首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
A spatially resolved biomass burning data set, and related emissions of sulphur dioxide and aerosol chemical constituents was constructed for India, for 1996–1997 and extrapolated to the INDOEX period (1998–1999). Sources include biofuels (wood, crop waste and dung-cake) and forest fires (accidental, shifting cultivation and controlled burning). Particulate matter (PM) emission factors were compiled from studies of Indian cooking stoves and from literature for open burning. Black carbon (BC) and organic matter (OM) emissions were estimated from these, accounting for combustion temperatures in cooking stoves. Sulphur dioxide emission factors were based on fuel sulphur content and reported literature measurements. Biofuels accounted 93% of total biomass consumption (577 MT yr−1), with forest fires contributing only 7%. The national average biofuel mix was 56 : 21 : 23% of fuelwood, crop waste and dung-cake, respectively. Compared to fossil fuels, biomass combustion was a minor source of SO2 (7% of total), with higher emissions from dung-cake because of its higher sulphur content. PM2.5 emissions of 2.04 Tg yr−1 with an “inorganic fraction” of 0.86 Tg yr−1 were estimated. Biomass combustion was the major source of carbonaceous aerosols, accounting 0.25 Tg yr−1 of BC (72% of total) and 0.94 Tg yr−1 of OM (76% of total). Among biomass, fuelwood and crop waste were primary contributors to BC emissions, while dung-cake and forest fires were primary contributors to OM emissions. Northern and the east-coast India had high densities of biomass consumption and related emissions. Measurements of emission factors of SO2, size resolved aerosols and their chemical constituents for Indian cooking stoves are needed to refine the present estimates.  相似文献   

2.
Major ion concentrations and Sr isotope ratios (87Sr/86Sr) were measured in rainwater samples collected at an urban site in Beijing over a period of one year. The pH value and major ion concentrations of samples varied considerably, and about 50% of the rainwater studied here were acidic rain with pH values less than 5.0. Ca2+ and NH4+ were the dominant cations in rainwaters and their volume weighted mean (VWM) values were 608 μeq l?1 (14–1781 μeq l?1) and 186 μeq l?1 (48–672 μeq l?1), respectively. SO42? was the predominant anion with VWM value of 316 μeq l?1 (65–987 μeq l?1), next was NO3? with VWM value of 109 μeq l?1 (30–382 μeq l?1).Using Na as an indicator of marine origin, and Al for the terrestrial inputs, the proportions of sea salt and terrestrial elements were estimated from elemental ratios. More than 99% of Ca2+ and 98% of SO42? in rainwater samples are non-sea-salt origin. The 87Sr/86Sr ratios were used to characterize the different sources based on the data sets of this study and those from literatures. Such sources include sea salts (87Sr/86Sr~0.90917), soluble soil dust minerals originating from either local or the desert and loess areas (~0.7111), and anthropogenic sources (fertilizers, coal combustion and automobile exhausts). The high concentrations of alkaline ions (mainly Ca2+) in Beijing atmosphere have played an important role to neutralize the acidity of rainwater. However, it is worth noting that there is a remarkable acidification trend of rainwater in Beijing recent years.  相似文献   

