model. We performed two simulations over Europe using the regional (0.5 × 0.5°) CHIMERE CTM forced by global scale simulations based on the LMDz-INCA CTM. For summer 2005, ozone differences exceeding 20 ppb can be punctually found between these two simulations in the borders of the domain. The mean of the differences ranges between 0 and 3 ppb beyond 15° of the frontiers of the regional model.Correlations with ground-based ozone measurements at more than 400 stations are slightly increased by the use of daily boundary conditions. The simulation of the temporal variability is significantly enhanced in particular for the daily means and daily maxima. As expected, the gain is higher at the borders of the regional domain.The change of percentile distribution shows that the net impact of high temporal resolution boundary conditions is not of major concern for surface ozone peaks which are mainly due to local photochemistry. The use of daily boundary conditions is however necessary to correctly simulate concentrations in the 20–35 ppb range which are of crucial interest for human and vegetation exposure effects.  相似文献   

6.
Surface ozone records from ten polar research stations were investigated for the dependencies of ozone on radiative processes, snow-photochemisty, and synoptic and stratospheric transport. A total of 146 annual data records for the Arctic sites Barrow, Alaska; Summit, Greenland; Alert, Canada; Zeppelinfjellet, Norway; and the Antarctic stations Halley, McMurdo, Neumayer, Sanae, Syowa, and South Pole were analyzed. Mean ozone at the Northern Hemisphere (NH) stations (excluding Summit) is ∼5 ppbv higher than in Antarctica. Statistical analysis yielded best estimates for the projected year 2005 median annual ozone mixing ratios, which for the Arctic stations were 33.5 ppbv at Alert, 28.6 ppbv at Barrow, 46.3 ppbv ppb at Summit and 33.7 ppbv at Zeppelinfjellet. For the Antarctic stations the corresponding ozone mixing ratios were 21.6 ppbv at Halley, 27.0 ppbv at McMurdo, 24.9 ppbv at Neumayer, 27.2 ppbv at Sanae, 29.4 ppbv at South Pole, and 25.8 ppbv at Syowa. At both Summit (3212 m asl) and South Pole (2830 m asl), annual mean ozone is higher than at the lower elevation and coastal stations. A trend analysis revealed that all sites in recent years have experienced low to moderate increases in surface ozone ranging from 0.02 to 0.26 ppbv yr−1, albeit none of these changes were found to be statistically significant trends. A seasonal trend analysis showed above-average increases in ozone during the spring and early summer periods for both Arctic (Alert, Zeppelinfjellet) and Antarctic (McMurdo, Neumayer, South Pole) sites. In contrast, at Barrow, springtime ozone has been declining. All coastal stations experience springtime episodes with rapid depletion of ozone in the boundary layer, attributable to photochemically catalyzed ozone depletion from halogen chemistry. This effect is most obvious at Barrow, followed by Alert. Springtime depletion episodes are less pronounced at Antarctic stations. At South Pole, during the Antarctic spring and summer, photochemical ozone production yields frequent episodes with enhanced surface ozone. Other Antarctic stations show similar, though less frequent spring and summertime periods with enhanced ozone. The Antarctic data provide evidence that austral spring and summertime ozone production in Antarctica is widespread, respectively, affects all stations at least through transport events. This ozone production contributes to a several ppbv enhancement in the annual mean ozone over the Antarctic plateau; however, it is not the determining process in the Antarctic seasonal ozone cycle. Although Summit and South Pole have many similarities in their environmental conditions, this ozone production does not appear to be of equal importance at Summit. Amplitudes of diurnal, summertime ozone cycles at these polar sites are weaker than at lower latitude locations. Amplitudes of seasonal ozone changes are larger in the Southern Hemisphere (by ∼5 ppbv), most likely due to less summertime photochemical ozone loss and more transport of ozone-rich air to the Arctic during the NH spring and summer months.  相似文献   

