首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
Deposition of nitric acid (HNO3) vapor to soils has been evaluated in three experimental settings: (1) continuously stirred tank reactors with the pollutant added to clean air, (2) open-top chambers at high ambient levels of pollution with and without filtration reducing particulate nitrate levels, (3) two field sites with high or low pollution loads in the coastal sage plant community of southern California. The results from experiment (1) indicated that the amount of extractable NO3 from isolated sand, silt and clay fractions increased with atmospheric concentration and duration of exposure. After 32 days, the highest absorption of HNO3 was determined for clay, followed by silt and sand. While the sand and silt fractions showed a tendency to saturate, the clay samples did not after 32 days of exposure under highly polluted conditions. Absorption of HNO3 occurred mainly in the top 1 mm layer of the soil samples and the presence of water increased HNO3 absorption by about 2-fold. Experiment (2) indicated that the presence of coarse particulate NO3 could effectively block absorption sites of soils for HNO3 vapor. Experiment (3) showed that soil samples collected from open sites had about 2.5 more extractable NO3 as compared to samples collected from beneath shrub canopies. The difference in NO3 occurred only in the upper 1–2 cm as no significant differences in NO3 concentrations were found in the 2–5 cm soil layers. Extractable NO3 from surface soils collected from a low-pollution site ranged between 1 and 8 μg NO3–N g−1, compared to a maximum of 42 μg NO3–N g−1 for soils collected from a highly polluted site. Highly significant relationship between HNO3 vapor doses and its accumulation in the upper layers of soils indicates that carefully prepared soil samples (especially clay fraction) may be useful as passive samplers for evaluation of ambient concentrations of HNO3 vapor.  相似文献   

2.
A highly sensitive technique for the measurement of atmospheric HONO and HNO3 is reported. The technique is based on aqueous scrubbing using two coil samplers, followed by conversion of HNO3 to nitrite, derivatization of nitrite to a highly light-absorbing azo dye with sulfanilamide (SA) and N-(1-naphthyl) ethylenediamine (NED), and high performance liquid chromatography (HPLC) analysis. HNO3 concentration was obtained by the difference of the two channels. Two scrubbing solutions were used for sampling the two species: a 1-mM phosphate buffer solution (pH 7) for the measurement of HONO and a 180 mM NH4Cl/NH3 buffer solution (pH 8.5) for the measurement of HONO+HNO3. The scrubbing solution flow rate was 0.24 ml min−1 and the gas sampling flow rate was 2 l min−1. HNO3 in the NH4Cl/NH3 buffer solution was quantitatively reduced to nitrite along an on-line 0.8-cm Cd reductor column. Nitrite in both channels was derivatized with 2 mM SA and 0.2 mM NED in 25 mM HCl. Quantitative derivatization was achieved within 5 min at 55°C. The azo dye derivative was then separated from the SA/NED reagent by reversed-phase HPLC and detected with a UV-vis detector at 540 nm. With an on-line SEP-PAK C-18 cartridge for the reagent purification, the method detection limit is estimated to be better than 1 pptv for HONO and about 20 pptv for HNO3. The sample integration time was about 2 min and the sampling frequency is every 10 min. Data collected in downtown Albany and Whiteface Mountain, NY, are shown as examples of applications of this technique in both urban and remote clean environments.  相似文献   

3.
We evaluated the loss of HNO3 within a Teflon-coated aluminum cyclone of an annular diffusion denuder atmospheric sampling system (ADS) under simulated marine conditions. To simulate marine environment, the cyclones were pre-coated with NaCl aerosol droplets. Loss of vapor-phase HNO3 within the NaCl-coated cyclone was generally greater than 30% at relative humidities (RH) of 60 and 80% and as large as 67% when the cumulative HNO3 dosages were lower than 3 μg. In contrast, there was little loss of HNO3 (<8%) in cyclones with no NaCl coating at RHs ranging from 0 to 80%, at HNO3 air concentrations of 4.3±1.6 μg m−3, and at cumulative HNO3 dosages of greater than 5 μg. However, at lower HNO3 cumulative dosages (<3 μg), losses in the non-coated cyclones were strongly influenced by RH, ranging from 9% in dry air to 58% at 80% RH. The enhanced loss of HNO3 in the NaCl-coated cyclone was most likely caused by the reaction between HNO3 and NaCl on the cyclone wall.  相似文献   

