首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 417 毫秒
1.
Nylon bags containing yellow leaves of Rhizophora apiculata and Avicennia marina, were immersed for 80 days from August to October, 1996. the decomposing leaves were collected every 10 days and analysed for dry weight loss and six biochemical parameters: tannins, total amino acids, total sugars, total nitrogen, total lipids and fatty acid profile. the leaf weight initially decreased very rapidly by about 50% of the start in two species of mangroves within 10 days. Similar changes were observed with tannins, total amino acids and sugars. However, the concentration of nitrogen increased significantly with decomposition. There was no significant change in total lipid and fatty acid profile. the highest concentration of fatty acid in the decomposing leaves was palmitic acid (16:0). Unsaturated fatty acids such as, 18:1 w7c and 18:1 w9c were found to be present in decomposing leaves of both species.  相似文献   

2.
The present study investigates amino and fatty acid dynamics of embryos of different-sized simultaneous hermaphrodite shrimp (SH) (Lysmata seticaudata) during early (ERS) and late reproductive seasons (LRS). A significant relative decrease in total amino acids and essential amino acids (EAA) was recorded (P<0.05) during the development of embryos produced by shrimp collected during ERS and LRS. The content of non-essential amino acids (NEAA) showed a smaller variation, without a marked decrease. During the last embryonic stage, the major EAAs of embryos were, in decreasing magnitude, lysine and arginine, while the major NEAAs were glutamic acid and valine. A substantial decrease in lipid content (P<0.05) was observed, and the quantitatively more important fatty acids were the saturates 16:0 and 18:0, the monounsaturates 18:1n-9 and 18:1n-7 and the polyunsaturates 20:4n-6 (arachidonic acid, ARA), 20:5n-3 (eicosapentaenoic acid, EPA) and 22:6n-3 (docosahexaenoic acid, DHA). Monounsaturates were used at a higher rate, and embryos produced by SH shrimp displayed similar consumption rates of saturated and polyunsaturated fatty acids. Considering individual fatty acids, no clear utilization pattern between different-sized SH shrimp in ERS and LRS was recorded. The inexistence of consistent differences between amino and fatty acid utilization during embryogenesis among different-sized SH shrimp in ERS and LRS emphasizes the variability affecting offspring in decapod crustaceans.Communicated by S.A. Poulet, Roscoff  相似文献   

3.
Changes in the chemical composition of developing dolphin (Coryphaena hippurus) eggs and prefeeding yolksac larvae were determined in order to estimate probable dietary requirements of first-feeding larvae. Daily dry matter, protein nitrogen (PN), non-protein nitrogen (NPN), lipid, gross energy content, fatty acid and amino acid profiles from Day 1 to Day 2 eggs and Day 1 to Day 3 larvae were compared. Lipid was the primary endogenous energy source accounting for the daily caloric deficit through both the egg and larval stages, except over the day of hatching. The catabolism of lipid by embryos (0.078 cal d–1) was greater than that by yolksac larvae (0.036 cal d–1). The higher demand for energy by embryos was related to a greater rate of protein synthesis during the egg stage. The ratio of PN:NPN increased during egg development without change in total nitrogen content, but was constant throughout the yolksac larvae period. The lipid content per embryo did not decrease over the hatching period (Day 2 to 3, postspawning). However, there was a loss in amino acid content not totally accounted for by sloughing of the chorion at hatching. This loss, as protein, accounted for 0.053 cal of gross energy, which represented 70% of the total estimated energy needs of the fish over this period. Loss of non-essential amino acids (25%) was higher than that of essential amino acids (13%). Proline and tyrosine accounted for 32% of the total loss of amino acids at this time. The only preferential use of fatty acids over any period was a small but significant drop in the content of C22:6n-3 prior to the onset of feeding (Day 5, postspawning). It is speculated that the pattern of energy-substrate use of first-feeding dolphin larvae will reflect the pattern of endogenous energy use during the egg and prefeeding yolksac larval stages. Diets or feeding regimens with lipid as the primary energy source, and containing a fatty acid profile similar to that of eggs or yolksac larvae, should be useful in culturing this species, at least during the early feeding stages.  相似文献   

