首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
The cytotoxicity of 13 and 22 nm aluminum oxide (Al2O3) nanoparticles was investigated in cultured human bronchoalveolar carcinoma-derived cells (A549) and compared with 20 nm CeO2 and 40 nm TiO2 nanoparticles as positive and negative control, respectively. Exposure to both Al2O3 nanoparticles for 24 h at 10 and 25 µg mL?1 doses significantly decreased cell viability compared with control. However, the cytotoxicity of 13 and 22 nm Al2O3 nanoparticles had no difference at 5–25 µg mL?1 dose range. The cytotoxicity of both Al2O3 nanoparticles were higher than negative control TiO2 nanoparticles but lower than positive control CeO2 nanoparticles (TiO2 < Al2O3 < CeO2). A real-time single cell imaging system was employed to study the cell membrane potential change caused by Al2O3 and CeO2 nanoparticles using a membrane potential sensitive fluorescent probe DiBAC4(3). Exposure to the 13 nm Al2O3 nanoparticles resulted in more significant depolarization than the 30 nm Al2O3 particles. On the other hand, the 20 nm CeO2 particles, the most toxic, caused less significant depolarization than both the 13 and 22 nm Al2O3. Factors such as exposure duration, surface chemistry, and other mechanisms may contribute differently between cytotoxicity and membrane depolarization.  相似文献   

2.
In this investigation, Fe3O4 magnetic nanoparticles (MNPs) were prepared by the alkalinization of an aqueous medium containing ferrous sulfate and ferric chloride. In the next step, a Fe3O4–AgCl magnetic nanocomposite was fabricated by the drop-by-drop addition of silver nitrate solution into a NaCl solution containing Fe3O4 MNPs. All prepared nanoparticles were characterized by transition electron microscopy (TEM), X-ray diffraction (XRD), and energy-dispersive X-ray spectroscopy (EDS). Both particle types varied in size from 2.5 to 20?nm, with an average size of 7.5?nm for Fe3O4 MNPs and 12.5?nm for Fe3O4–AgCl nanocomposites. The antibacterial effect of the Fe3O4 MNPs and fabricated Fe3O4–AgCl nanocomposites against Escherichia coli (ATCC 35218) were investigated by conventional serial agar dilution method using the Müller–Hinton Agar medium. The minimum inhibitory concentration was 4?mg?mL?1 for Fe3O4 MNPs and 2?mg?mL?1 for the Fe3O4–AgCl magnetic nanocomposites. Time-kill course assays showed that the Fe3O4–AgCl magnetic nanocomposites successfully killed all inoculated bacterial cells during an exposure time of 60?min. The antibacterial activity of recycled Fe3O4–AgCl magnetic nanocomposites over four 60?min cycles of antibacterial treatment was further tested against E. coli by the colony-forming unit (CFU) method. The antibacterial efficiency of the nanocomposites was constant over two cycles of antibacterial testing.  相似文献   

3.
为了研究铅与纳米SiO2联合染毒所致的细胞损伤特征,并从氧化应激方面探讨其可能的作用机制。用铅和SiO2处理A549细胞,采用四唑盐(MTT)比色法检测细胞存活率,评价铅和SiO2联合染毒所致的细胞损伤特征;采用硫代巴比妥酸(TBA)比色法检测细胞内丙二醛(MDA)含量,评价铅与SiO2联合染毒所致细胞的氧化应激状态;检测了细胞内抗氧化物还原型谷胱甘肽(GSH)含量以及细胞内抗氧化酶的活性,以评价铅与SiO2联合染毒对细胞抗氧化系统的影响。将实验数据进行ANOVA分析。结果表明,铅、SiO2单独染毒组各指标没有明显改变;而联合染毒能造成细胞氧化损伤,表现为细胞存活率、GSH水平、超氧化物歧化酶(SOD)及谷胱甘肽过氧化物酶(GSH-Px)活性显著低于对照组及2个单独染毒组(P<0.05),细胞内MDA含量显著高于对照组及各单独染毒组(P<0.05)。可见,联合染毒可引起明显的细胞毒性,氧化损伤可能是铅与SiO联合染毒致肺细胞毒性损伤的作用机制之一。  相似文献   