3.
Field measurements and data investigations were conducted for developing an emission factor database for inventories of atmospheric pollutants from Chinese coal-fired power plants. Gaseous pollutants and particulate matter (PM) of different size fractions were measured using a gas analyzer and an electric low-pressure impactor (ELPI), respectively, for ten units in eight coal-fired power plants across the country. Combining results of field tests and literature surveys, emission factors with 95% confidence intervals (CIs) were calculated by boiler type, fuel quality, and emission control devices using bootstrap and Monte Carlo simulations. The emission factor of uncontrolled SO2 from pulverized combustion (PC) boilers burning bituminous or anthracite coal was estimated to be 18.0S kg t?1 (i.e., 18.0 × the percentage sulfur content of coal, S) with a 95% CI of 17.2S–18.5S. NOX emission factors for pulverized-coal boilers ranged from 4.0 to 11.2 kg t?1, with uncertainties of 14–45% for different unit types. The emission factors of uncontrolled PM2.5, PM10, and total PM emitted by PC boilers were estimated to be 0.4A (where A is the percentage ash content of coal), 1.5A and 6.9A kg t?1, respectively, with 95% CIs of 0.3A–0.5A, 1.1A–1.9A and 5.8A–7.9A. The analogous PM values for emissions with electrostatic precipitator (ESP) controls were 0.032A (95% CI: 0.021A–0.046A), 0.065A (0.039A–0.092A) and 0.094A (0.0656A–0.132A) kg t?1, and 0.0147A (0.0092–0.0225A), 0.0210A (0.0129A–0.0317A), and 0.0231A (0.0142A–0.0348A) for those with both ESP and wet flue-gas desulfurization (wet-FGD). SO2 and NOX emission factors for Chinese power plants were smaller than those of U.S. EPA AP-42 database, due mainly to lower heating values of coals in China. PM emission factors for units with ESP, however, were generally larger than AP-42 values, because of poorer removal efficiencies of Chinese dust collectors. For units with advanced emission control technologies, more field measurements are needed to reduce emission factor uncertainties.  相似文献   

4.
The previously developed theoretical model [Gao, Y., Chen, S.B., Yu, L.E., 2006. Efflorescence relative humidity for ammonium sulfate particles. Journal of Physical Chemistry A, 110, 7602–7608], which has successfully predicted the efflorescence relative humidity (ERH) of ammonium sulfate ((NH4)2SO4) particles at room temperature, is employed to estimate the ERH of sodium chloride (NaCl) particles in sizes ranging from 6 nm to 20 μm. The theoretical predictions well agree with the reported experimental data in literatures. When the NaCl particles are larger than 70 nm, the ERH decreases with decreasing dry particle sizes, and reach a minimum around 44% RH, otherwise the ERH increases with decreasing dry particle sizes (<70 nm) because of the Kelvin effect. Compared with (NH4)2SO4 particles, the Kelvin effect on ERH is stronger for NaCl particles smaller than 30 nm, while the dry particle size exerts weaker influence on NaCl particles larger than 70 nm.  相似文献   

5.
Vehicle particle emissions are studied extensively because of their health effects, contribution to ambient PM levels and possible impact on climate. The aim of this work was to obtain a better understanding of secondary particle formation and growth in a diluting vehicle exhaust plume using 3-d information of simulations together with measurements. Detailed coupled computational fluid dynamics (CFD) and aerosol dynamics simulations have been conducted for H2SO4–H2O and soot particles based on measurements within a vehicle exhaust plume under real conditions on public roads.Turbulent diffusion of soot and nucleation particles is responsible for the measured decrease of number concentrations within the diesel car exhaust plume and decreases coagulation rates. Particle size distribution measurements at 0.45 and 0.9 m distance to the tailpipe indicate a consistent soot mode (particle diameter Dp∼50 nm) at variable operating conditions. Soot mode number concentrations reached up to 1013 m−3 depending on operating conditions and mixing.For nucleation particles the simulations showed a strong sensitivity to the spatial dilution pattern, related cooling and exhaust H2SO4(g). The highest simulated nucleation rates were about 0.05–0.1 m from the axis of the plume. The simulated particle number concentration pattern is in approximate accordance with measured concentrations, along the jet centreline and 0.45 and 0.9 m from the tailpipe. Although the test car was run with ultralow sulphur fuel, high nucleation particle (Dp⩽15 nm) concentrations (>1013 m−3) were measured under driving conditions of strong acceleration or the combination of high vehicle speed (>140 km h−1) and high engine rotational speed (>3800 revolutions per minute (rpm)).Strong mixing and cooling caused rapid nucleation immediately behind the tailpipe, so that the highest particle number concentrations were recorded at a distance, x=0.45 m behind the tailpipe. The simulated growth of H2SO4–H2O nucleation particles was unrealistically low compared with measurements. The possible role of low and semi-volatile organic components on the growth processes is discussed. Simulations for simplified H2SO4–H2O–octane–gasoil aerosol resulted in sufficient growth of nucleation particles.  相似文献   