4.
During the course of one year (March 2004–March 2005), PM2.5 particulate nitrate concentrations were semi-continuously measured every 10 min at a Madrid suburban site using the Rupprecht and Patashnick Series 8400N Ambient Particulate Nitrate Monitor (8400N). Gaseous pollutants (NO, NO2, O3, HCHO, HNO2) were simultaneously measured with a DOAS spectrometer (OPSIS AR-500) and complementary meteorological information was obtained by a permanent tower. The particulate nitrate concentrations ranged from the instrumental detection limit of around 0.2 μg m−3, up to a maximum of about 25 μg m−3. The minimum monthly average was reached during August (0.32 μg m−3) and the maximum during November (3.0 μg m−3). Due to the semi-volatile nature of ammonium nitrate, peaks were hardly present during summer air pollution episodes. A typical pattern during days with low dispersive conditions was characterized by a steep rise of particulate nitrate in the morning, reaching maximum values between 9 and 14 UTC, followed by a decrease during the evening. On some occasions a light increase was observed at nighttime. During spring episodes, brief diurnal nitrate peaks were recorded, while during the autumn and winter episodes, later and broader nitrate peaks were registered. Analysis of particulate nitrate and related gaseous species indicated the photo-chemical origin of the morning maxima, delayed with respect to NO and closely associated with secondary NO2 maximum values. The reverse evolution of nitrate and nitrous acid was observed after sunrise, suggesting a major contribution from HNO2 photolysis to OH formation at this time of the day, which would rapidly produce nitrate in both gaseous and particulate phase. Some nocturnal nitrate maxima appeared under high humidity conditions, and a discussion about their origin involving different possible mechanisms is presented, i.e. the possibility that these nocturnal maximum values could be related to the heterogeneous formation of nitrous and nitric acid by the hydrolysis of NO2 on wet aerosols.  相似文献   

5.
From 1 May to 25 May 2001, the BAB II campaign was carried out at the motorway BAB (656) near Heidelberg. Atmospheric concentrations of particulate matter and gases were measured together with the meteorological conditions. This paper is focused on the particulate matter measured upwind and downwind from the motorway at ground level. In order to determine the source contribution from the motorway traffic, it was necessary to measure upwind and downwind simultaneously due to variations in background concentrations. The particle number contribution from the motorway was found to be 35,000 particles cm−3 for particles with diameters close to 20 nm and 5000 particles cm−3 for particles with diameters close to 70 nm. Bimodal size distributions were observed on the downwind side, whereas the upwind side showed unimodal size distributions. For particulate mass, it can be estimated that the contribution from the motorway to the PM1 concentrations is in a range 0.6–1.3 μg m−3 for the chosen measurement sites approximately 60 m from the road at a height of 6 m. The soot measurements showed diurnal variation; however, the upwind downwind difference was not measured. Correlation factors showed good correlation between total particle number and number of particles with diameters below 80 nm, CO and NO. There was no correlation between particle number and PM10, which is due to the observation that particle number was dominated by the 20 nm particles.  相似文献   

