首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Investigation of the water quality of the Ubu river has been carried out. The upstream course of the river is slightly acidic (pH 5.45 ± 0.23), and the acidity decreases along the lower courses of the river. Turbidity, surfactant, and iron content parameters of the river increased during the wet season, and these changes have been attributed to inputs from flood, leachates of soil erosion, and storm water runoff discharged into the river in increased quantities during the season. Concentrations of some metals were found to increase during the dry season because of absence of dilution of the river by storm water runoff. Most water quality parameters are within World Health Organization acceptable limits set for potable water, and they include most of the cationic and anionic constituents. Although there is no hydrocarbon or metal ion pollution, potability is reduced along the mid to downstream courses of the river by unacceptable levels of turbidity, surfactant concentration, and iron content, particularly during the wet season.  相似文献   

2.
Abstract: Dry weather runoff in arid, urban watersheds may consist entirely of treated wastewater effluent and/or urban nonpoint source runoff, which can be a source of bacteria, nutrients, and metals to receiving waters. Most studies of urban runoff focus on stormwater, and few have evaluated the relative contribution and sources of dry weather pollutant loading for a range of constituents across multiple watersheds. This study assessed dry weather loading of nutrients, metals, and bacteria in six urban watersheds in the Los Angeles region of southern California to estimate relative sources of each constituent class and the proportion of total annual load that can be attributed to dry weather discharge. In each watershed, flow and water quality were sampled from storm drain and treated wastewater inputs, as well as from in‐stream locations during at least two time periods. Data were used to calculate mean concentrations and loads for various sources. Dry weather loads were compared with modeled wet weather loads under a range of annual rainfall volumes to estimate the relative contribution of dry weather load. Mean storm drain flows were comparable between all watersheds, and in all cases, approximately 20% of the flowing storm drains accounted for 80% of the daily volume. Wastewater reclamation plants (WRP) were the main source of nutrients, storm drains accounted for almost all the bacteria, and metals sources varied by constituent. In‐stream concentrations reflected major sources, for example nutrient concentrations were highest downstream of WRP discharges, while in‐stream metals concentrations were highest downstream of the storm drains with high metals loads. Comparison of wet vs. dry weather loading indicates that dry weather loading can be a significant source of metals, ranging from less than 20% during wet years to greater than 50% during dry years.  相似文献   

3.
The typical method of cool-season grass-seed production in Mediterranean climates briefly exposes surface waters to potentially high concentrations of the herbicide diuron [3-(3,4-dichlorophenyl)-1,1-dimethyl urea] during the initial season of growth. To better understand the process, and the degree, of diuron transport from agricultural fields, two grass-seed fields in the Willamette Valley of Oregon were monitored for diuron loss in surface runoff and tile drainage during the first wet season after planting. Initial diuron concentrations in surface runoff were high (>1000 microg L(-1) in one field and >100 microg L(-1) in the other), though they decreased by two orders of magnitude by the end of the season. Concentrations in the tile drains were as much as 1000 times lower than in the surface runoff during the first few weeks of runoff events, and they remained lower than surface water concentrations throughout the season. Total losses in surface runoff were between 1.3 and 3% of the amount applied-much higher than losses via the tile drains. It is also shown by means of a simple first-order decay model that, when little information is available, it may be best to describe diuron depletion in runoff water as a function of cumulative rainfall during the wet season.  相似文献   