7.
The temporal and spatial distributions of boundary-layer ozone were studied during June 2000 at Summit, Greenland, using surface-level measurements and vertical profiling from a tethered balloon platform. Three weeks of continuous ozone surface data, 133 meteorological vertical profile data and 82 ozone vertical profile data sets were collected from the surface to a maximum altitude of 1400 m above ground.The lower atmosphere at Summit was characterized by the prevalence of strong stable conditions with strong surface temperature inversions. These inversions reversed to neutral to slightly unstable conditions between ∼9.00 and 18.00 h local time with the formation of shallow mixing heights of ∼70–250 m above the surface.The surface ozone mixing ratio ranged from 39 to 68 ppbv and occasionally had rapid changes of up to 20 ppb in 12 h. The diurnal mean ozone mixing ratio showed diurnal trends indicating meteorological and photochemical controls of surface ozone. Vertical profiles were within the range of 37–76 ppb and showed strong stratification in the lower troposphere. A high correlation of high ozone/low water vapor air masses indicated the transport of high tropospheric/low stratospheric air into the lower boundary layer. A ∼0.1–3 ppb decline of the ozone mixing ratio towards the surface was frequently observed within the neutrally stable mixed layer during midday hours. These data suggest that the boundary-layer ozone mixing ratio and ozone depletion and deposition to the snowpack are influenced by photochemical processes and/or transport phenomena that follow diurnal dependencies. With 37 ppb of ozone being the lowest mixing ratio measured in all data no evidence was seen for the occurrence of ozone depletion episodes similar to those that have been reported within the boundary layer at coastal Arctic sites during springtime.  相似文献   

8.
We use a global chemical transport model (GEOS-Chem) with 1° × 1° horizontal resolution to quantify the effects of anthropogenic emissions from Canada, Mexico, and outside North America on daily maximum 8-hour average ozone concentrations in US surface air. Simulations for summer 2001 indicate mean North American and US background concentrations of 26 ± 8 ppb and 30 ± 8 ppb, as obtained by eliminating anthropogenic emissions in North America vs. in the US only. The US background never exceeds 60 ppb in the model. The Canadian and Mexican pollution enhancement averages 3 ± 4 ppb in the US in summer but can be occasionally much higher in downwind regions of the northeast and southwest, peaking at 33 ppb in upstate New York (on a day with 75 ppb total ozone) and 18 ppb in southern California (on a day with 68 ppb total ozone). The model is successful in reproducing the observed variability of ozone in these regions, including the occurrence and magnitude of high-ozone episodes influenced by transboundary pollution. We find that exceedances of the 75 ppb US air quality standard in eastern Michigan, western New York, New Jersey, and southern California are often associated with Canadian and Mexican pollution enhancements in excess of 10 ppb. Sensitivity simulations with 2020 emission projections suggest that Canadian pollution influence in the Northeast US will become comparable in magnitude to that from domestic power plants.  相似文献   

9.
The impact of biogenic volatile organic compound (BVOC) emissions on European ozone distributions has not yet been evaluated in a comprehensive way. Using the CHIMERE chemistry-transport model the variability of surface ozone levels from April to September for 4 years (1997, 2000, 2001, 2003) resulting from biogenic emissions is investigated. It is shown that BVOC emissions increased on average summer daily ozone maxima over Europe by 2.5 ppbv (5%). The impact is most significant in Portugal (up to 15 ppbv) and in the Mediterranean region (about 5 ppbv), being smaller in the northern part of Europe (1.3 ppbv north of 47.5°N). The average impact is rather similar for the three summers (1997, 2000, 2001), but is much larger during the extraordinarily hot summer of 2003. Here, the biogenic contribution to surface ozone doubles compared to other years at some locations. Interaction with anthropogenic NOx emissions is found to be a key process for ozone production of biogenic precursors. Comparing the impact of the state-of-the-art BVOC emission inventory compiled within the NatAir project and an earlier, widely used BVOC inventory derived from Simpson et al. [1999. Inventorying emissions from nature in Europe. Journal of Geophysical Research 104(D7), 8113–8152] on surface ozone shows that ozone produced from biogenic precursors is less in central and northern Europe but in certain southern areas much higher e.g. Iberian Peninsula and the Mediterranean Sea. The uncertainty in the regionally averaged impact of BVOC on ozone build-up in Europe is estimated to be ±50%.  相似文献   