4.
Growth rates of juvenile Capitella sp. I were determined on different rations of six food types: Gerber's mixed cereal, TetraMin fish flakes, benthic diatoms, Ulva sp., spring detritus, and summer detritus. A simple growth model estimated maximum growth rate and maintenance ration for each food. There were differences in the growth response among foods relative to nitrogen content. As juveniles increased in size, differences in growth between foods became more pronounced. For all juveniles, growth rates were correlated with levels of the amino acids histidine, phenylalanine, threonine, and valine, and the polyunsaturated fatty acid 20:5w3; correlations with histidine and phenylalanine levels were the most significant. Regressions of growth rates as a function of these two amino acids suggest a daily maintenance ration of 300 pg histidine and phenylalanine mg-1 nitrogen biomass. Juvenile worms grew on spring detritus but not on summer detritus, indicating the probable importance of micronutrients (polyunsaturated fatty acids, amino acids) for growth of juvenile Capitella sp. I in the field.  相似文献   

5.
Summary. The nutritive value of tree foliage for herbivores decreases rapidly with leaf maturation, due in particular to the decline in leaf nitrogen content. Since the amino acid content of plants differs from the need of herbivores for individual amino acids, we examined developmental changes in the contents of amino acids throughout the growth season of mountain birch. The contents of free and protein-bound amino acids, as well as essential and nonessential ones, displayed different patterns with leaf maturation, suggesting that total nitrogen or protein levels are poor predictors of the nutritive status of leaves. The contents of protein-bound amino acids were 100 times higher than those of free amino acids, indicating that the role of free amino acids in nutrition of herbivores is probably less important than that of protein-bound amino acids. Among protein-bound amino acids, both the absolute and the relative contents of two nitrogen-rich essential amino acids, lysine and arginine, decreased during early leaf growth, presumably reducing nitrogen availability in developing leaves. Essential amino acids were mainly positively related to each other, suggesting the co-ordinated regulation of their synthesis. Changes in correlations among individual free amino acids reflected developmental changes in allocation preferences between biosynthesis pathways with leaf growth. Received 31 January 2003; accepted 17 March 2003. R1D=" Correspondence to: Teija Ruuhola, e-mail: teiruu@utu.fi  相似文献   

6.
The Caribbean reef-building corals Porites porites (Pallas) and Montastrea annularis (Ellis and Solander) and the Red Sea corals Pocillopora verrucosa (Ellis and Solander), Stylophora pistillata (Esper) and Goniastrea retiformis (Lamark) were analysed for total lipid, wax ester and triglyceride content, and fatty acid composition. M. annularis contained about 32% of dry weight as total lipid, whereas much lower values of between 11 and 17% were recorded for the other four species. It is concluded that there is greater variation in coral total lipid than hitherto thought. The total lipid contained a substantial proportion of wax ester (22 to 49%) and triglyceride (18 to 37%). The storage lipids (wax esters and triglycerides) accounted for between 6 and 20% of the dry weight and between 46 and 73% of the total lipid. Variation in lipid content between species could not be attributed to geographical location, but the low values for total lipid in Red Sea corals may in part be due to environmental factors as these samples were collected in winter. All corals analysed contained high levels of saturated fatty acids, the most abundant fatty acids being 16:0, 18:0 and 18:1n-9. Marked differences were observed in polyunsaturated fatty acid (PUFA) content between species, with comparatively low levels of 10 and 11% of fatty acids being recorded in M. annularis and G. retiformis, respectively. The values for the other species ranged between 21 and 37%. Fatty acid composition may vary according to the proportions of fatty acids obtained from diet, algal photosynthesis and synthesis by the animal tissues.  相似文献   

