首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
To investigate the characteristics of mercury exchange between soil and air in the heavily air-polluted area, total gaseous mercury (TGM) concentration in air and Hg exchange flux were measured in Wanshan Hg mining area (WMMA) in November, 2002 and July–August, 2004. The results showed that the average TGM concentrations in the ambient air (17.8–1101.8 ng m−3), average Hg emission flux (162–27827 ng m−2 h−1) and average Hg dry deposition flux (0–9434 ng m−2 h−1) in WMMA were 1–4 orders of magnitude higher than those in the background area. It is said that mercury-enriched soil is a significant Hg source of the atmosphere in WMMA. It was also found that widely distributed roasted cinnabar banks are net Hg sources of the atmosphere in WMMA. Relationships between mercury exchange flux and environmental parameters were investigated. The results indicated that the rate of mercury emission from soil could be accelerated by high total soil mercury concentration and solar irradiation. Whereas, highly elevated TGM concentrations in the ambient air can restrain Hg emission from soil and even lead to strongly atmospheric Hg deposition to soil surface. A great amount of gaseous mercury in the heavily polluted atmosphere may cycle between soil and air quickly and locally. Vegetation can inhibit mercury emission from soil and are important sinks of atmospheric mercury in heavily air-polluted area.  相似文献   

2.
An inverse modeling method using the four-dimensional variational data assimilation approach is developed to provide a top-down estimate of mercury emission inventory in China. The mercury observations on board the C130 aircraft during the Asian Pacific Regional Aerosol Characterization Experiment (ACE-Asia) campaign in April 2001 are assimilated into a regional chemical transport model, STEM. Using a 340 Mg of elemental mercury emitted in 1999, the assimilation results in an increase in Hg0 emissions for China to 1140 Mg in 2001. This is an upper limit amount of the elemental mercury required in China. The average emission-scaling factor is ∼3.4 in China. The spatial changes in the mercury emissions after the assimilation are also evaluated. The largest changes are estimated on the China north-east coastal areas and the areas of north-center China. The influences of the observation and inventory uncertainties and the initial and boundary conditions on the emission estimates are discussed. Increasing the boundary conditions of Hg from 1.2 to 1.5 ng m−3, results in a top-down estimate of Hg0 emissions for China of 718 Mg, and leads the average scaling factor from 3.4 to 2.1.  相似文献   

3.
Most studies on the atmospheric behaviour of mercury in North America have excluded a detailed treatment of natural mercury emissions. The objective of this work is to report a detailed simulation of the atmospheric mercury in a domain that covers a significant part of North America and includes not only anthropogenic mercury emissions but also those from natural sources including vegetation, soil and water.The simulations were done using a natural mercury emission model coupled with the US EPA's SMOKE/CMAQ modelling system. The domain contained 132×90 grid cells at a resolution of 36 km, covering the continental United States, and major parts of Canada and Mexico. The simulation was carried out for 2002, using boundary conditions from a global mercury model. Estimated total natural mercury emission in the domain was 230 tonnes (1 tonne=1000 kg) and the ratio of natural to anthropogenic emissions varied from 0.7 in January to 3.2 in July. Average total gaseous mercury (TGM) concentration ranged between 1 and 4 ng m−3. Good agreement was found between the modelled results and measurements at three Ontario sites for ambient mercury concentrations, and at 72 mercury deposition network sites in the domain for wet deposition. The correlation coefficient between the simulated and the measured values of the daily average TGM at three monitoring sites varied between 0.48 and 0.64. When natural emissions were omitted, the correlation coefficients dropped to between 0.15 and 0.40. About 335 tonnes of mercury were deposited in the domain during the simulation period but overall, it acted as a net source of mercury and contributed about 21 tonnes to the global pool. The net deposition of mercury to the Great Lakes was estimated to be about 2.4 tonnes. The estimated deposition values were similar to those reported by other researchers.  相似文献   