10.
A four and a half year study of ozone concentrations in the Central Mediterranean was carried out between January 1997 and August 2001 on a background monitoring station located on the island of Gozo midway between Southern Europe and North Africa.Seasonal and diurnal variations of background ozone are documented. They show the existence of seasonal cycles with a primary maximum in spring followed by a secondary, more variable maximum in summer which indicates that photochemically produced ozone is being transported over the Mediterranean to the rural island of Gozo. Although peak ozone concentrations seldom exceeded 100 ppbv during summer, the background ozone-mixing ratios (as monthly averages) are some of the highest values which can be found at low latitude sites throughout the world. An increasing trend in the annual background ozone concentration from 48.2 ppbv in 1997 to 52.2 ppbv in 2000 is observed. During wintertime the average ozone mixing-ratio (as monthly averages) of 44 ppbv in December is approximately twice as high as on the European continent. This may imply that on Malta, due to higher average ozone concentrations between autumn and spring (the main growing season), crop damage of high economic value may occur.  相似文献   

11.
In the Aguere Valley (in the oceanic boundary layer at Tenerife, 28°N, 16°W, 580 m a.s.l.) the ozone levels were monitored for ambient air quality assessment. Although precursors are emitted in this area, the strong correlation between ozone levels and wind velocity indicates that ozone is transported into the valley from the ocean. The inland ozone supply along the valley is induced by an orographic channelling effect of the northern oceanic air masses. The highest ozone concentrations are mostly recorded during the nocturnal stage under the influence of fresh oceanic air masses, and during high wind speed events. The seasonal cycle is characterised by elevated ozone mixing ratios in the spring (nighttime levels >45 ppbv) and low mixing ratios in the summer (nighttime levels in the range 20–35 ppbv). Back-trajectory analysis shows that the ozone monitored in the Aguere Valley is associated with long-range transport processes. High ozone events in the spring are associated with transport from upper tropospheric levels, both over the North Atlantic-high latitudes (>45°N) and Europe. This downward transport was observed in the western edge of upper tropospheric cyclones, which suggests that the upper tropospheric/low stratospheric ozone sources play a significant role. In summer, ozone is mainly transported from the North Atlantic-high latitudes (>45°N) and from mid- to low-tropospheric levels. In autumn and winter, the high ozone concentrations are transported from sources located a few km above the North Atlantic-high latitudes (>45°N) and over Europe. The Central-North Atlantic (<45°N) and North Africa are not significant sources of ozone. The high spring and lower summer ozone events in the Aguere Valley agree with other North Atlantic ozone observation in the oceanic boundary layer. However, this behaviour contrasts with the high ozone events frequently recorded at Izaña BAPMoN station (located in the free troposphere in Tenerife) during the summer, which have been attributed in the literature to downward transport from upper levels. An intensification of the inversion layer that separates the oceanic boundary layer of the free troposphere during the summer in Canary Islands is interpreted as the cause of this different behaviour between ozone in the Aguere Valley and Izaña BAPMoN station.  相似文献   