6.
Aircraft measurements of air pollutants were made to investigate the characteristic features of long-range transport of sulfur compounds over the Yellow Sea for the periods of 26–27 April and 7–10 November in 1998, and 9–11 April and 19 June in 1999, together with aerosol measurements at the Taean background station in Korea. The overall mean concentrations of SO2, O3 and aerosol number in the boundary layer for the observation period ranged 0.1–7.4 ppb 32.1–64.1 ppb and 1.0–143.6 cm−3, respectively. It was found that the air mass over the Yellow Sea had a character of both the polluted continental air and clean background air, and the sulfur transport was mainly confined in the atmospheric boundary layer. The median of SO2 concentration within the boundary layer was about 0.1–2.2 ppb. However, on 8 November, 1998, the mean concentrations of SO2 and aerosol number increased up to 7.4 ppb and 109.5 cm−3, respectively, in the boundary layer, whereas O3 concentration decreased remarkably. This enhanced SO2 concentration occurred in low level westerly air stream from China to Korea. Aerosol analyses at the downstream site of Taean in Korea showed 2–3 times higher sulfate concentration than that of other sampling days, indicating a significant amount of SO2 conversion to non sea-salt sulfate during the long-range transport.  相似文献   

7.
Atmospheric ammonia mixing ratios and the main inorganic ions NH4+, NO3 and SO42− of size-resolved particles in the range from 0.05 to 10 μm were measured at an urban site in Münster, Germany. High mixing ratios of ammonia with a median of 5.2 ppb and a maximum of 50 ppb were detected. The mass fraction of submicron particles was much higher during the day than at night. At night, a greater particle mass and an increased presence of particulate nitrate was measured. Recurring patterns of particle distribution were distinguished and their characteristics analysed. In half of the measurements, the accumulation mode was clearly dominating, which is an indication of aged aerosol. In some measurements, higher concentrations of fine particles were found indicating particle formation. In these cases, a smaller particle mass and about four times greater ratios of ammonia versus ammonium concentrations were observed. These data show that ammonia contributes considerably to the formation of secondary particulate material.  相似文献   

8.
A total of 16 boundary layer (BL) DMS flux values were derived from flights over the Southern Ocean. DMS flux values were derived from airborne observations recorded during the Aerosol Characterization Experiment (ACE 1). The latitude range covered was 55°S–40°S. The method of evaluation was based on the mass-balance photochemical-modeling (MBPCM) approach. The estimated flux for the above latitude range was 0.4–7.0 μmol m−2 d−1. The average value from all data analyzed was 2.6±1.8 μmol m−2 d−1. A comparison of the MBPCM methodology with several other DMS flux methods (e.g., ship and airborne based) revealed reasonably good agreement in some cases and significant disagreement in other cases. Considering the limited number of cases compared and the fact that conditions for the comparisons were far from ideal, it is not possible to conclude that major agreement or differences have been established between these methods. A major result from this study was the finding that DMS oxidation is a major source of BL SO2 over the Southern Ocean. Model simulations suggest that, on average, the conversion efficiency is 0.7 or higher, given a lifetime for SO2 of ∼1 d. A comparison of two sulfur case studies, one based on DMS–SO2 data generated on the NCAR C-130 aircraft, the other based on data recorded on the NOAA ship Discoverer, revealed qualitative agreement in finding that DMS was a major source of Southern Ocean SO2. On the other hand, significant disagreement was found regarding the DMS/SO2 conversion efficiency (e.g., 0.3–0.5 versus 0.7–0.9). Although yet unknown factors, such as vertical mixing, may be involved in reducing the level of disagreement, it does appear at this time that some significant portion of this difference may be related to systematic differences in the two different techniques employed to measure SO2. It would seem prudent, therefore, that further instrument intercomparison SO2 studies be considered. It also would be desirable to stage new intercomparison activity between the MBPCM flux approach and the air-to-sea gradient as well as other flux methods, but under far more favorable conditions.  相似文献   