4.
The study of mercury (Hg) cycle in Arctic regions is a major subject of concern due to the dramatic increases of Hg concentrations in ecosystem in the last few decades. The causes of such increases are still in debate, and an important way to improve our knowledge on the subject is to study the exchanges of Hg between atmosphere and snow during springtime. We organized an international study from 10 April to 10 May 2003 in Ny-Ålesund, Svalbard, in order to assess these fluxes through measurements and derived calculations.Snow-to-air emission fluxes of Hg were measured using the flux chamber technique between ∼0 and 50 ng m−2 h−1. A peak in Gaseous Elemental Mercury (GEM) emission flux from the snow to the atmosphere has been measured just few hours after an Atmospheric Mercury Depletion Event (AMDE) recorded on 22 April 2004. Surprisingly, this peak in GEM emitted after this AMDE did not correspond to any increase in Hg concentration in snow surface. A peak in GEM flux after an AMDE was observed only for this single event but not for the four other AMDEs recorded during this spring period.In the snow pack which is seasonal and about 40 cm depth above permafrost, Hg is involved in both production and incorporation processes. The incorporation was evaluated to ∼5–40 pg m2 h. Outside of AMDE periods, Hg flux from the snow surface to the atmosphere was the consequence of GEM production in the air of snow and was about ∼15–50 ng m−2 h−1, with a contribution of deeper snow layers evaluated to ∼0.3–6.5 ng m−2 h−1. The major part of GEM production is then mainly a surface phenomenon. The internal production of GEM was largely increasing when snow temperatures were close to melting, indicating a chemical process occurring in the quasi-liquid layer at the surface of snow grains.  相似文献   

5.
A 3-year research project was established in 1999 to create numerical reference data for material emissions during the time of construction and during the first year. Seven buildings, representing the present construction practice in Finland, were investigated. Material emissions were measured by using the field and laboratory cell (FLEC) during the time of construction, in the newly finished, and in the 6- and 12-month-old buildings. The emission rates for volatile organic compounds (VOCs), formaldehyde, and ammonia were determined.The highest total VOCs (TVOC) emissions were measured in the newly finished buildings from the ceiling structure and from some of the PVC floor coverings. These emissions were up to 1300–2000 μg m−2 h−1. Individual VOCs with emission rates above 50 μg m−2 h−1 included 2-(2-butoxyethoxy) ethanol and its acetate, C4–C16-substituted alkylbenzenes, and xylenes. The mean TVOC emission decreased at least to the Finnish M1-class level (200 μg m−2 h−1) from all surfaces and in all the buildings in 6–12 months. The ammonia and formaldehyde emissions from the ceiling structure were 20–60 μg m−2 h−1 in the newly finished buildings and the M1-levels (30/50 μg m−2 h−1) were exceeded in some cases. These emissions even increased in some buildings during the follow-up period indicating the difference between emissions measured in the laboratory and on site from real structures. Reference values based on the means and 95th percentile are presented to be utilised in both quality control and while investigating indoor air quality problems which are suspected to be caused by a defect structure.  相似文献   

6.
Concentrations of different species of mercury in arctic air and precipitation have been measured at Ny-Ålesund (Svalbard) and Pallas (Finland) during 1996–1997. Typical concentrations for vapour phase mercury measured at the two stations were in the range of 0.7–2 ng m−3 whereas particulate mercury concentrations were below 5 pg m−3. Total mercury in precipitation was in the range 3–30 ng l−1. In order to evaluate the transport and deposition of mercury to the arctic from European anthropogenic sources, the Eulerian transport model HMET has been modified and extended to also include mercury species. A scheme for chemical conversion of elemental mercury to other species of mercury and deposition characteristics of different mercury species have been included in the model. European emission inventories for three different forms of Hg (Hg0, HgCl2 and Hgp) have been implemented in the numerical grid system for the HMET model.  相似文献   