7.
Fatty acid analysis is an alternative dietary investigation tool that complements the more traditional techniques of stomach content and faecal analysis that are often subject to a wide range of biases. In applying fatty acid analysis to ecosystem studies, it is important to have an understanding of the effect diet has on the fatty acid profile of the predator. A feeding experiment, using crustacean and fish as prey for the European cuttlefish Sepia officinalis, was conducted to evaluate the effect of prey fatty acids on the fatty acid profile of this marine predator. Cuttlefish were fed on a fish diet for the first 29 days, and then changed to a crustacean diet for a further 28 days. Another group of cuttlefish was fed on a crustacean diet for the first 29 days, and then changed to a fish diet for a further 28 days. An analysis of the cuttlefish digestive gland showed that the fatty acid profile reflected that of the prey, with cuttlefish on a crustacean diet being clearly distinguishable from the cuttlefish on a fish diet. Cuttlefish fed on a fish diet for 29 days prior to the switch in diet were comparatively higher in 16:0, AA, 20:1ω9, DPA6, DHA, 22:4ω6 and DPA3 than those fed on crustaceans. Cuttlefish fed on a crustacean diet for 29 days prior to the switch in diet were comparatively higher in 17:1ω8, 18:1ω9, 18:2ω6, 18:1ω7, EPA and 20:2ω6 than those fed on fish. Following a change in diet, the fatty acid profile of the cuttlefish digestive gland reflected that of the new diet within 14 days. The results confirm that the fatty acid profile of the cuttlefish digestive gland clearly reflects the profile of its recent diet. It also shows that the digestive gland may not be an organ that accumulates dietary lipids for long-term storage, but rather is an organ where lipids are rapidly being turned over and potentially excreted.  相似文献   

8.
The present study is a comprehensive comparison of the biochemical composition (protein, lipid, glycogen and cholesterol contents, and amino acid and fatty acid profiles) of 14 species of cephalopods with different life strategies (benthic, nektobenthic, benthopelagic and pelagic) in distinct habitats (neritic, demersal, oceanic and deep sea), with special emphasis placed on a male Architeuthis sp. The giant squid showed a significantly lower protein and total amino acid content in the gonad and digestive gland. The major essential amino acids were leucine, lysine and arginine. The major non-essential amino acids were glutamic acid, aspartic acid and proline. The benthopelagic cirrate octopus Opisthoteuthis sp. showed a lower content of these nitrogen compounds in the muscle. In respect to lipid and fatty acid contents, the giant squid showed the highest values in the gonad and digestive gland and the lowest in the muscle. Most of saturated fatty acid content was presented as 16:0; monounsaturated fatty acid content, as 18:1 and 20:1; and polyunsaturated fatty acid content, as 20:4n-6, 20:5n-3 and 22:6n-3. The highest cholesterol content in the gonad was detected in Opisthoteuthis sp. and Architeuthis sp.; in the digestive gland. in Todarodes sagittatus; and in the muscle, in Sepia elegans. The highest glycogen value in the gonad was detected in Octopus vulgaris; in the digestive gland and muscle, the highest values were attained in Opisthoteuthis sp. The relationships between life strategies and biochemical composition were investigated and principal component analysis (PCA) was performed. The different cephalopod life strategies could be well separated on the basis of the first two principal components. The nektobenthic and pelagic strategies were clearly separated from the benthic, suggesting that these groups of species are characterized by lower lipid content and higher protein content in the gonad. A rather similar life-strategy distinction was obtained for the digestive gland. The benthopelagic strategy was also well separated from benthic and pelagic strategies and from Architeuthis sp. In the muscle, the results indicated lower nitrogen and carbon compound contents in Architeuthis sp. and Opisthoteuthis sp. The environmental conditions that possibly explain the Architeuthis sp. stranding, the relationships between biochemical compositions and the life strategies of the different cephalopod species studied are discussed.Communicated by S.A. Poulet, Roscoff  相似文献   

9.
Summary. The quality of tree leaves as food for herbivores changes rapidly especially during the spring and early summer. However, whether the quality of an individual tree in relation to other trees in the population changes during the growing season and between years is less clear. We studied the seasonal and annual stability of chemical and physical traits affecting leaf quality for herbivores. Rankings of trees in terms of the contents of two major groups of phenolics in their leaves, hydrolyzable tannins and proanthocyanidins (condensed tannins), were very stable from the early spring to the end of the growing season. There were also strong positive within-season correlations in the levels of some other groups of phenolics in the leaves (kaempferol glycosides, myricetin glycosides and p-coumaroylquinic acid derivatives). The contents of individual sugars and the sum content of protein-bound amino acids showed patterns of seasonal consistency in mature leaves, but not in young developing leaves. The seasonal correlations in leaf water content and toughness were also strongest in mature leaves. The correlations between two years at corresponding times of the growing season were strongly positive for the major groups of phenolics throughout the season, but were more variable for the contents of proteins and some sugars. Leaf toughness and water content showed strong positive correlations in mature leaves. Despite the consistency of tree ranking in terms of leaf phenolics, the relative resistance status of trees may, however, change during a growing season because there was a negative correlation between the content of hydrolyzable tannins (early-season resistance compounds) in leaves early in the season and the content of proanthocyanidins (late-season resistance compounds) late in the season, and vice versa. Thus, assuming that phenolics affect herbivore preference and performance, different plants may suffer damage at different times of the growing season, and the overall variation between trees in the fitness consequences may be low. In addition, the adaptation of herbivorous insects to mountain birch foliage in general, as well as to specific tree individuals, may be constrained by variation in the relative resistance status of the trees.  相似文献   