12.
Benzene, toluene, sulphur dioxide, ozone and nitrogen dioxide were measured at a mean level of 13.5 m above ground in a narrow, four-lane street canyon (height 30 m, width 20 m) in Thessaloniki, Greece during the period January–July 1997 by means of a commercial differential optical absorption spectrometer (OPSIS DOAS). Primary pollutant levels were found to be 2.5–4.4 times higher during the cold part of the year than during the warm part of the year, the winter/summer ratio increasing with the reaction rate constant with OH for each of the measured species. Ozone, on the other hand, exhibited a winter/summer ratio of 0.36. NO2 originates from both primary and secondary sources; its winter/summer concentration ratio of 1.4 lies, therefore, between those of primary pollutants and ozone. Pollution levels were influenced considerably by wind speed, while for the street canyon under study wind direction did not influence pollutant levels considerably. While primary pollution was found to decrease with increasing wind speed, ozone increased. Benzene mean levels during the study period were around 6 ppb and hence much higher than the EU annual limit value of 5 μg m−3 (1.44 ppb at STP). Toluene mean levels were around 14 ppb and hence also several times above the WHO recommendation of 2 ppb for 24 h. The apportionment of traffic emissions in four time zones used in most inventories in urban airshed models was tested using benzene and toluene measurements at low (<1 m s−1) wind speeds. The agreement between model emissions and calculated emissions apportionment into the four time zones was good, except for Zone D (23:00–1:59), where model inventory emissions were somewhat too low.  相似文献   

13.
In this paper ozone measurements carried out at six alpine and prealpine sites, located in the Italian region of Central Alps are shown. The stations are placed at altitudes between 800 and 1900 m a.s.l., far away from local sources of pollution. Ozone concentrations appear to be quite uniform, with summer mean values varying from 40 to 47 ppb and winter ones from 19 to 35 ppb. The number of hours exceeding the 75 and 100 ppb WHO thresholds and the AOT40 (Average Over Threshold 40 ppb of ozone) are evaluated for the growing season. The temporal variability of weekly ozone cycle at alpine stations provides useful informations to assess an emission control strategy.  相似文献   

14.
A dynamic multi-compartment computer model has been developed to describe the physical processes determining indoor pollutant concentrations as a function of outdoor concentrations, indoor emission rates and building characteristics. The model has been parameterised for typical UK homes and workplaces and linked to a time-activity model to calculate exposures for a representative homemaker, schoolchild and office worker, with respect to NO2. The estimates of population exposures, for selected urban and rural sites, are expressed in terms of annual means and frequency of hours in which air quality standards are exceeded. The annual mean exposures are estimated to fall within the range of 5–21 ppb for homes with no source, and 21–27 ppb for homes with gas cooking, varying across sites and population groups. The contribution of outdoor exposure to annual mean NO2 exposure varied from 5 to 24%, that of indoor penetration of outdoor air from 17 to 86% and that of gas cooking from 0 to 78%. The frequency of exposure to 1 h mean concentrations above 150 ppb was very low, except for people cooking with gas.  相似文献   

15.
Saplings of two clones of European white birch (Betula pendula Roth) were exposed to three different ozone profiles resulting in same AOT40 value of 13–14 ppm h in a chamber experiment. The sensitive clone 5 and the more tolerant clone 2 were growing (1) under filtered air (=control), or (2) were exposed to 70 ppb ozone for 24 h d−1 (=profile 1), (3) to 100 ppb ozone for 12 h d−1 at 8:00–20:00 (=profile 2), or (4) to 200 ppb ozone for 4.5 h d−1 at 9:30–14:00 (=profile 3) for 20 d. The saplings were determined for growth, visible leaf injuries, stomatal conductance, and concentrations of Rubisco, chlorophyll and carotenoids. Growth responses and induction of visible foliar injuries under different ozone profiles were variable, resulting in 4–17% lower dry mass of shoot, 16–46% reduction in stem height increment and 11–43% increase in visible injuries in clone 5, which was accompanied by higher leaf turnover rate under profile 3 indicating compensation growth. In clone 2, ozone-induced responses ranged from slight stimulation in stem height growth to 13% decrease in dry mass of shoot and 2–16% increase in visible injuries. Daytime stomatal conductance rates were lowered by 14–54% in clone 5 and 9–74% in clone 2, depending on profile. The additional power-weighted analyses revealed that high peak concentrations and exposure shape were important for induction of visible injuries in both clones and reduction in stomatal conductance in clone 5, whereas growth reductions were rather related to total cumulative exposure. The results indicate that profile of ozone exposure, night-time stomatal conductance (24 h flux), and recovery time for defence and compensations reactions should not be ignored in plant response and ozone flux modelling.  相似文献   