7.
A dynamic soil enclosure was used to characterise monoterpene emissions from 3 soil depths within a Picea sitchensis (Sitka spruce) forest. In addition, a dynamic branch enclosure was used to provide comparative emissions data from foliage. In all cases, limonene and α-pinene dominated monoterpene soil emissions, whilst camphene, β-pinene and myrcene were also present in significant quantities. α-Phellandrene, 3-carene and α-terpinene were occasionally emitted in quantifiable amounts whilst cymene and cineole, although tentatively identified, were always non-quantifiable. Total daily mean monoterpene emission rates, normalised to 30°C, varied considerably between soil depths from 33.6 μg m−2 h−1 (range 28.3–38.4) for undisturbed soil, to 13.0 μg m−2 h−1 (8.97–16.4) with uppermost layer removed, to 199 μg m−2 h−1 (157–216) with partially decayed layer removed, suggesting that the surface needle litter was the most likely source of soil emissions to the atmosphere. Relative monoterpene ratios did not vary significantly between layers. Foliar monoterpenes exhibited a similar emission profile to soils with the exceptions of camphene and 3-carene whose contributions decreased and increased, respectively. Emission rates from foliage, normalised to 30°C were found to have a daily mean of 625 ng g−1 dw h−1 (299–1360). On a land area basis however, total soil emissions were demonstrated to be relatively insignificant to total emissions from the forest ecosystem.  相似文献   

8.
Forty native Mediterranean plant species were screened for emissions of the C5 and C10 hydrocarbons, isoprene and monoterpenes, in five different habitats. A total of 32 compounds were observed in the emissions from these plants. The number of compounds emitted by different plant species varied from 19 (Quercus ilex) to a single compound emission, usually of isoprene. Emission rates were normalised to generate emission factors for each plant species for each sampling event at standard conditions of temperature and light intensity. Plant species were categorised according to their main emitted compound, the major groups being isoprene, α-pinene, linalool, and limonene emitters. Estimates of habitat fluxes for each emitted compound were derived from the contributing plant species’ emission factors, biomass and ground cover. Emissions of individual compounds ranged from 0.002 to 505 g ha−1 h−1 (camphene from garrigue in Spain in autumn and isoprene from riverside habitats in Spain in late spring; respectively). Emissions of isoprene ranged from 0.3 to 505 g ha−1 h−1 (macchia in Italy in late spring and autumn; and riverside in Spain in late spring; respectively) and α-pinene emissions ranged from 0.51 to 52.92 g ha−1 h−1 (garrigue in Spain in late spring; and forest in France in autumn; respectively). Habitat fluxes of most compounds in autumn were greater than in late spring, dominated by emissions from Quercus ilex, Genista scorpius and Quercus pubescens. This study contributes to regional emission inventories and will be of use to tropospheric chemical modellers.  相似文献   

9.
A series of source tests were conducted to characterize emissions of particulate matter (PM), carbon monoxide (CO), carbon dioxide (CO2), methane (CH4), and total hydrocarbon (THC ) from five types of portable combustion devices. Tested combustion devices included a kerosene lamp, an oil lamp, a kerosene space heater, a portable gas range, and four unscented candles. All tests were conducted either in a well-mixed chamber or a well-mixed room, which enables us to determine emission rates and emission factors using a single-compartment mass balance model. Particle mass concentrations and number concentrations were measured using a nephelometric particle monitor and an eight-channel optical particle counter, respectively. Real-time CO concentrations were measured with an electrochemical sensor CO monitor. CO2, CH4, and THC were measured using a GC-FID technique. The results indicate that all particles emitted during steady burning in each of the tested devices were smaller than 1.0 μm in diameter with the vast majority in the range between 0.1 and 0.3 μm. The PM mass emission rates and emission factors for the tested devices ranged from 5.6±0.1 to 142.3±40.8 mg h−1 and from 0.35±0.06 to 9.04±4.0 mg g−1, respectively. The CO emission rates and emission factors ranged from 4.7±3.0 to 226.7±100 mg h−1 and from 0.25±0.12 to 1.56±0.7 mg g−1, respectively. The CO2 emission rates and emission factors ranged from 5500±700 to 210,000±90,000 mg h−1 and from 387±45 to 1689±640 mg g−1, respectively. The contributions of CH4 and THC to emission inventories are expected to be insignificant due both to the small emission factors and to the relatively small quantity of fuel consumed by these portable devices. An exposure scenario analysis indicates that every-day use of the kerosene lamp in a village house can generate fine PM exposures easily exceeding the US promulgated NAAQS for PM2.5.  相似文献   