4.
An inventory survey conducted to determine pesticide usage in a sub-catchment of the Nzoia sugarcane belt found a variety of pesticides used in the sub-catchment, which are reported in this paper. Analysis of soil samples from seven fallow experimental field plots left uncultivated for various periods from 3 to 96?months after cultivation with pesticide application indicated persistence of high concentrations of pesticide residues in the soil, with estimated soil half-lives (in years) ranging from 0.72 to 57.75 for organochlorines and from 1.13 to 8.25 for herbicides. The mean water concentrations (in ??g/L) of the pesticide residues in River Kuywa, which flows through the Nzoia Nucleus Estate sugarcane farms, ranged from 0.12 (lindane) to 1.36 (p,p??-DDT) for organochlorines and from 0.14 (atrazine) to 1.75 (diuron) for herbicides during the heavy rains period in August 2008 while the mean sediment concentrations (in ??g/g) ranged from 0.28 (lindane) to 1.87 (endrin) for organochlorines and 0.39 (hexazinone) to 4.61 (alachlor) for herbicides. The mean concentrations of residues in water during the light rain period in December 2008 ranged from 0.17 (p,p??-DDT) to 0.71 (aldrin) for organochlorines and 0.01 (atrazine) to 1.74 (alachlor) for herbicides while the sediment concentrations ranged from 0.38 (p,p??-DDT) to 1.145 (aldrin) for organochlorines and 0.74 (atrazine) to 1.98 (alachlor) for herbicides. Although DDT, aldrin, dieldrin, and endrin were not reported in the survey, their presence in the fallow experimental field plot soils and in River Kuywa water and sediment could indicate previous application, lack of recorded data or illegal usage since 1997 when they were banned. Notably, the concentrations of alachlor, diuron, cypermethrin, and hexazinone in the water column were substantial indicating their extensive usage and residual persistence in the sub-catchment, with subsequent wash-off and leaching into River Kuywa. The concentration levels of some of the individual pesticides exceeded the EU limit requirements for drinking water and indicated potential risk to humans and cattle if the water is used without treatment.  相似文献   

5.
Farmyards, an overlooked source for highly contaminated runoff   总被引:1,自引:1,他引:0  
Summer sampling of storm runoff generated from areas of roofs and hardstanding situated on four dairy/beef farms has provided novel information regarding its microbiological and chemical quality. All farm hardstandings generated runoff that was contaminated with respect to those pollutants (faecal coliforms, FC, and faecal streptococci, FS, major nutrients, organic carbon) that are ubiquitously associated with faecal matter and urine. The separate analysis of roof runoff indicated that these can contribute significant concentrations of FS, phosphorus (P) and potentially toxic elements such as zinc (Zn), and suggests a level of 'background' contamination originating from wash-off of bird droppings and in the case of Zn galvanised surfaces. On average hardstanding runoff showed enhanced concentrations of >4 orders of magnitude for FC and 2-3 for major nutrients and carbon relative to roof runoff. Organic forms of nitrogen (N) and P contributed significantly (averaging >40%) to the total dissolved fraction in both roof and hardstanding runoff. Part of the substantial variability in composition of runoff samples could be attributed to differences between farms as well as the timing of sample collection during individual storms. Where situations allowed, a comparison of water upstream and downstream of the farmyard demonstrated they acted as a source of multiple contaminants not only during hydrologically active storm events but also during dry periods. Contamination pathways included a combination of both point (e.g., septic overflows) and non-point (e.g., seepage from livestock housing) sources. Farmyards situated within intensive livestock farming areas such as SW Scotland, would be expected to have significant local and accumulated downstream impacts on the aquatic environment. Localised impacts would be particularly important for headwaters and low order streams.  相似文献   

6.
Few studies have assessed the transport of dissolved nutrients at the field scale under natural rainfall conditions. Hysteresis between dissolved nutrients and discharge behavior can complicate such assessments and this effect has only been examined qualitatively. In this study, we investigated factors contributing to short-term variations of dissolved cation (Ca, Mg, Na, and K) and anion (soluble reactive phosphorus [SRP], NO3, and SO4) concentrations in runoff water and developed a quantitative method to study their hysteretic behavior. Within-storm variations of dissolved nutrient concentrations were determined in two agricultural fields during four natural rainfall events along with discharge, sediment, antecedent soil water conditions, and nutrient contents. For each event, nutrient loads were plotted against discharge during the rising and falling limb of the runoff hydrograph. The resulting hysteresis curves were characterized by an index H, which is the ratio between the integrated areas under the rising and falling curves of the hydrograph. Results showed that nutrient concentrations increased with time during each event. Counterclockwise (H < 1) hysteresis, occurring when the falling limb had larger loads, was found when soils were initially dry whereas clockwise hysteresis (H > 1) was associated with prior wet soil conditions. Two hypotheses are suggested to explain these variations. First, suspended sediments could have acted as a sink for dissolved nutrients and the sensitivity of nutrients to hydrological conditions was determined by their preferential sorption on these sediments. Second, movement of nutrients into runoff occurred more readily as soils became wetter during an event.  相似文献   