16.
Hourly measurements of baseline ozone at the Mace Head Atmospheric Research Station on the Atlantic Ocean coast of Ireland are observed when unpolluted air masses are advected to the station from across the North Atlantic Ocean. Monthly mean ozone mixing ratios in baseline air masses have risen steadily during the 1980s and 1990s reaching unprecedented levels during the early months of 1999. During the 2000s, baseline ozone mixing ratios have shown evidence of decline and stabilisation. Over the entire 20-year 1987–2007 period, the trend in annual baseline ozone has been +0.31±0.12(2−σ) ppb year−1 and is highly statistically significant. Trends have been highest in the spring months and lowest in the summer months, producing a significant increase in the amplitude of the seasonal cycle. Over the shorter 1995–2007 period, we demonstrate how the growth to peak in 1999 and the subsequent decline have been driven by boreal biomass burning events during 1998/1999 and 2002/2003. The 2000s have been characterised by relatively constant baseline ozone and CH4 levels and these may be a reasonable guide to future prospects, at least in the short term.  相似文献   

17.
Crop-response data from over 700 published papers and conference proceedings have been analysed with the aim of establishing ozone dose-response functions for a wide range of European agricultural and horticultural crops. Data that met rigorous selection criteria (e.g. field-based, ozone concentrations within European range, full season exposure period) were used to derive AOT40-yield response functions for 19 crops by first converting the published ozone concentration data into AOT40 (AOT40 is the hourly mean ozone concentration accumulated over a threshold ozone concentration of 40 ppb during daylight hours, units ppm h). For any individual crop, there were no significant differences in the linear response functions derived for experiments conducted in the USA or Europe, or for individual cultivars. Three statistically independent groups were identified: ozone sensitive crops (wheat, water melon, pulses, cotton, turnip, tomato, onion, soybean and lettuce); moderately sensitive crops (sugar beet, potato, oilseed rape, tobacco, rice, maize, grape and broccoli) and ozone resistant (barley and fruit represented by plum and strawberry). Critical levels of a 3 month AOT40 of 3 ppm h and a 3.5 month AOT40 of 6 ppm h were derived from the functions for wheat and tomato, respectively.  相似文献   

18.
Surface O3 and CO were measured at Cape D’Aguilar, Hong Kong during the period of January 1994 to December1996 in order to understand the temporal variations of surface O3 and CO in East Asia–West Pacific region. The isentropic backward trajectories were used to isolate different air masses reaching the site and to analyze the long-range transport and photochemical buildup of O3 on a regional scale. The results show that the diurnal variation of surface O3 was significant in all seasons with daily O3 production being about 20 ppbv in fall and 10 ppbv in winter, indicating more active photochemical processes in the subtropical region. The distinct seasonal cycles of O3 and CO were found with a summer minimum (16 ppbv)–fall maximum (41 ppbv) for O3 and a summer minimum (116 ppbv)–winter maximum (489 ppbv) for CO. The isentropic backward trajectory cluster analyses suggest that the air masses (associated with regional characteristics) to the site can be categorized into five groups, which are governed by the movement of synoptic weather systems under the influence of the Asian monsoon. For marine-originated air masses (M-SW, M-SE and M-E, standing for marine-southwest, marine-southeast and marine-east, respectively) which always appear in summer and spring, the surface O3 and CO have relatively lower mixing ratios (18, 16 and 30 ppbv for O3, 127, 134 and 213 ppbv for CO), while the continental air masses (C-E and C-N, standing for continent-east and continent-north, respectively) usually arrive at the site in winter and fall seasons with higher O3 (43 and 48 ppbv) and CO (286 and 329 ppbv). The 43 ppbv O3 and 286 ppbv CO are representative of the regionally polluted continental outflow air mass due to the anthropogenic activity in East Asia, while 17 ppbv O3 and 131 ppbv CO can be considered as the signature of the approximately clean marine background of South China Sea. The very high CO values (461–508 ppbv) during winter indicate that the long-range transport of air pollutants from China continent is important at the monitoring site. The fall maximum (35–46 ppbv) of surface O3 was believed to be caused by the effects of the weak slowly moving high-pressure systems which underlie favorable photochemical production conditions and the long-range transport of aged air masses with higher O3 and its precursors.  相似文献   