10.
We determined hourly emissions of isoprene, monoterpenes and sesquiterpenes from Siberian larch, one of the major tree species in Siberian forests. Summer volatile organic compounds (VOCs) emission from Siberian larch consisted mainly of monoterpenes (about 90%). The monoterpene emission spectrum remained constant during the measurement period, almost half was sabinene and other major monoterpenes were Δ3-carene, β- and α-pinene. During spring and summer, about 10% of the VOCs were sesquiterpenes, mainly α-farnesene. The sesquiterpene emissions declined to 3% in the fall. Isoprene, 2-methyl-3-buten-2-ol (MBO) and 1,8-cineole contributed to less than 3% of the VOC emission during the whole period. The diurnal variation of the emissions could be explained using a temperature-dependent parameterization. Emission potentials normalized to 30 °C were 5.2–21 μg gdw−1 h−1 (using β-value of 0.09 °C−1) for monoterpenes and 0.4–1.8 μg gdw−1 h−1 (using β-value of 0.143 °C−1, mean of determined values) for sesquiterpenes. Normalized monoterpene emission potentials were highest in late summer and elevated again in late fall. Sesquiterpene emission potentials were also highest in late summer, but decreased towards fall.  相似文献   

11.
Five weeks of gaseous elemental mercury (GEM), reactive gaseous mercury (RGM) and particle bound mercury (Hgp) concentrations as well as fluxes of GEM were measured at Maryhill, Ontario, Canada above a biosolids amended field. The study occurred during the autumn of 2004 (October–November) to capture the effects of cool weather conditions on the behaviour of mercury in the atmosphere. The initial concentration of total mercury (Hg) in the amended soil was relatively low (0.4 μg g−1±10%).A micrometeorological approach was used to infer the flux of GEM using a continuous two-level sampling system with inlets at 0.40 and 1.25 m above the soil surface to measure the GEM concentration gradient. The required turbulent transfer coefficients were derived from meteorological parameters measured on site. The average GEM flux over the study was 0.1±0.2 ng m−2 h−1(±one standard deviation). The highest averaged hourly GEM fluxes occurred when the averaged net radiation was highest, although the slight diurnal patterns observed were not statistically significant for the complete flux data series. GEM emission fluxes responded to various local events including the passage of a cold front when the flux increased to 2 ng m−2 h−1 and during a biosolids application event at an adjacent field when depositional fluxes peaked at −3 ng m−2 h−1. Three substantial rain events during the study kept the surface soil moisture near field capacity and only slightly increased the GEM flux. Average concentrations of RGM (2.3±3.0 pg m−3), Hgp (3.0±6.2 pg m−3) and GEM (1.8±0.2 ng m−3) remained relatively constant throughout the study except when specific local events resulted in elevated concentrations. The application of biosolids to an adjacent field produced large increases in Hgp (25.8 pg m−3) and RGM (21.7 pg m−3) concentrations only when the wind aligned to impact the experimental equipment. Harvest events (corn) in adjacent fields also corresponded to higher concentrations of GEM and Hgp but with no elevated peaks in RGM concentrations. Diurnal patterns were not statistically significant for RGM and Hgp at Maryhill.  相似文献   

12.
Measurements of ammonia (NH3), nitrous oxide (N2O) and methane (CH4) were made from 11 outdoor concrete yards used by livestock. Measurements of NH3 emission were made using the equilibrium concentration technique while closed chambers were used to measure N2O and CH4 emissions. Outdoor yards used by livestock proved to be an important source of NH3 emission. Greatest emission rates were measured from dairy cow feeding yards, with a mean of 690 mg NH3-N m−2 h−1. Smaller emission rates were measured from sheep handling areas, dairy cow collecting yards, beef feeding yards and a pig loading area, with respective mean emission rates of 440, 280, 220 and 140 mg NH3-N m−2 h−1. Emission rates of N2O and CH4 were much smaller and for CH4, in particular, emission rates were influenced greatly by the presence or absence of dung on the measurement area.  相似文献   