6.
Polychlorinated biphenyls (PCBs) and particulate organic/elemental carbon (OC/EC) differ as to sources, but are both elevated in major urban areas leading to loadings of proximate terrestrial and aquatic systems. Because of the dramatic difference in speciation, sources, and sinks of these compunds, gas+particulate phase PCBs and particulate OC/EC were measured in urban Baltimore, MD and over Chesapeake Bay at 4 and 12 h frequencies in July 1997. Gas phase ∑PCBs averaged 1180 pg m−3 for Baltimore and 550 pg m−3 for northern Chesapeake Bay. PCB homolog distributions in the gas phase differed between the land and over-water sites whereby the trichlorobiphenyls were higher in Baltimore compared to Chesapeake Bay. Autocorrelation analysis yielded a diurnal cycle for gas phase PCBs at Baltimore with the lowest concentrations observed during the day. Particulate organic and elemental carbon constituted 12.4% (17.4% organic matter) and 2.8% of total suspended particles (TSP) in Baltimore, and 15.0% (21.0% organic matter) and 5.3% over the Chesapeake Bay, respectively. Variability in PCB concentrations was not related to the variability in OC/EC concentrations. OC/EC ratios suggest that particulate organic carbon was mostly primary aerosol. Emissions of both classes of compounds into the Baltimore atmosphere and vicinity are major sources to the Bay.  相似文献   

7.
Fog water, aerosol, and gas were separately collected at Mt. Rokko (altitude 931 m) in Kobe, Japan, using a new sampling method at a mountainous site near a highly industrialized area. The fog water was collected by an active string-fog collector and the aerosol and gas by using the filter pack method. Using plural filter packs and controlling or switching the airflow before, during, and after a fog event made it possible to collect the fog water, aerosol, and gas separately. Nitrate species such as NO3(p) and HNO3(g) were effectively scavenged by fog water, while sulfur species such as SO42−(p) and SO2(g) could not be easily and effectively scavenged because of the poor solubility of SO2(g). This difficulty was experimentally examined through an in situ investigation. Ion species (especially Na+(p) and Ca2+(p)) which form coarse particles were easily and effectively scavenged by fog water. On the other hand, the difficulty of scavenging Mg2+(p) could not be explained by particle size.  相似文献   

8.
Atmospheric dry deposition is an important process for the introduction of aerosols and pollutants to aquatic environments. The objective of this paper is to assess, for the first time, the influence that the aquatic surface microlayer plays as a modifying factor of the magnitude of dry aerosol deposition fluxes. The occurrence of a low surface tension (ST) or a hydrophobic surface microlayer has been generated by spiking milli-Q water or pre-filtered seawater with a surfactant or octanol, respectively. The results show that fine mode (<2.7 μm) aerosol phase PAHs deposit with fluxes 2–3 fold higher when there is a low ST aquatic surface due to enhanced sequestration of colliding particles at the surface. Conversely, for PAHs bound to coarse mode aerosols (>2.7 μm), even though there is an enhanced deposition due to the surface microlayer for some sampling periods, the effect is not observed consistently. This is due to the importance of gravitational settling for large aerosols, rendering a lower influence of the aquatic surface on dry deposition fluxes. ST (mN m−1) is identified as one of the key factor driving the magnitude of PAH dry deposition fluxes (ng m−2 d−1) by its influence on PAH concentrations in deposited aerosols and deposition velocities (vd, cm s−1). Indeed, vd values are a function of ST as obtained by least square fitting and given by Ln(vd)=−1.77 Ln(ST)+5.74 (r2=0.95) under low wind speed (average 4 m s−1) conditions.  相似文献   

9.
A laboratory study was conducted to examine formation of secondary organic aerosols. A smog chamber system was developed for studying gas–aerosol interactions in a dynamic flow reactor. These experiments were conducted to investigate the fate of gas and aerosol phase compounds generated from hydrocarbon–nitrogen oxide (HC/NOx) mixtures irradiated in the presence of fine (<2.5 μm) particulate matter. The goal was to determine to what extent photochemical oxidation products of aromatic hydrocarbons contribute to secondary organic aerosol formation through uptake on pre-existing inorganic aerosols in the absence of liquid water films. Irradiations were conducted with toluene, p-xylene, and 1,3,5-trimethylbenzene in the presence of NOx and ammonium sulfate aerosol, with propylene added to enhance the production of radicals in the system. The secondary organic aerosol yields were determined by dividing the mass concentration of organic fraction of the aerosol collected on quartz filters by the mass concentration of the aromatic hydrocarbon removed by reaction. The mass concentration of the organic fraction was obtained by multiplying the measured organic carbon concentration by 2.0, a correction factor that takes into account the presence of hydrogen, nitrogen, and oxygen atoms in the organic species. The mass concentrations of ammonium, nitrate, and sulfate concentrations as well as the total mass of the aerosols were measured. A reasonable mass balance was found for each of the aerosols. The largest secondary organic aerosol yield of 1.59±0.40% was found for toluene at an organic aerosol concentration of 8.2 μm−3, followed by 1.09±0.27% for p-xylene at 6.4 μg m−3, and 0.41±0.10% for 1,3,5-trimethylbenzene at 2.0 μg m−3. In general, these results agree with those reported by Odum et al. and appear to be consistent with the gas–aerosol partitioning theory developed by Pankow. The presence of organic in the aerosol did not affect significantly the hygroscopic properties of the aerosol.  相似文献   