9.
A gas monitoring system based on broadband absorption spectroscopic techniques in the ultraviolet region is described and tested. The system was employed in real-time continuous concentration measurements of sulfur dioxide (SO2) and nitric oxide (NO) from a 220-ton h?1 circulating fluidized bed (CFB) boiler in Shandong province, China. The emission coefficients (per kg of coal and per kWh of electricity) and the total emission of the two pollutant gases were evaluated. The measurement results showed that the emission concentrations of SO2 and NO from the CFB boiler fluctuated in the range of 750–1300 mg m?3 and 100–220 mg m?3, respectively. Compared with the specified emission standards of air pollutants from thermal power plants in China, the values were generally higher for SO2 and lower for NO. The relatively high emission concentrations of SO2 were found to mainly depend on the sulfur content of the fuel and the poor desulfurization efficiency. This study indicates that the broadband UV spectroscopy system is suitable for industrial emission monitoring and pollution control.  相似文献   

10.
An investigation of water-soluble organic carbon (WSOC) in atmospheric particles was conducted as an index of the formation of secondary organic aerosol (SOA) from April 2005 to March 2006 at Maebashi and Akagi located in the inland Kanto plain in Japan. Fine (<2.1 μm) and coarse (2.1–11 μm) particles were collected by using an Andersen low-volume air sampler, and WSOC, organic carbon (OC), elemental carbon (EC), and ionic components were measured. The mean mass concentrations of the fine particles were 22.2 and 10.5 μg m?3 at Maebashi and Akagi, respectively. The WSOC in fine particles accounted for a large proportion (83%) of total WSOC. The concentration of fine WSOC ranged from 1.2 to 3.5 μg-C m?3 at Maebashi, rising from summer to fall. At Akagi, it rose from spring to summer, associated with the southerly wind from urban areas. The WSOC/OC ratio increased in summer at both sites, but the ratio at Akagi was higher, which we attributed to differences in primary emissions and secondary formation between the sites. The fine WSOC concentration was significantly positively correlated with concentrations of SO42?, EC, and K+, and we inferred that WSOC was produced by photochemical reaction and caused by the combustion of both fuel and biomass. We estimated that SOA accounted for 11–30% of the fine particle mass concentration in this study, suggesting that SOA is a significant year-round component in fine particles.  相似文献   

11.
Spatial distribution of SO2 emission inventory for 1994 from fuel combustion and industrial activities in Shanxi province, the Peoples’ Republic of China, has been created with 1/6°×1/4° latitude/longitude resolution. Total annual SO2 emissions in 1994 in the province were estimated to be 669 GgS, of which 180 GgS were emitted in winter, 170 GgS in spring, 156 GgS in summer, and 163 GgS in fall. For the first time this emission inventory includes SO2 emissions from village and township enterprises. Although SO2 emissions from major industries were under control, SO2 emissions from village and township enterprises became the major threat to the environment in the province.  相似文献   

12.
We present two years (January 2007–December 2008) of atmospheric SO2, NO2 and NH3 measurements from ten background or rural sites in nine provinces in China. The measurements were made on a monthly basis using passive samplers under careful quality control. The results show large geographical and seasonal variations in the concentrations of these gases. The mean SO2 concentration varied from 0.7 ± 0.4 ppb at Waliguan on Qinghai Plateau to 67.3 ± 31.1 ppb at Kaili in Guizhou province. The mean NO2 concentration ranged from 0.6 ± 0.4 ppb at Waliguan to 23.9 ± 6.9 ppb at Houma in southern Shanxi. The mean NH3 concentration ranged from 2.8 ± 3.0 ppb at Shangdianzi in northeastern Beijing to 13.7 ± 8.4 ppb at Houma. At most sites, SO2 and NO2 peaked in winter and reached minima in summer, while NH3 showed maximum values in summer and lower values in cold seasons. On the whole, the geographical distributions of the observed gas concentrations are consistent with those of emissions. The ground measurements of SO2 and NO2 are contrasted to the SCIAMACHY SO2 and OMI NO2 tropospheric columns, respectively. Although the satellite data can capture the main features of emissions and concentrations of SO2, they do not reflect the variations of SO2 in the surface layer. The situation is better for the case of NO2. The OMI NO2 columns capture the geographical differences in the ground NO2 and correlate fairly well with the ground levels of NO2 at six of the ten sites.  相似文献   