13.
A few copper and gold smelters in Chile are behind a large fraction of global arsenic emissions, raising concerns for increased concentrations of arsenic in PM10 in Central and Northern Chile. This concern is amplified by the fact that Northern Chile soils and rivers in general are characterized by a high arsenic content. A monitoring and modeling study has been performed to quantify the regional impact of the smelter emissions. Measured atmospheric arsenic concentrations from 2.4 to 30.7 ng m−3 were found at seven rural stations, located tens to hundreds of kilometers away from the nearest smelter. Analyses of topsoil and subsoil samples taken from PM10 monitoring stations revealed levels up to 291 mg kg−1, the highest values found in the northern Atacama desert in Chile. An absolute principal component analysis of selected trace elements in PM10 shows that the regional impact of anthropogenic smelter emissions on airborne arsenic concentrations is more important than the effect of soil dust resuspension. The dominance of the smelter emissions is larger in Central Chile than in the northern parts. The impact of resuspended soil dust on airborne arsenic levels in rural areas was estimated not to exceed 5 ng m−3. The model calculations support the dominant role of anthropogenic emissions and give spatial and temporal variations in atmospheric concentrations consistent with the monitored levels at five of the seven stations. At two of the northernmost stations indications were found of unidentified sources other than the smelters and the resuspended soil dust, contributing to about 5 ng m−3 of total arsenic levels. The study confirms that a strong control or elimination of arsenic emissions from the smelters would lead to arsenic in PM10 levels in Northern and Central Chile comparable to non-polluted areas in other countries.  相似文献   

14.
Four seasonal sampling campaigns were carried out in the Florida Everglades to measure elemental Hg vapor (Hg°) fluxes over emergent macrophytes using a modified Bowen ratio gradient approach. The predominant flux of Hg° over both invasive cattail and native sawgrass stands was emission; mean day time fluxes over cattail ranged from ∼20 (winter) to ∼40 (summer) ng m−2 h−1. Sawgrass fluxes were about half those over cattail during comparable periods. Emission from vegetation significantly exceeded evasion of Hg° from the underlying water surface (∼1–2 ng m−2 h−1) measured simultaneously using floating chambers. Among several environmental factors (e.g. CO2 flux, water vapor flux, wind speed, water, air and leaf temperature, and solar radiation), water vapor exhibited the strongest correlation with Hg° flux, and transpiration is suggested as an appropriate term to describe this phenomenon. The lack of significant Hg° emissions from a live, but uprooted (floating) cattail stand suggests that a likely source of the transpired Hg° is the underlying sediments. The pattern of Hg° fluxes typically measured indicated a diel cycle with two peaks, possibly related to different gas exchange dynamics: one in early morning related to lacunal gas release, and a second at midday related to transpiration; nighttime fluxes approached zero.  相似文献   

15.
Canopy scale emissions of isoprene and monoterpenes from Amazonian rainforest were measured by eddy covariance and eddy accumulation techniques. The peak mixing ratios at about 10 m above the canopy occurred in the afternoon and were typically about 90 pptv of α-pinene and 4–5 ppbv of isoprene. α-pinene was the most abundant monoterpene in the air above the canopy comprising ≈50% of the total monoterpene mixing ratio. Measured isoprene fluxes were almost 10 times higher than α-pinene fluxes. Normalized conditions of 30°C and 1000 μmol m−2 s−1 were associated with an isoprene flux of 2.4 mg m−2 h−1 and a β-pinene flux of 0.26 mg m−2 h−1. Both fluxes were lower than values that have been specified for Amazon rainforests in global emission models. Isoprene flux correlated with a light- and temperature-dependent emission activity factor, and even better with measured sensible heat flux. The variation in the measured α-pinene fluxes, as well as the diurnal cycle of mixing ratio, suggest emissions that are dependent on both light and temperature. The light and temperature dependence can have a significant effect on the modeled diurnal cycle of monoterpene emission as well as on the total monoterpene emission.  相似文献   