4.
Nanoparticles (NPs) contained in commercial products are released and enter into the aquatic ecosystem, posing serious possible risks to the environment and affecting the food chain. Therefore, investigating the potential toxicity of NPs on aquatic organisms has become an important issue. This study assessed the toxicity and trophic transfer of metal oxide NPs from marine microalgae (Cricosphaera elongata) to the larvae of the sea urchin Paracentrotus lividus. Larvae (24 h old) were fed on 2000 cell mL?1 48 h of microalgae contaminated with 5 mg L?1 of several metal oxide NPs (SiO2, SnO2, CeO2, Fe3O4) for 15 days. Larval viability and development were monitored from the 4-arm stage to the 8-arm pluteus stage. A significant decrease in survival was observed in larvae fed with microalgae exposed to SiO2 and CeO2 NPs. Abnormal development, characterised by skeletal degeneration and altered rudiment growth, was observed in all larvae fed with contaminated NP algae. Our findings revealed that SiO2 and CeO2 NPs exerted a toxic effect in the trophic interaction analysed, by reducing sea urchin larval viability, and all metal oxide NPs induced toxicological effects. In conclusion, metal oxide NPs may enter the food chain and become bioavailable for marine organisms, affecting their development.  相似文献   

5.
The NO/H2/O2 reaction was studied under oxidizing conditions in the 100-400 °C range over 0.1 wt% Pt supported on various metal oxides such as MgO, CeO2, SiO2, La2O3, CaO, Y2O3 and TiO2. The Pt/MgO and Pt/CeO2 catalysts showed good catalytic behaviours. Here, we find that the Pt/Mg-Ce-O catalyst, prepared from MgO and CeO2 by the sol-gel method, is a very active and selective catalyst towards N2 formation in the whole 100–400 °C range. This catalyst appears to be the most active, selective and stable one ever reported in the literature for the NO/H2/O2 reaction, even in the presence of 5%v H2O or 20 ppmv of SO2 in the feed stream.Selected article from the Regional Symposium on Chemistry and Environment, Krusevac, Serbia, June 2003, organised by Dr. Branimir Jovancicevic.  相似文献   

6.
Abstract

In this study, the toxicity of CuO (40?nm), α-Al2O3 (40?nm), and α-Fe2O3 (20–40?nm) nanoparticles was comparatively investigated on Carcinus aestuarii. Crabs were semi-statically exposed to 1?mg/L of each for 14?days and their accumulation and distribution in tissue and hemolymph, potential oxidative stress mechanism, total hemocyte counts and types, and the osmoregulatory and ionoregulatory responses were determined. The tissue distribution of CuO nanoparticles was hepatopancreas?>?hemolymph?≥?gill?> muscle, for α-Fe2O3 gill?>?hepatopancreas?>?muscle?> hemolymph, and for α-Al2O3 gill?>?muscle?≥?hemolymph?> hepatopancreas. While α-Al2O3 and α-Fe2O3 NPs, induced lipid peroxidation and changes in antioxidant enzyme activity in the hepatopancreas tissue, the oxidative damage caused by the CuO nanoparticles was minimal. All three nanoparticles, copper in particular, elicit osmoregulatory and ionoregulatory toxicity at this concentration, due to the inhibition of Na+, K+-ATPase activity in the gill and depletion of hemolymph and carcass ion concentrations.  相似文献   

7.
纳米二氧化硅对秀丽线虫的毒性作用研究   总被引:1,自引:0,他引:1  
为探讨二氧化硅纳米颗粒(SiNP)的毒性作用.以微米SiO2和空白做对照,将尺寸为20和60 nm的SiNP分别以0.2,1.0和5.0 g·L-13个浓度对模式生物秀丽隐杆线虫进行染毒.通过第一代和第二代线虫体长、身体弯曲频率、头部摆动频率以及第一代线虫后代数目、世代时间等发育、运动和生殖的相关评价指标,对SiNP毒...  相似文献   