13.
Potassium carbonate sulfation plates, monitored monthly for 11 years from 48 sites in 11 cities in Gansu Province, China, provide a crude estimate of cumulative SO2 dry depositions. Measured SO2 dry deposition rates were 1.6–472 mg m−2 day−1 and had seasonal variations with maxima in winter and minima mainly during summer as a result of higher winter and lower summer SO2 concentrations. The 11-year monthly average SO2 dry deposition rates are 23.2–248.97 and 11.7–175.6 mg m−2 day−1 in the eleven cities in winter and summer, respectively. A monthly average SO2 deposition velocity was also estimated from 0.06 to 9.72 cm s−2 in the 11 cities studied with a 11-year average maximum value of about 1.1–2.7 cm s−2 in April and July and a 11-year average minimum value of about 0.2–1.0 cm s−1 in January. The SO2 dry deposition velocity also exhibits an increasing with wind speed in basins of less than 500 mm annual precipitation. In contrast, due to influences of the relative humidity in valleys of more than 500 mm annual precipitation, it shows a decreasing trend with wind speed increasing.  相似文献   

14.
A study of concentrations of sulfur dioxide (SO2) and suspended particulate matter (SPM) has been performed in Delhi. The monthly and seasonal variations of concentrations and winds are analyzed. The monthly mean SO2 concentrations were in the range of 16.15–34.44 μg m−3 and showed regular seasonal variations with the highest concentrations in winter and lowest in monsoon season. On the other hand, the monthly mean SPM concentrations reached the highest (465.68 μg m−3) in November and the lowest (150.07 μg m−3) in August. It was observed that high SO2 concentrations were generally associated with the wind blowing from WNW–NW directions, and the high SPM concentrations were usually related to the wind blowing from W–NW directions.  相似文献   

15.
Numerous epidemiological studies have demonstrated the association between particle mass (PM) concentration in outside air and the occurrence of health related problems and/or diseases. However, much less is known about indoor PM concentrations and associated health risks. In particular, data are needed on air quality in schools, since children are assumed to be more vulnerable to health hazards and spend a large part of their time in classrooms.On this background, we evaluated indoor air quality in 64 schools in the city of Munich and a neighbouring district outside the city boundary. In winter 2004–2005 in 92 classrooms, and in summer 2005 in 75 classrooms, data on indoor air climate parameters (temperature, relative humidity), carbon dioxide (CO2) and various dust particle fractions (PM10, PM2.5) were collected; for the latter both gravimetrical and continuous measurements by laser aerosol spectrometer (LAS) were implemented. In the summer period, the particle number concentration (PNC), was determined using a scanning mobility particle sizer (SMPS). Additionally, data on room and building characteristics were collected by use of a standardized form. Only data collected during teaching hours were considered in analysis. For continuously measured parameters the daily median was used to describe the exposure level in a classroom.The median indoor CO2 concentration in a classroom was 1603 ppm in winter and 405 ppm in summer. With LAS in winter, median PM concentrations of 19.8 μg m−3 (PM2.5) and 91.5 μg m−3 (PM10) were observed, in summer PM concentrations were significantly reduced (median PM2.5=12.7 μg m−3, median PM10=64.9 μg m−3). PM2.5 concentrations determined by the gravimetric method were in general higher (median in winter: 36.7 μg m−3, median in summer: 20.2 μg m−3) but correlated strongly with the LAS-measured results. In explorative analysis, we identified a significant increase of LAS-measured PM2.5 by 1.7 μg m−3 per increase in humidity by 10%, by 0.5 μg m−3 per increase in CO2 indoor concentration by 100 ppm, and a decrease by 2.8 μg m−3 in 5–7th grade classes and by 7.3 μg m−3 in class 8–11 compared to 1–4th class. During the winter period, the associations were stronger regarding class level, reverse regarding humidity (a decrease by 6.4 μg m−3 per increase in 10% humidity) and absent regarding CO2 indoor concentration. The median PNC measured in 36 classrooms ranged between 2622 and 12,145 particles cm−3 (median: 5660 particles cm−3).The results clearly show that exposure to particulate matter in school is high. The increased PM concentrations in winter and their correlation with high CO2 concentrations indicate that inadequate ventilation plays a major role in the establishment of poor indoor air quality. Additionally, the increased PM concentration in low level classes and in rooms with high number of pupils suggest that the physical activity of pupils, which is assumed to be more pronounced in younger children, contributes to a constant process of resuspension of sedimented particles. Further investigations are necessary to increase knowledge on predictors of PM concentration, to assess the toxic potential of indoor particles and to develop and test strategies how to ensure improved indoor air quality in schools.  相似文献   