7.
ABSTRACT: Conditions under which monthly rainfall forecasts translate into monthly runoff predictions that could support water resources planning and management activities were investigated on a small watershed in central Oklahoma. Runoff response to rainfall forecasts was simulated using the hydrologic model SWAT. Eighteen scenarios were examined that represented combinations of wet, average, and dry antecedent rainfall conditions, with wet, normal, and dry forecasted rainfall. Results suggest that for the climatic and physiographic conditions under consideration, rainfall forecasts could offer potential application opportunities in surface water resources but only under certain conditions. Pronounced wet and dry antecedent rainfall conditions were shown to have greater impact on runoff than forecasts, particularly in the first month of a forecast period. Large forecast impacts on runoff occurred under wet antecedent conditions, when the fraction of forecasted rainfall contributing to runoff was greatest. Under dry antecedent conditions, most of the forecasted rainfall was absorbed in the soil profile, with little immediate runoff response. Persistent three‐month forecasts produced stronger impacts on runoff than one‐month forecasts due to cumulative effects in the hydrologic system. Runoff response to antecedent conditions and forecasts suggest a highly asymmetric utility function for rainfall forecasts, with greatest decision‐support potential for persistent wet forecasts under wet antecedent conditions when the forecast signal is least dampened by soil‐storage effects. Under average and dry antecedent conditions, rainfall forecasts showed little potential value for practical applications in surface water resources assessments.  相似文献   

8.
ABSTRACT: The average microwave temperature of the watershed surface as detected by an airborne Passive Microwave Imaging Scanner (PMIS) was compared with the measured Soil Conservation Service (SCS) watershed storm runoff coefficient (CN). Previous laboratory work suggested that microwave response to the watershed surface is influenced by some of the same surface characteristics that affect runoff, i.e., soil moisture, surface roughness, vegetative cover, and soil texture. In order to field test and develop relations between runoff potentfal and microwave response, several highly instrumented watersheds of approximately 1.5 to 17 km2 were scanned under wet- and dry-soil conditions in April and June 1973. The polarized (horizontal and vertical) scans at 2.8 cm wavelength provided the data base from which other values were calculated. The best relationship between runoff coefficients (CN) and PMIS temperatures was observed when horizontally polarized temperatures from the near-dormant, early-growing season flight were used. Lower SCS runoff coefficients seem to be correlated with the cross-polarized response under dry watershed conditions late in the growing season and the difference in horizontal polarized response between wet conditions early in the growing season and dry conditions late in the growing season. To apply the results, the relationships need to be verified further.  相似文献   

9.
ABSTRACT: The effect of flow persistence on seasonal patterns of watershed runoff was modeled by using runoff of the immediate antecedent month as an index. Monthly runoff was expressed as a function of monthly rainfall, season of the year, and runoff of the antecedent month. The three independent variables were expressed functionally as sliding polynomials, thus producing a piece-wise, form-free, three-dimensional causative structure. A model form allowing complete interactivity of the three independent variables could not be optimized because of insufficient data with high values of both antecedent runoff and monthly rainfall. A model with reduced interactivity was successfully optimized. Data sets from five watersheds ranging from 0.14 to 398 square miles were analyzed. Results were presented as a series of contour maps that showed contours of monthly runoff in the data space of season and monthly rain. In the series of maps, the patterns of the runoff contours changed with changing values of antecedent runoff. During the wet season of the year the contours changed significantly with antecedent runoff, but changes in the dry season were minimal. The quantitative change of runoff was more readily portrayed with cross-sections through the contoured surfaces.  相似文献   

10.
ABSTRACT: The large volumes of ground water that are discharged from the Everglades toward the Miami metropolitan area have historically posed a significant environmental water supply problem. In order to analyze the effects of seepage barriers on these subsurface outflows, the analytic element modeling code GFLOW was used to construct a ground water flow model of a region that includes a portion of the Everglades along with adjacent developed areas. The hydrology of this region can be characterized by a highly transmissive surficial aquifer in hydraulic contact with wetlands and canals. Calibration of the model to both wet and dry season conditions yielded satisfactory results, and it was concluded that the analytic element method is a suitable technique for modeling ground water flow in the Everglades environment. Finally, the model was used to evaluate the potential effectiveness of a subsurface barrier approximately two miles long for increasing water levels within the adjacent fringes of the Everglades National Park. It was found that the barrier had a negligible effect on water levels due to both its relatively short length and the high transmissivity of the surficial aquifer.  相似文献   