8.
Fe3O4 was supported on mesoporous Al2O3 or SiO2 (50 wt.%) using an incipient wetness impregnation method, and Fe3O4/Al2O3 exhibited higher catalytic efficiency for the degradation of 2,4-dichlorophenoxyacetic acid and para-chlorobenzoic acid aqueous solution with ozone. The effect and morphology of supported Fe3O4 on catalytic ozonation performance were investigated based on the characterization results of X-ray diffraction, X-ray photoelectron spectroscopy, BET analysis and Fourier transform infrared spectroscopy. The results indicated that the physical and chemical properties of the catalyst supports especially their Lewis acid sites had a significant influence on the catalytic activity. In comparison with SiO2, more Lewis acid sites existed on the surface of Al2O3, resulting in higher catalytic ozonation activity. During the reaction process, no significant Fe ions release was observed. Moreover, Fe3O4/Al2O3 exhibited stable structure and activity after successive cyclic experiments. The results indicated that the catalyst is a promising ozonation catalyst with magnetic separation in drinking water treatment.  相似文献   

9.
This article reports a novel way to synthesize carbon nanotubes and Cu/ZnO nanoparticles using metal hyperaccumulator plants. Metal hyperaccumulator plants are traditionally used for phytoremediation to clean soil polluted by toxic metals. However, the transfer of toxic metals in plant shoots and leaves is an environmental issue because animals and other living organisms feeding on plants will transfer the metals to the ecosystem. Therefore, we suggest that hyperaccumulator plants could be used to synthesize nanoparticles. Here, Brassica juncea L., a Cu-hyperaccumulator plant, was collected around a copper mine and used as a raw chemical to produce carbon nanotubes and Cu/ZnO nanoparticles. The chlorophyll in shoots of B. juncea plants was ethanol extracted to yield chlorophyllin. Cu and Zn were extracted by HNO3 to form Cu/Zn(NO3)2. The chlorophyllin reacted with Cu/Zn(NO3)2 to form Cu/Zn chlorophyllin. Cu/ZnO nanoparticles were synthesized by direct precipitation of Cu/Zn chlorophyllin with NaOH and ethanol. The vascular bundles in B. juncea plants, which have been purified and carbonized by HNO3, were rapidly heated to about 400°C and then they were cooled to room temperature to obtain carbon nanotubes. Results indicate that the outer diameter of carbon nanotubes was around 80 nm. Cu/ZnO nanoparticles have a Cu0.05Zn0.95O composition, and had a diameter of about 97 nm. Our study not only inspires the search for a new strategy on the synthesis of nanostructure from renewable natural products, but also breaks through the traditional and limited ideas about the reuse of metals by hyperaccumulator plants.  相似文献   

10.
许多具有氧化作用的空气污染物,均能使细胞产生氧化损伤,使胸腺基质淋巴生成素(thymic stromal lymphopoietin,TSLP)含量上升。而TSLP是一种启动过敏性炎症的重要因子,会导致哮喘等疾病发生率的上升。在本研究中用过氧化氢(H_2O_2)模拟具有氧化作用的空气污染物进行染毒,研究细胞氧化应激水平的变化,并讨论还原型谷胱甘肽(GSH)对细胞受氧化损伤的保护作用。将大鼠支气管上皮细胞(RTE)分组培养,每组设置6个平行实验,分别用低、中、高剂量H_2O_2染毒3 h;高剂量设置1个重复,作为保护组,在染毒前用GSH保护2 h。结果显示,高剂量组H_2O_2(3.2 mmol·L~(~(-1)))染毒的细胞,其细胞活力下降(P0.01),丙二醛(MDA)水平上升(P0.01),TSLP水平上升(P0.05),与之相比,用GSH保护后的同剂量染毒组,上述指标得到全面缓解(P0.01)。这表明高浓度的H_2O_2会损伤细胞活力,并使MDA及TSLP水平上升,而GSH对TSLP及MDA的升高有极显著的抑制作用,即对细胞有一定的保护作用。  相似文献   