10.
This study conducted roadside particulate sampling to measure the total suspended particulate (TSP), PM10 (particles <10 μm in aerodynamic diameter) and PM2.5 (particles <2.5 μm in aerodynamic diameter) mass concentration in 11 urbanized and densely populated districts in Hong Kong. One hundred and thirty-three samples were obtained to measure the mass concentrations of TSP, PM10 and PM2.5. According to these results, the TSP, PM10 and PM2.5 mass concentrations varied from 94.85 to 301.63 μg m−3, 67.67 to 142.68 μg m−3 and 50.01 to 125.12 μg m−3, respectively. The PM2.5/PM10 ratio of all samples was 0.82 which ranged from 0.62 to 0.95. The PM levels and PM ratios in metropolitan Hong Kong significantly fluctuated from site-to-site and over time. The PM2.5 mass concentration in different districts corresponding to urban industrial, new town, urban residential and urban commercial were 77.64, 87.50, 106.96 and 88.54 μg m−3, respectively. The PM2.5 level is high in Hong Kong, and for individual sampling, more than 60% daily measurements exceeded the NAAQS. The mass fraction of PM2.5 in PM10 and TSP is relatively high when compared with overseas studies.  相似文献   

11.
Articles have recently been published on aerosol size distributions and number concentrations in cities, however there have been no studies on transport of these particles. Eddy covariance measurements of vertical transport of aerosol in the size range 11 nm<Dp<3 μm are presented here. The analysis shows that typical average aerosol number fluxes in this size range vary between 9000 and 90,000 cm−2 s−1. With concentrations between 3000 and 20,000 cm−3 this leads to estimates of particle emission velocity between 20 and 75 mm s−1. The relationships between number flux and traffic activity, along with emission velocity and boundary layer stability are demonstrated and parameterised. These are used to derive an empirical parameterisation for aerosol concentration in terms of traffic activity and stability. The main processes determining urban aerosol fluxes and concentrations are discussed and quantified where possible. The difficulties in parameterising urban activity are discussed.  相似文献   

12.
Size-resolved fog drop chemical composition measurements were obtained during a radiation fog campaign near Davis, California in December 1998/January 1999 (reported in Reilly et al., Atmos. Environ. 35(33) (2001) 5717; Moore et al., Atmos. Environ. this issue). Here we explore how knowledge of this size-dependent drop composition—particularly from the newly developed Colorado State University 5-Stage cloud water collector—helps to explain additional observations in the fog environment. Size-resolved aerosol measurements before and after fog events indicate relative depletion of large (>2 μm in diameter) particles during fog accompanied by a relative increase in smaller aerosol particle concentrations. Fog equivalent air concentrations suggest that entrainment of additional particles and in-fog sedimentation contributed to observed changes in the aerosol size distribution. Calculated deposition velocities indicate that sedimentation was an important atmospheric removal mechanism for some species. For example, nitrite typically has a larger net deposition velocity than water and its mass is found preferentially in the largest drops most likely to sediment rapidly. Gas–liquid equilibria in fog for NO3/HNO3, NH4+/NH3, and NO2/HONO were examined. While these systems appear to be close to equilibrium or relative equilibrium during many time periods, divergences are observed, particularly for low liquid water content (<0.1 g m−3) fogs and in different drop sizes. Knowledge of the drop size-dependent composition provided additional data useful to the interpretation of these deviations. The results suggest that data from multi-stage cloud water collectors are useful to understanding fog processes as many depend upon drop size.  相似文献   