11.
Use of small plots and rainfall simulators to extrapolate trends in runoff water quality requires careful consideration of hydrologic process represented under such conditions. A modified version of the National Phosphorus Runoff Project (NPRP) protocol was used to assess the hydrology of paired 1 x 2 m plots established on two soils with contrasting hydrologic properties (somewhat poorly drained vs. well drained). Rain simulations (60 mm h(-1)) were conducted to generate 30 min of runoff. For the somewhat poorly drained soil, simulations were conducted in October and May to contrast dry conditions typically targeted by NPRP protocols with wet conditions generally associated with natural runoff. For the well-drained soil, only dry conditions (October) were evaluated. Under dry antecedent moisture conditions, an average of 64 mm of rainfall was applied to the somewhat poorly drained soil to generate 30 min of runoff, as opposed to 96 mm to the well-drained soil. At an extreme, differences in rainfall were equivalent to a 50-yr rainfall-return period. An absence of detectable spatial trends in surface soil moisture suggests uniformity of runoff processes within the plots. No differences in applied rainfall were evident between wet and dry antecedent conditions for the somewhat poorly drained soil. However, significant differences in runoff generation processes were observed in dissolved P concentrations between wet and dry conditions. As natural runoff from the somewhat poorly drained soil is largely under wet antecedent conditions, this study highlights the need for care in interpreting findings from generalized protocols that favor infiltration-excess runoff mechanisms.  相似文献   

12.
Runoff water management is among the inherent challenges which face the sustainability of the development of arid urban centers. These areas are particularly at risk from flooding due to rainfall concentration in few heavy showers. On the other hand, they are susceptible to drought. The capital of Sudan (Khartoum) stands as exemplary for these issues. Hence, this research study aims at investigating the potential of applying rainwater harvesting (RWH) in Khartoum City Center as a potential urban runoff management tool. Rapid urbanization coupled with the extension of impervious surfaces has intensified the heat island in Khartoum. Consequently, increased frequency of heat waves and dust storms during the dry summer and streets flooding during the rainy season have led to environmental, economical, and health problems. The study starts with exposing the rainfall behavior in Khartoum by investigating rainfall variability, number of raindays, distribution of rain over the season, probability of daily rainfall, maximum daily rainfall and deficit/surplus of rain through time. The daily rainfall data show that very strong falls of >30 mm occur almost once every wet season. Decreased intra- and inter-annual rainfall surpluses as well as increased rainfall concentration in the month of August have been taking place. The 30-year rainfall variability is calculated at decade interval since 1941. Increasing variability is revealed with 1981–2010 having coefficients of variation of 66.6% for the annual values and 108.8–118.0% for the wettest months (July–September). Under the aforementioned rainfall conditions, this paper then explores the potential of RWH in Khartoum City Center as an option for storm water management since the drainage system covers only 40% of the study area. The potential runoff from the 6.5 km2 center area is computed using the United States Natural Resources Conservation Services method (US-NRCS), where a weighted Curve Number (CN) of 94% is found, confirming dominant imperviousness. Rainfall threshold for runoff generation is found to be 3.3 mm. A 24,000 m3 runoff generated from a 13.1 mm rainfall (with 80% probability and one year return period) equals the drainage system capacity. An extreme rainfall of 30 mm produces a runoff equivalent to fourfold the drainage capacity. It is suggested that the former and latter volumes mentioned above could be harvested by applying the rational method from 18% and 80% rooftops of the commercial and business district area, respectively. Based on the above results, six potential sites can be chosen for RWH with a total roof catchment area of 39,558 m2 and potential rooftop RWH per unit area of 0.033 m3. These results reflect the RWH potential for effective urban runoff management and better water resources utilization. RWH would provide an alternative source of water to tackle the drought phenomenon.  相似文献   