11.
Sulfoxides are versatile synthetic intermediates for the preparation of biological products. Therefore, there is a need for efficient methods to oxidize sulfides into sulfoxides. Such oxidation may be catalyzed by magnetic nanocatalysts due to their good stability, easy synthesis, high surface area, low toxicity and easy separation by magnetic forces. Here we prepared a nanocatalyst by immobilization of the chitosan–Schiff base complex on supramagnetic Fe3O4 nanoparticles. The chitosan–Schiff base complex has been previously prepared by functionalization of chitosan with 5-bromosalicylaldehyde and metalation with copper(II) acetate. The catalyst was characterized by Fourier transform infrared, powder X-ray diffraction, transmission electron microscope, scanning electron microscopy, energy-dispersive X-ray spectroscopy and thermogravimetric analysis. Results show that the Fe3O4 nanoparticles and nanocatalyst were spherical in shape with an average size of 20 nm. Upon the covalently anchoring of chitosan–Schiff base Cu complex on the magnetic Fe3O4 nanoparticles, the average size increased to 60 nm. The prepared Fe3O4–chitosan–Schiff base Cu complex catalyzed very efficiently the oxidation of sulfides to sulfoxides with 100 % selectivity in all cases under green reaction conditions and excellent yields. Additionally, ease of recovery and reusability up to four cycles without noticeable loss of catalytic activity make the present protocol beneficial from industrial and environmental viewpoint.  相似文献   

12.
Free radicals induced by cigarette smoking have been linked to an increase in oxidative stress resulting in smoking-related cardiovascular diseases. However, the possible effect of honey that has antioxidant property in improving oxidative stress status among smokers has not yet been reported. Hence, this study was to determine the effects of 12-week Tualang honey supplementation on F2-isoprostanes, superoxide dismutase, glutathione peroxidase, catalase, and total antioxidant status among chronic smokers. A total of 32 non-smokers and 64 chronic smokers were recruited from Quit Smoking Clinic and Health Campus, Universiti Sains, Malaysia. Smokers were randomized into two groups (n = 32/group) namely smokers without supplementation and smokers with honey supplementation (20 g/day) for 12 weeks. Blood was obtained from non-smokers and smokers at pre-intervention and from smokers at post-intervention. During pre-intervention, the levels/activity of F2-isoprostanes, total antioxidant status, and catalase were significantly higher while superoxide dismutase and glutathione peroxidase were lower in smokers than non-smokers. During post-intervention, in supplemented smokers, there were significant decrease in F2-isoprostanes and increase in total antioxidant status, glutathione peroxidase and catalase levels/activities compared with pre-intervention. This study indicates that honey supplementation improves oxidative stress status suggesting a beneficial role of honey in reducing the risk of cardiovascular diseases.  相似文献   

13.
Membrane modification is one of the most feasible and effective solutions to membrane fouling problem which tenaciously hampers the further augmentation of membrane separation technology. Blending modification with nanoparticles (NPs), owing to the convenience of being incorporated in established membrane production lines, possesses an advantageous viability in practical applications. However, the existing blending strategy suffers from a low utilization efficiency due to NP encasement by membrane matrix. The current study proposed an improved blending modification approach with amphiphilic NPs (aNPs), which were prepared through silanization using 3-(Trimethoxysilyl)propyl methacrylate (TMSPMA) as coupling agents and ZnO or SiO2 as pristine NPs (pNPs), respectively. The Fourier transform infrared and X-ray photoelectron spectroscopy analyses revealed the presence of appropriate organic components in both the ZnO and SiO2 aNPs, which verified the success of the silanization process. As compared with the pristine and conventional pNP-blended membranes, both the ZnO aNP-blended and SiO2 aNP-blended membranes with proper silanization (100% and 200%w/w) achieved a significantly increased blending efficiency with more NPs scattering on the internal and external membrane surfaces under scanning electron microscope observation. This improvement contributed to the increase of membrane hydrophilicity. Nevertheless, an extra dosage of the TMSPMA led to an encasement of NPs, thereby adversely affecting the properties of the resultant membranes. On the basis of all the tests, 100% (w/w) was selected as the optimum TMSPMA dosage for blending modification for both the ZnO and SiO2 types.
  相似文献   