16.
The light, temperature and stomatal conductance dependencies of volatile organic compound (VOC) emissions from ten plant species commonly found in the Mediterranean region were studied using a fully controlled leaf cuvette in the laboratory. At standard conditions of temperature and light (30°C and 1000 μmol m−2 s−1 PAR), low emitting species (Arbutus unedo, Pinus halepensis, Cistus incanus, Cistus salvifolius, Rosmarinus officinalis and Thymus vulgaris) emitted between 0.1 and 5.0 μg (C) (total VOCs) g−1 dw h−1, a medium emitter (Pinus pinea) emitted between 5 and 10 μg (C) g−1 dw h−1 and high emitters (Cistus monspeliensis, Lavendula stoechas and Quercus sp.) emitted more than 10 μg (C) g−1 dw h−1. VOC emissions from all of the plant species investigated showed some degree of light dependency, which was distinguishable from temperature dependency. Emissions of all compounds from Quercus sp. were light dependent. Ocimene was one of several monoterpene compounds emitted by P. pinea and was strongly correlated to light. Only a fraction of monoterpene emissions from C. incanus exhibited apparent weak light dependency but emissions from this plant species were strongly correlated to temperature. Data presented here are consistent with past studies, which show that emissions are independent of stomatal conductance. These results may allow more accurate predictions of monoterpene emission fluxes from the Mediterranean region to be made.  相似文献   

17.
The size-fractionated particulate mercury in ambient air was collected at the top of a university campus building in Shanghai from March 2002 to September 2003. Wet digestion followed by cold vapor atom adsorption spectroscopy (CVAAS) was employed to analyze total particulate mercury concentration. Two-step extraction was performed to differentiate volatile particle-phase mercury (VPM), reactive particle-phase mercury (RPM) and inert particle-phase mercury (IPM). The average concentrations of mercury in PM1.6, PM8 and total suspended particle (TSP) were 0.058–0.252, 0.148–0.398 and 0.233–0.529 ng m−3, respectively. About 50%–60% of mercury in PM8 was in PM1.6, and about 60%–70% of mercury in TSP was in PM8. Particulate mercury was mainly concentrated on fine particles. The mercury fraction in fine particulate matters (<1.6 μm) was over 4 μg g−1 while 1–2 μg g−1 in TSP. Both were much higher than background values, suggesting that anthropogenic sources are the predominant emission contributors. Seasonal variation indicated that the mercury in TSP in spring was higher than that in summer; however, the mercury in fine particles (<1.6 μm) varied little. The fact that fine particulate mercury (<1.6 μm) was well correlated with sulfate and elemental carbon, but not with fluoride, chloride, nitrate and organic carbon, demonstrates that fine particulate mercury is closely associated with stationary sources and gas–particle transformation. Speciation analysis of mercury showed that VPM fraction decreased with the decrease of particle size, while IPM fraction increased and occupied over 50% in particle <1.6 μm. The detailed species in VPM, RPM and IPM were discussed. Coal burning was estimated to contribute approximately 80% of total atmospheric mercury.  相似文献   