13.
Soil erosion from agricultural land use runoff is a major threat to the sustainability of soil composition and water resource integrity. Sugarcane is an important cash and food security crop in South Africa, subjected to an intensive soil erosion, and consequently, severe land degradation. This study aimed to investigate soil erosion and associated soil and cover factors under rainfed sugarcane, in a small catchment, KwaZulu‐Natal, South Africa. Three replicated runoff plots were installed at different slope positions (down, mid and upslope) within cultivated sugarcane fields to monitor soil erosion during the 2016–2017 rainy season. On average, annual runoff (RF) was significantly greater from 10 m2 plots with 1163.77 ± 2.63 l/m/year compared to 1 m2 plots. However, sediment concentration (SC) was significantly lower in 10 m2 (0.34 ± 0.04 g/l) compared to 1 m2 (6.94 ± 0.24 g/l) plots. The annual soil losses (SL) calculated from 12 rainfall events was 58.36 ± 0.77 and 8.84 ± 0.20 t/ha from 1 m2 and 10 m2 plots, respectively. The 1 m2 plot, SL (2.4 ± 1.41 ton/ha/year) in the upslope experienced 33% more loss than the midslope and 50% more loss than the downslope position. SL was relatively lower from the 10 m2 plots than the 1 m2 plots, which is explained by high sediment deposition at the greater plot scale. SL was negatively correlated with the soil organic carbon stocks (r = ?0.82) and soil surface cover (r = ?0.55). RF decreased with the increase of slope gradient (r = ?0.88) and soil infiltration rate (r = ?0.87). There were considerable soil losses from cultivated sugarcane fields with low organic matter. These findings suggest that to mitigate soil erosion, soil organic carbon stocks and vegetation cover needs to be increased through appropriate land management practices, particularly in cultivated areas with steep gradients.  相似文献   

14.
The effects of pasture management, season and soil nutrient status on crude protein (CP) and macro mineral concentration of native pasture was studied in the Vertisol areas of the central Ethiopian highland. Soil and herbage samples from 18 continuously grazed (CG) and 12 seasonally grazed (SG) pasture sites were analyzed for N, P, Ca, Mg, K and Na. Soil and dry season CG pasture samples were collected in January and February 2001 (dry season: November-February), while wet season CG and SG pasture samples were collected during September 2001 (wet season: April-October). The Potassium concentration (2.55%) of mixed herbage samples from SG pasture exceeded the K values (1.80%) from CG pasture (P?相似文献   

15.
ABSTRACT: Water budget studies are essential for water resources and environmental management. In this study, a water budget analysis is presented for the Everglades Agricultural Area (EAA) in South Florida for the period from 1973 to 1991. The EAA is a highly productive irrigation/drainage basin that has a high water table and organic soils. Water quality problems are associated with the drainage discharge from the basin. During dry periods, supplemental water is used for irrigation and in rainy periods excess water with relatively higher phosphorus content is pumped out of the basin to Lake Okeechobee and the Everglades ecosystem. Elevated concentrations of phosphorus in the runoff/drainage that is discharged from the EAA basin have created water quality problems. The mean surface water inflow to the basin was 63,990 ha-m, and the outflow was 131,447 ha-m per year. On the average, supplemental surface water use was 47,411 ha-m, and runoff/drainage was 114,816 ha-m per year. The mean annual basin rainfall was 120.9 cm. A general trend in the decline of the wet season rainfall is observed.  相似文献   

16.
In this article, a methodology for evaluating the effect of land use/land cover on the quality of nearby stream water in a semiarid environment is described and tested on a large watershed in Southeastern Brazil. The approach aims at identifying the width of the riparian area having the strongest effect on different water quality parameters. The land use/land cover data were generated from remotely sensed data while water quality point data were supplied by a government agency. Testing was conducted for both the rainy and dry seasons in an effort to understand the direct effect of surface runoff. The approach combines cartographic modelling using a geographical information system (GIS) and statistics to establish the strength of the relationship between water quality, land use and the distance from the stream. Results suggest a strong relationship between land use/land cover and turbidity, nitrogen and fecal coliforms. They also suggest that each of these parameters has a unique behavior when distance from the stream is considered. Finally, although it was expected that the models would apply better during the wet season, some parameters had the opposite behavior and displayed a better fit during the dry season.  相似文献   