14.
Silver nanoparticles (AgNPs) are now being of a great interest by ecotoxicological researchers. Their potential hazards to humans and other non-target organisms had led to crucial concerns. In this research, white radish leaf extract was used for the green synthesis of AgNPs. UV–Vis spectroscopy, transmission electron microscopy (TEM) and X-ray diffraction (XRD) have been utilised to characterise the biosynthesised AgNPs. Furthermore, the present study aimed to investigate the ecotoxicological effects of 1?mM biosynthesised AgNPs on the land snail, Theba pisana after two weeks of exposure and one week recovery with respect to oxidative stress parameters; lipid peroxidation (LPO), reduced glutathione (GSH), catalase (CAT) and glutathione-S-transferase (GST), cytogenetic parameters; DNA content and micronucleus test, as well as immunological parameters; cell death, phagocytosis, lysosomal membrane stability (LMS), lectins, superoxide anion (O2?) generation, phenoloxidase (PO), peroxidase (POD) and haemocyanin (Hc) were examined. AgNPs have been biosynthesised successfully; the UV–vis spectrum exhibited a single and broad absorption band located between 375 and 415?nm, TEM image shows AgNPs formed were nearly spherical in shape with a mean size of 2.18–19.87?nm and the crystalline nature of nanoparticles was confirmed by XRD. After two weeks exposure, the result showed that AgNPs significantly increased LPO level as well as CAT and GST activities, cell death, cell abnormalities and Hc level, whereas, significant decline was found in DNA and GSH contents, phagocytic activity, LMS, lectins, O2? generation, POD and PO activities compared to the controls. After a week of recovery, most of the tested biomarkers in AgNP-exposed snails did not completely return to the control levels. The multiple measured parameters could be effectively used as sensitive biomarkers in the risk assessment of contaminants in the terrestrial ecosystem.  相似文献   

15.
We report here the occurrence of uniquely shaped nanoparticles newly discovered in natural ponds. Nanoparticles originate from the Goshiki-numa pond community in Japan, where volcanic activity facilitated the formation of four specific ponds. We built a steric three-dimensional image of nanoparticles by integrating 120 transmission-electron-microscope image fragments obtained from various angle ranges. The thick-walled, cylindrically shaped particle has an outer diameter that measures approximately 40 nm and a length that measures 70 nm. A 10-nm-thick wall surrounds a 30 nm hole located in the particle centre. Particles are composed of an aluminium silicate-based material with an Al2O3:SiO2 ratio of 2:1. They also exhibit an amorphous X-ray diffraction pattern. Although the water solubility characteristics and the infrared spectrum of these newly discovered particles resembles imogolite, these two materials do not have identical structural characteristics.  相似文献   

16.
The photocatalytic formation of hydrogen peroxide over ZnO and TiO2thin films has been investigated in aqueous phase in the presence of molecular oxygen as an electron acceptor. These films are highly porous and showed enhanced catalytic activity in the photochemical formation of hydrogen peroxide. The amount of H2O2formed during 2 hour light illumination is 4–6 μM and the rates of formation of hydrogen peroxide of both the films are almost comparable. The yield of hydrogen peroxide increases with the increase in irradiation time and a trend of steady state concentration of H2O2is observed in the case of TiO2thin film. Photodissolution of ZnO particles is observed in some extent during the process of prolonged UV light illumination.  相似文献   