16.
To better understand the influence of sources and atmospheric processing on aerosol chemical composition, we collected atmospheric particles in Sapporo, northern Japan during spring and early summer 2005 under the air mass transport conditions from Siberia, China and surrounding seas. The aerosols were analyzed for inorganic ions, organic carbon (OC), elemental carbon (EC), water-soluble organic carbon (WSOC), and the major water-soluble organic compound classes (i.e., dicarboxylic acids and sugars). SO42? is the most abundant inorganic constituent (average 44% of the identified inorganic ion mass) followed by NH4+ (21%) and NO3? (13%). Concentrations of OC, EC, and WSOC ranged from 2.0–16, 0.24–2.9, and 0.80–7.9 μg m?3 with a mean of 7.4, 1.0, and 3.1 μg m?3, respectively. High OC/EC ratios (range: 3.6–19, mean: 8.7) were obtained, however WSOC/OC ratios (0.23–0.69, 0.44) do not show any significant diurnal changes. These results suggest that the Sapporo aerosols were already aged, but were not seriously affected by local photochemical processes. Identified water-soluble organic compounds (diacids + sugars) account for <10% of WSOC. Based on some marker species and air mass back trajectory analyses, and using stable carbon isotopic compositions of shorter-chain diacids (i.e., C2–C4) as photochemical aging factor of organic aerosols, the present study suggests that a fraction of WSOC in OC is most likely influenced by aerosol aging, although the OC loading in aerosols may be more influenced by their sources and source regions.  相似文献   

17.
Following the meteorological evaluation in Part I, this Part II paper presents the statistical evaluation of air quality predictions by the U.S. Environmental Protection Agency (U.S. EPA)’s Community Multi-Scale Air Quality (Models-3/CMAQ) model for the four simulated months in the base year 2005. The surface predictions were evaluated using the Air Pollution Index (API) data published by the China Ministry of Environmental Protection (MEP) for 31 capital cities and daily fine particulate matter (PM2.5, particles with aerodiameter less than or equal to 2.5 μm) observations of an individual site in Tsinghua University (THU). To overcome the shortage in surface observations, satellite data are used to assess the column predictions including tropospheric nitrogen dioxide (NO2) column abundance and aerosol optical depth (AOD). The result shows that CMAQ gives reasonably good predictions for the air quality.The air quality improvement that would result from the targeted sulfur dioxide (SO2) and nitrogen oxides (NOx) emission controls in China were assessed for the objective year 2010. The results show that the emission controls can lead to significant air quality benefits. SO2 concentrations in highly polluted areas of East China in 2010 are estimated to be decreased by 30–60% compared to the levels in the 2010 Business-As-Usual (BAU) case. The annual PM2.5 can also decline by 3–15 μg m?3 (4–25%) due to the lower SO2 and sulfate concentrations. If similar controls are implemented for NOx emissions, NOx concentrations are estimated to decrease by 30–60% as compared with the 2010 BAU scenario. The annual mean PM2.5 concentrations will also decline by 2–14 μg m?3 (3–12%). In addition, the number of ozone (O3) non-attainment areas in the northern China is projected to be much lower, with the maximum 1-h average O3 concentrations in the summer reduced by 8–30 ppb.  相似文献   