18.
Flame retardants are used in polymers to reduce the flammability of building materials, electric appliances, fabric and papers. In recent years, organophosphate flame retardants have been used as substitutes for polybrominated flame retardants (BFRs). In Japan, the amount of organophosphate flame retardants used in 2001 was about five times more than in 2000. Recently, several studies have shown the health concerns for some organophosphate flame retardants. Little research has been performed on the emission of organophosphate flame retardants, especially the relationship between content and emissions. In this study, a new type of passive sampler was developed to measure emissions of organophosphate flame retardants from plastic materials. With this sampler, emissions from polyvinyl chloride wallpaper samples with different content of tris(2-chloroisopropyl)phosphate (TCPP) at different temperatures were examined. The observed maximum emissions of TCPP from 1, 3, 5, 10 and 20 w/w% content wallpaper materials were 262.3, 452.6, 644.8, 1119.1 and 2166.8 μg m−2 h−1, respectively. Emissions from 5% TCPP content materials at 40 and 60 °C were 1135.7 and 2841.2 μg m−2 h−1, respectively. A significantly positive correlation between the flux of TCPP and the TCPP content of the wallpaper samples was observed. A linear relationship was found between the inverse of temperature and the logarithm of TCPP emission. The results imply that the use of materials with a high organophosphate flame retardant content can lead to high emission rates in high-temperature indoor environments.  相似文献   

19.
Mercury (Hg) emissions from gasoline, diesel, and liquefied petroleum gas (LPG) vehicles were measured and speciated (particulate, oxidized, and elemental mercury). First, three different fuel types were analyzed for their original Hg contents; 571.1±4.5 ng L−1 for gasoline, 185.7±2.6 ng L−1 for diesel, and 1230.3±23.5 ng L−1 for LPG. All three vehicles were then tested at idling and driving modes. Hg in the exhaust gas was mostly in elemental form (Hg0), and no detectable levels of particulate (Hgp) or oxidized (Hg2+) mercury were measured. At idling modes, Hg concentrations in the exhaust gas of gasoline, diesel, and LPG vehicles were 1.5–9.1, 1.6–3.5, and 10.2–18.6 ng m−3, respectively. At driving modes, Hg concentrations were 3.8–16.8 ng m−3 (gasoline), 2.8–8.5 ng m−3 (diesel), and 20.0–26.9 ng m−3 (LPG). For all three vehicles, Hg concentrations at driving modes were higher than at idling modes. Furthermore, Hg emissions from LPG vehicle was highest of all three vehicle types tested, both at idling and driving modes, as expected from the fact that it had the highest original fuel Hg content.  相似文献   

20.
Land spreading nitrogen-rich municipal waste biosolids (NO3-N<256 mg N kg−1 dry weight, NH3-N∼23,080 mg N kg−1 dry weight, Total Kjeldahl N∼41,700 mg N kg−1 dry weight) to human food and non-food chain land is a practice followed throughout the US. This practice may lead to the recovery and utilization of the nitrogen by vegetation, but it may also lead to emissions of biogenic nitric oxide (NO), which may enhance ozone pollution in the lower levels of the troposphere. Recent global estimates of biogenic NO emissions from soils are cited in the literature, which are based on field measurements of NO emissions from various agricultural and non-agricultural fields. However, biogenic emissions of NO from soils amended with biosolids are lacking. Utilizing a state-of-the-art mobile laboratory and a dynamic flow-through chamber system, in-situ concentrations of nitric oxide (NO) were measured during the spring/summer of 1999 and winter/spring of 2000 from an agricultural soil which is routinely amended with municipal waste biosolids. The average NO flux for the late spring/summer time period (10 June 1999–5 August 1999) was 69.4±34.9 ng N m−2 s−1. Biosolids were applied during September 1999 and the field site was sampled again during winter/spring 2000 (28 February 2000–9 March 2000), during which the average flux was 3.6±1.7 ng N m−2 s−1. The same field site was sampled again in late spring (2–9 June 2000) and the average flux was 64.8±41.0 ng N m−2 s−1. An observationally based model, developed as part of this study, found that summer accounted for 60% of the yearly emission while fall, winter and spring accounted for 20%, 4% and 16% respectively. Field experiments were conducted which indicated that the application of biosolids increases the emissions of NO and that techniques to estimate biogenic NO emissions would, on a yearly average, underestimate the NO flux from this field by a factor of 26. Soil temperature and % water filled pore space (%WFPS) were observed to be significant variables for predicting NO emissions, however %WFPS was found to be most significant during high soil temperature conditions. In the range of pH values found at this site (5.8±0.3), pH was not observed to be a significant parameter in predicting NO emissions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号