13.
Carbonyl compounds exist in the atmosphere as either gases or aerosols. Some of them are water soluble and known as oxidation products of biogenic and/or anthropogenic hydrocarbons. Five carbonyl compounds, glyoxal (GO), 4-oxopentanal (4-OPA), glycolaldehyde (GA), hydroxyacetone (HA) and methylglyoxal (MG) have been identified in a temporal series of 12 rain samples. The concentrations of the compounds in the samples were high at the beginning of the rain event and decreased with time to relatively low and fairly constant levels, indicating that the compounds were washed out from the atmosphere at the start of the rain event. Possibly, these compounds also existed in the cloud condensation nuclei (CCN). Wet deposition rates of the carbonyl compounds were calculated for nine samples collected during a 20 h period. The deposition rates ranged from 0 (4-OPA) to 1.2×10−1 mg C m−2 h−1 (MG) with the average of 2.9×10−2 mg C m−2 h−1. Production rates of isoprene oxidation products (GA, HA and MG) in the area surrounding the sampling site were estimated with a chemical box model. The deposition rates exceeded the production rates in most samples. This indicates that the rainfall causes a large net flux of the water soluble compounds from the atmosphere to the ground. Insoluble carbonyl compounds such as n-nonanal and n-decanal were expected to be present in the atmosphere, but were not detected in the rain during the sampling period, suggesting that an aerosol containing these insoluble compounds does not effectively act as a CCN.  相似文献   

14.
In this study, we present ∼1 yr (October 1998–September 1999) of 12-hour mean ammonia (NH3), ammonium (NH4+), hydrochloric acid (HCl), chloride (Cl), nitrate (NO3), nitric acid (HNO3), nitrous acid (HONO), sulfate (SO42−), and sulfur dioxide (SO2) concentrations measured at an agricultural site in North Carolina's Coastal Plain region. Mean gas concentrations were 0.46, 1.21, 0.54, 5.55, and 4.15 μg m−3 for HCl, HNO3, HONO, NH3, and SO2, respectively. Mean aerosol concentrations were 1.44, 1.23, 0.08, and 3.37 μg m−3 for NH4+, NO3, Cl, and SO42−, respectively. Ammonia, NH4+, HNO3, and SO42− exhibit higher concentrations during the summer, while higher SO2 concentrations occur during winter. A meteorology-based multivariate regression model using temperature, wind speed, and wind direction explains 76% of the variation in 12-hour mean NH3 concentrations (n=601). Ammonia concentration increases exponentially with temperature, which explains the majority of variation (54%) in 12-hour mean NH3 concentrations. Dependence of NH3 concentration on wind direction suggests a local source influence. Ammonia accounts for >70% of NHx (NHx=NH3+NH4+) during all seasons. Ammonium nitrate and sulfate aerosol formation does not appear to be NH3 limited. Sulfate is primarily associated ammonium sulfate, rather than bisulfate, except during the winter when the ratio of NO3–NH4+ is ∼0.66. The annual average NO3–NH4+ ratio is ∼0.25.  相似文献   

15.
The tests of standard mixtures and four sets of atmospheric particulate samples showed that an acid-wash (AW) pretreatment of fluorocarbon-coated glass fiber filters prior to aerosol sampling enhanced the quantifiable organic compounds for more than 29% (or 66 ng m−3); in particular, 47–273 ng m−3 (21–366%) more water-soluble organic compounds (WSOCs) were measured. When the acid-pretreated filters were employed, up to nine more organic species were measured in the individual daily samples. Because the acid pretreatment reduced the metal contaminants in the glass fiber filters, using the AW filters for aerosol sampling allows higher extraction recoveries of organic compounds. Since the fingerprinting compounds were more accurately determined when the aerosol samples were collected on the AW filters, better assessment of emission sources and toxicity of air pollutants can be obtained.  相似文献   