18.
Marine background levels of non-sea-salt- (nss-) SO42− (5.0–9.7 neq m−3), NH4+ (2.1–4.4 neq m−3) and elemental carbon (EC) (40–80 ngC m−3) in aerosol samples were measured over the equatorial and South Pacific during a cruise by the R/V Hakuho-maru from November 2001 to March 2002. High concentrations of nss-SO42− (47–94 neq m−3), NH4+ (35–94 neq m−3) and EC (130–460 ngC m−3) were found in the western North Pacific near the coast of the Asian continent under the influence of the Asian winter monsoon. Particle size distributions of ionic components showed that the equivalent concentrations of nss-SO42− were balanced with those of NH4+ in the size range of 0.06<D<0.22 μm, whereas the concentration ratios of NH4+ to nss-SO42− in the size range of D>0.22 μm were decreased with increase in particle size. We estimated the source contributions of those aerosol components in the marine background air over the equatorial and South Pacific. Biomass burning accounted for the large fraction (80–98% in weight) of EC and the minor fraction (2–4% in weight) of nss-SO42−. Marine biogenic source accounted for several tens percents of NH4+ and nss-SO42−. In the accumulation mode, 70% of particle number existed in the size range of 0.1<D<0.2 μm. In the size rage of 0.06<D<0.22 μm, the dominant aerosol component of (NH4)2SO4 would be mainly derived from the marine biogenic sources.  相似文献   

19.
We present measurements of ammonia (NH3) over a deciduous forest in southern Indiana collected during four field campaigns; two in the spring during the transition to leaf-out and two during the winter. Above canopy NH3 concentrations measured continuously using two Wet Effluent Diffusion Denuders indicate mean concentrations of 0.6–1.2 μg m−3 during the spring and 0.3 μg m−3 during the winter. Measurements suggest that on average the forest act as a sink of NH3, with a representative daily deposition flux of 1.8 mg-NH3 m−2 during the spring. However, on some days during the spring inverted concentration gradients of NH3 were observed resulting in an apparent upward flux of nearly 0.2 mg-NH3 m−2 h−1. Analyses suggest that this apparent emission flux may be due to canopy emission but evaporation of ammonium nitrate particles may also be partly responsible for the observed inverted concentration gradients.  相似文献   

20.
Biomass consumption and CO2, CO and hydrocarbon gas emissions in an Amazonian forest clearing fire are presented and discussed. The experiment was conducted in the arc of deforestation, near the city of Alta Floresta, state of Mato Grosso, Brazil. The average carbon content of dry biomass was 48% and the estimated average moisture content of fresh biomass was 42% on wet weight basis. The fresh biomass and the amount of carbon on the ground before burning were estimated as 528 t ha?1 and 147 t ha?1, respectively. The overall biomass consumption for the experiment was estimated as 23.9%. A series of experiment in the same region resulted in average efficiency of 40% for areas of same size and 50% for larger areas. The lower efficiency obtained in the burn reported here occurred possibly due to rain before the experiment. Excess mixing ratios were measured for CO2, CO, CH4, C2–C3 aliphatic hydrocarbons, and PM2.5. Excess mixing ratios of CH4 and C2–C3 hydrocarbons were linearly correlated with those of CO. The average emission factors of CO2, CO, CH4, NMHC, and PM2.5 were 1,599, 111.3, 9.2, 5.6, and 4.8 g kg?1 of burned dry biomass, respectively. One hectare of burned forest released about 117,000 kg of CO2, 8100 kg of CO, 675 kg of CH4, 407 kg of NMHC and 354 kg of PM2.5.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号