17.
The objective of this study was to assess curve number (CN) values derived for two forested headwater catchments in the Lower Coastal Plain (LCP) of South Carolina using a three‐year period of storm event rainfall and runoff data in comparison with results obtained from CN method calculations. Derived CNs from rainfall/runoff pairs ranged from 46 to 90 for the Upper Debidue Creek (UDC) watershed and from 42 to 89 for the Watershed 80 (WS80). However, runoff generation from storm events was strongly related to water table elevation, where seasonally variable evapotranspirative wet and dry moisture conditions persist. Seasonal water table fluctuation is independent of, but can be compounded by, wet conditions that occur as a result of prior storm events, further complicating flow prediction. Runoff predictions for LCP first‐order watersheds do not compare closely to measured flow under the average moisture condition normally associated with the CN method. In this study, however, results show improvement in flow predictions using CNs adjusted for antecedent runoff conditions and based on water table position. These results indicate that adaptations of CN model parameters are required for reliable flow predictions for these LCP catchments with shallow water tables. Low gradient topography and shallow water table characteristics of LCP watersheds allow for unique hydrologic conditions that must be assessed and managed differently than higher gradient watersheds.  相似文献   

18.
ABSTRACT: Sugarcane (Saccharum spp.) was planted in six lysimeters containing Pahokee muck (Lithic Mediaprist) where water tables were maintained at 30, 60, and 90 cm depths. The main objective was to study the impact of a 40 percent water cutback (108 mm) on sugarcane production during the period near the end of the dry season (i.e., May). The water cutback treatment was simulated through manipulation of water table depth. Due to the high available water capacity of the muck soil and selection of a sugarcane cultivar ‘CP63-588’ (which has a high tolerance of water table fluctuations), the sugarcane growth, and the yields of sugarcane biomass and sugar were not significantly different as a result of the treatments with and without 40 percent water cutback during a period of two months. This result is in good agreement with the 1981 cane yield in the Everglades Agricultural Area where a 35 percent water cutback was imposed during the 1981 drought.  相似文献   

19.
ABSTRACT: The Everglades Agricultural Area (EAA) covers 2,850 km2 in area and is characterized by high water table and organic soil. The area is actively irrigated and drained as a function of weather conditions and crop status. Anthropogenic activities in the basin have resulted in nutrient-enriched drainage water that is discharged to Lake Okeechobee and the Everglades ecosystem. Water quantity and quality issues of the basin have become of increasing interest at local, state, and federal levels, so legislative and regulatory measures have been taken to improve water quality in discharges from the basin. In this study, simulation of hydrologic conditions and soil moisture were conducted using 100 years of daily synthetic rainfall data. From the simulations, the statistical distribution of half-month drainage discharge and supplemental water use in the basin was developed. The mean annual drainage/runoff was 49 cm, the mean supplemental water was 30 cm, and the mean annual a real rainfall was 122 cm. On the average, drainage exceeded supplemental water use in the months of June to September while from December to March drainage and supplemental water use were equivalent. Supplemental water use exceeded drainage in the months of October, November, April, and May. High drainage occurred in June and September; smallest drainage was in February. On the average, the highest supplemental water use occurred in May and November. The 10-year return period of annual drainage during wet and dry cycles were 60 cm and 38 cm per year, respectively. The semi-monthly drainage coefficient of variation (cv) is above 100 percent for the period from the second half of October to end of April. The cv is lower than 100 percent for the remaining season (wet season). The purpose of this paper is to present the magnitude, temporal, and frequency distribution of drainage runoff generation and supplemental water use in the EAA basin. Information on statistics of drainage will contribute to the optimization of the design and operation of drainage water treatment systems.  相似文献   

20.
ABSTRACT: Villagers living around Nsukka in Eastern Nigeria derive their water supplies during the dry season by subjecting the runoff from laterite soils to five months' sedimentation. This study found that by flocculatig the runoff with wood ash at a dose of 5 g/1, clear water with turbidity of less than 5 JTU, Fe of less than 1 mg/1, Coliform count of zero MPN and Plate count of less than 5 colonies was achieved after three days sedimentation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号