16.
As part of the BRACE 2002 May field intensive, the NOAA Twin Otter flew 21 missions over terrestrial, marine, and mixed terrestrial and marine sites in the greater Tampa, Florida, airshed including over Tampa Bay and the Gulf of Mexico. Aerosols were collected with filter packs and their inorganic fractions analyzed post hoc with ion chromatography. Anion mass dominated both the fine- (particle diameters ⩽2.5 μm) and coarse-mode (particle diameters 10.0–2.5 μm) inorganic fractions: SO42−in the fine fraction, 3.7 μg m−3 on average and Cl and NO3 in the coarse fraction, 0.6 μg m−3 on average and 1.4 μg m−3 on average, respectively. Ammonium ion dominated the inorganic fine-mode cation mass, averaging 1.2 μg m−3, presumably in association with SO42. Coarse-mode cation mass was dominated by Na+, but the concentrations of Ca2+ and K+ together often equaled or exceeded the Na+ mass which was, on average, 0.6 μg m−3. Nitrate appeared predominantly in the coarse rather than the fine fraction, as expected, and the fine fraction never contributed >15% of the total NO3 concentration. Nitric acid dominated the NO3 contribution from both aerosol size fractions, and constituted at least 45% of the total NO3 in all samples. Coarse-mode Cl depletion, and hence NO3 replacement, reached 100% within the first 4 h of plume travel from the urban core in some samples, although it was most often less than 100% and slightly below the expected 1:1 ratio with coarse-mode NO3 concentration: the slope of the regression line of NO3 concentration to Cl depletion was 0.9 in the coarse fraction. In addition, terrestrial samples were markedly lower in Cl depletion, and thus in substituted NO3, than were marine and mixed samples: 15–25% depletion in terrestrial samples vs. 50–65% in marine samples with the same air mass age. Thus, we conclude that NO3 and its progenitor compound HNO3 were present in the Tampa airshed in insufficient amounts to titrate fully the slightly alkaline coarse-mode particles there, and to replace completely the Cl from the coarse-mode NaCl.  相似文献   

17.
A water surface sampler (WSS) was employed in combination with greased knife-edge surface deposition plates (KSSs) to measure the vapor phase deposition rates of PCBs to the sampler at an urban site, Chicago, IL. This sampler employed a water circulation system that continuously removed deposited PCBs. Total (gas+particle) and particulate PCB fluxes were collected with the WSS and KSSs, respectively. Gas phase PCB fluxes were then calculated by subtracting the KSS fluxes (particulate) from the WSS fluxes (gas+particle). The calculated gas phase PCB fluxes averaged 830±910 ng m−2d−1. This flux value is, in general, higher than the fluxes determined using simultaneously measured air–water concentrations in natural waters and is in the absorption direction. This difference is primarily because the PCBs were continuously removed from the WSS water keeping the water PCB concentration near zero.Concurrently, ambient air samples were collected using a modified high volume air sampler. The gas phase PCB concentrations ranged between 1.10 and 4.46 ng m−3 (average±SD, 2.29±1.28 ng m−3). The gas phase fluxes were divided by the simultaneously measured gas phase ambient concentrations to determine the overall gas phase mass transfer coefficients (MTCs) for PCBs. The average gas phase overall MTCs (Kg) for each homolog group ranged between 0.22 and 1.32 cm s−1 (0.54±0.47 cm s−1). The average MTC was in good agreement with those determined using similar techniques.  相似文献   