17.
The regulation of antioxidant defense system in macroalgae exposed to salinity stress was examined in Ulva fasciata Delile. As compared to the 30‰ control, a long-term (4 days) exposure to hyposaline (5, 15‰) and hypersaline (60, 90, 120, 150‰) conditions inhibited growth rate and TTC reduction ability. A decrease in maximum quantum efficiency (F v/F m ratio) and the maintenance of superoxide dismutase activity under salinity stress indicate the potential generation of reactive oxygen species in chloroplasts. An exposure to 15, 60, and 90‰ decreased seawater H2O2 contents but increased thallus H2O2 contents that are positively correlated with TBARS and peroxide contents. Alleviation of oxidative damage and H2O2 accumulation at 15 and 90‰ by a H2O2 scavenger, dimethylthiourea, suggests that oxidative damage occurring under moderate hyposaline and hypersaline conditions is ascribed to accumulated H2O2. Increased glutathione reductase activity and glutathione content and decreased ascorbate content are responsible for accumulated H2O2 at 15, 60, and 90‰, while ascorbate peroxidase activity increased only at salinity ≥ 90‰. Catalase and peroxidase activities also increased at 60 and 90‰ for H2O2 removal, but only catalase showed activity increase at 15‰. For the regeneration of ascorbate, the activities of both dehydroascorbate reductase and monodehydroascorbate reductase were increased at 5 and 15‰ while only monodehydroascorbate reductase activity increased at 60 and 90‰. It is hypothesized that the availability of antioxidants and the activities of antioxidant enzymes are increased in U. fasciata to cope with the oxidative stress occurring in hyposaline and hypersaline conditions.  相似文献   

18.
The aim of this study was to evaluate the in vitro toxicity of two multi-wall carbon nanotubes on four different cell lines: human alveolar epithelial (A549) cells, hepatocytes (Hep 3B cells), human embryonic kidney cells, and intestinal (P407 cells) cells. The adverse effects of carbon nanoparticles were analyzed after 24 h incubation with different cell lines using the trypan blue dye exclusion method. Incubation of carbon nanotubes with different cells produced a concentration-dependent inhibition of growth of the cells. The TC50 or IC50 values (toxic concentration 50, i.e., concentration of particles inducing 50% cell mortality) of two nanoparticles were (1) found to be in the range 23.5–30.5 µg mL?1, and (2) less than that of quartz (known toxic agent, 28.8–66.9 µg mL?1), indicating the greater cytotoxic effect of carbon nanoparticles than quartz particles.  相似文献   

19.
Waste pickling liquors (WPLs) containing high concentrations of iron and acid are hazardous waste products from the steel pickling processes. A novel combined coprecipitation–oxidation method for iron recovery by Fe3O4 nanoparticle production from the WPLs was developed in this study. An oxidation–reduction potential monitoring method was developed for real-time control of the Fe2+/Fe3+ molar ratio. The key coprecipitation–oxidation parameters were determined using the orthogonal experimental design method. The use of promoters greatly improved the Fe3O4 nanoparticle crystallinity, size, magnetization, and dispersion. X-ray diffraction patterns showed that the produced Fe3O4 nanoparticles were single phase. The Fe3O4 nanoparticles were approximately spherical and slightly agglomerated. Vibrating sample magnetometry showed that the Fe3O4 nanoparticles produced from the WPLs had good magnetic properties, with a saturation magnetization of 80.206 emu·g–1 and a remanence of 10.500 emu·g–1. The results show that this novel coprecipitation–oxidation method has great potential for recycling iron in WPLs.
  相似文献   

20.
The aim of the plesent investigation was to study the effect of SiO2 addition on the thermal deactivation of V2O5/WO3/TiO2 catalysts used for NOx pollution abatement. The results suggest that the degradation of the catalytic properties is strongly correlated to the structural ageing which is, in turn, mainly related to the anatase–rutile phase transformation and to the WO3 phase segregation. The addition of SiO2 strongly influences the temperature at which these phenomena occur. In fact, it was found that the introduction of this oxide stabilizes the material, retarding the collapse of surface area, and increases the temperature of the anatase to rutile phase transition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号