19.
The origin of the daily exceedances of 50 μg PM10 m−3 (daily limit value or DLV of the EU air quality directive) and of an arbitrary daily value (DV) 35 μg PM2.5 m−3 recorded in 2001–2003 in 13 regional background stations of the Iberian Peninsula were interpreted. This was carried out by means of back-trajectory analysis, available PM model outputs, satellite data and meteorological maps. This allows the detection of high PM episodes on a regional scale and the study of their seasonal and geographical variability.The number of exceedances of the PM10 DLV ranged in 2001–2003 from 6 to 41 depending on the monitoring site. For the selected PM2.5 DV, the range of daily exceedances was 0–10 in the study period.The majority of the PM10 (>70% in most stations) and PM2.5 (17–55% in most stations) exceedances in regional background monitoring stations are caused by African dust outbreaks. These exceedances were less frequent in winter than in summer due to: (a) the frequent long range transport of dust in the warm seasons over Iberia, (b) the re-suspension associated with convective atmospheric dynamics, and (c) the relative low rainfall favouring re-suspension and high residence time of PM. Moreover, a regional contribution of secondary aerosols derived from the efficient photochemical transformation of gaseous precursors may coincide with African transport in summer.Episodes with lack of advective conditions caused 2–29% and 20–50% of the PM10 and PM2.5 exceedances. These occurred mainly in summer due to poor renovation of air masses, increased convective re-suspension, dispersion of pollutants towards rural areas and regional re-circulation and aging of air masses which result in the proliferation of secondary inorganic species.Long-range transport of PM from continental Europe caused exceedances (9–40% and 18–38% of the PM10 and PM2.5 exceedances, respectively), only in northern Iberia because, as the European air masses evolve towards the south, the pollutants suffer dispersion/dilution. Local exceedances are associated with the advection of the clean Atlantic air masses, which cannot increase PM levels to a great extent without the influence of a local source of PM. The proportion of local exceedances of PM10 and PM2.5 ranged 6–33% and 17–40%, respectively.  相似文献   

20.
The effect of black carbon (BC) on climate forcing is potentially important, but its estimates have large uncertainties due to a lack of sufficient observational data. The BC mass concentration in the southeastern US was measured at a regionally representative site, Mount Gibbes (35.78°N, 82.29°W, 2006 m MSL). The air mass origin was determined using 48-h back trajectories obtained from the hybrid single-particle Lagrangian integrated trajectory model. The highest average concentration is seen in polluted continental air masses and the lowest in marine air masses. During the winter, the overall average BC value was 74.1 ng m−3, whereas the overall summer mean BC value is higher by a factor of 3. The main reason for the seasonal difference may be enhanced thermal convection during summer, which increases transport of air pollutants from the planetary boundary layer of the surrounding urban area to this rural site. In the spring of 1998, abnormally high BC concentrations from the continental sector were measured. These concentrations were originating from a biomass burning plume in Mexico. This was confirmed by the observations of the Earth probe total ozone mapping spectrometer. The BC average concentrations of air masses transported from the polluted continental sector during summer are low on Sunday to Tuesday with a minimum value of 256 ng m−3 occurring on Monday, and high on Wednesday to Friday with a maximum value of 379 ng m−3 occurring on Friday. The net aerosol radiative forcing (scattering effects plus absorption effects) per unit vertical depth at 2006 m MSL is calculated to be −1.38×10−3 W m−3 for the southeastern US. The magnitude of direct radiative forcing by aerosol scattering is reduced by 15±7% due to the BC absorption.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号