18.
The quality of an emission calculation model based on emission factors measured on roller test stands and statistical traffic data was evaluated using source strengths and emission factors calculated from real-world exhaust gas concentration differences measured upwind and downwind of a motorway in southwest Germany. Gaseous and particulate emissions were taken into account. Detailed traffic census data were taken during the measurements. The results were compared with findings of similar studies.The main conclusion is the underestimation of CO and NOx source strengths by the model. On the average, it amounts to 23% in case of CO and 17% for NOx. The latter underestimation results from an undervaluation by 22% of NOx emission factors of heavy-duty vehicles (HDVs). There are significant differences between source strengths on working days and weekends because of the different traffic split between light-duty vehicles (LDVs) and HDVs. The mean emission factors of all vehicles from measurements are 1.08 g km−1 veh−1 for NOx and 2.62 g km−1 veh−1 for CO. The model calculations give 0.92 g km−1 veh−1 for NOx and 2.14 g km−1 veh−1 for CO.The source strengths of 21 non-methane hydrocarbon (NMHC) compounds quantified are underestimated by the model. The ratio between the measured and model-calculated emissions ranges from 1.3 to 2.1 for BTX and up to 21 for 16 other NMHCs. The reason for the differences is the insufficient knowledge of NMHC emissions of road traffic.Particulate matter emissions are dominated by ultra-fine particles in the 10–40 nm range. As far as aerosols larger than 29 nm are concerned, 1.80×1014 particles km−1 veh−1 are determined for all vehicles, 1.22×1014 particles km−1 veh−1 and an aerosol volume of 0.03 cm3 km−1 veh−1 are measured for LDVs, and for HDVs 7.79×1014 particles km−1 veh−1 and 0.41 cm3 km−1 veh−1 are calculated. Traffic-induced turbulence has been identified to have a decisive influence on exhaust gas dispersion near the source.  相似文献   

19.
The size-fractionated particulate mercury in ambient air was collected at the top of a university campus building in Shanghai from March 2002 to September 2003. Wet digestion followed by cold vapor atom adsorption spectroscopy (CVAAS) was employed to analyze total particulate mercury concentration. Two-step extraction was performed to differentiate volatile particle-phase mercury (VPM), reactive particle-phase mercury (RPM) and inert particle-phase mercury (IPM). The average concentrations of mercury in PM1.6, PM8 and total suspended particle (TSP) were 0.058–0.252, 0.148–0.398 and 0.233–0.529 ng m−3, respectively. About 50%–60% of mercury in PM8 was in PM1.6, and about 60%–70% of mercury in TSP was in PM8. Particulate mercury was mainly concentrated on fine particles. The mercury fraction in fine particulate matters (<1.6 μm) was over 4 μg g−1 while 1–2 μg g−1 in TSP. Both were much higher than background values, suggesting that anthropogenic sources are the predominant emission contributors. Seasonal variation indicated that the mercury in TSP in spring was higher than that in summer; however, the mercury in fine particles (<1.6 μm) varied little. The fact that fine particulate mercury (<1.6 μm) was well correlated with sulfate and elemental carbon, but not with fluoride, chloride, nitrate and organic carbon, demonstrates that fine particulate mercury is closely associated with stationary sources and gas–particle transformation. Speciation analysis of mercury showed that VPM fraction decreased with the decrease of particle size, while IPM fraction increased and occupied over 50% in particle <1.6 μm. The detailed species in VPM, RPM and IPM were discussed. Coal burning was estimated to contribute approximately 80% of total atmospheric mercury.  相似文献   

20.
There are a number of difficulties associated with the quantitative analysis of volatile organic compounds (VOCs) in atmospheric particles. Therefore, majority of the previous studies on VOCs associated with particles have been qualitative. Air samples were collected in Izmir, Turkey to determine ambient particle and gas phase concentrations of several aromatic, oxygenated and halogenated VOCs. Samples were quantitatively analyzed using thermal desorption–gas chromatography/mass spectrometry. Gas-phase concentrations ranged between 0.02 (bromoform) and 4.65 μg m−3 (toluene) and were similar to those previously measured at the same site. Particle-phase concentrations ranged from 1 (1,3-dichlorobenzene) to 933 pg m−3 (butanol). VOCs were mostly found in gas-phase (99.9±0.25%). However, the particulate VOCs had comparable concentrations to those reported previously for semivolatile organic compounds. The distribution of particle-phase VOCs between fine (dp<2.5 μm) and coarse (2.5 μm<dp<10 μm) fractions was also investigated. It was found that VOCs were mostly associated with fine particles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号