10.
Lipid compositions of the dominant Antarctic copepods Calanoides acutus, Rhincalanus gigas and Calanus propinquus from the Weddell Sea have been investigated in great detail. Copepods were collected during summer in 1985 and late spring/early winter in 1986. The analyses revealed specific adaptations in the lipid biochemistry of these species which result in very different lipid components. The various copepodite stages of C. acutus synthesize wax esters with long-chain monounsaturated moieties and especially the alcohols consisted mainly of 20:1(n-9) and 22:1(n-11). R. gigas also generates wax esters, but with moieties of shorter chain length. The fatty alcohols consisted mainly of 14:0 and 16:0 components, while the major fatty acids were 20:5, 18:4 and 22:6, of which 18:4 probably originated from dietary input. In contrast, C. propinquus accumulates triacylglycerols, a very unusual depot lipid in polar calanoid copepods. Major fatty acids in C. propinquus were the long-chain monounsaturates 22:1(n-9) and 22:1(n-11), which may comprise up to 50% of total fatty acids. In C. acutus and C. propinquus there was a clear increase of long-chain fatty acids with increasing developmental stage. In contrast, the fatty acid and alcohol composition of the R. gigas copepodite stages were characterized by the dominance of the polyunsaturated fatty acids as well as high amounts of the monounsaturates 18:1(n-9) and 16:1(n-7). There was a considerable decrease of the dietary fatty acid 18:4(n-3) towards the older stages during summer; in late winter/early spring 18:4 was only detected in very low amounts. This tendency was also found in the other two species, but was less pronounced. In all three species dry weight and lipid content increased exponentially from younger to older stages. The highest portion of wax esters, or of triacylglycerols in C. propinquus, was found in the adults. Dry weight and lipid content were generally higher during summer. In late winter/early spring the variability was more pronounced and lipid-rich specimens showed a selective retention of long-chain monounsaturated fatty acids, whereas in lipid-poor specimens these fatty acids were very much depleted.  相似文献   

11.
Changes in total lipids, lipid classes and their fatty acid contents were studied in the ovaries and midgut glands ofPenaeus kerathurus Forskäl females during sexual maturation. The shrimp were captured in the Gulf of Cádiz (southwest Spain) in 1990. The lipid content and fatty acids, in relative terms, increased during ovarian development. The greatest changes occurred between Maturation Stages III and IV. Ovarian lipids were dominated by polar classes, whereas in the midgut gland the major classes were triacylglycerols and sterol esters. The amounts of major fatty acids in ovaries (16:0, 16:1n-7, 18:1n-9, 18:1n-7, 20:5n-3 and 22:6n-3) increased with increasing maturity, but declined slightly between Stages III and IV. The total polar lipid content of the midgut was 5.7% (by dry weight) and its fatty acid composition remained constant during the whole study period. Total lipid content of the midgut gland showed an upward trend during sexual maturation, except between Stages II and III, when a slight decrease was observed. Predominant fatty acids in the midgut gland (16:1n-7, 20:5n-3 and 22:6n-3) displayed a noteworthy decline between Stages II and III, corresponding with the marked increase in total lipid fatty acid content in the ovaries during the same period.  相似文献   

12.
The fatty-acid composition of lipids from ovulated eggs of wild and cultured turbot was investigated in order to estimate the nutritional requirements during embryonic and early larval development. Lipid comprised 13.8±0.5% (n=5) and 13.2±0.7% (n=7) of the egg dry weight in wild and cultured turbot, respectively. Polyunsaturated fatty acids (PUFA) of the (n-3) series accounted for 39% of total fatty acids in total lipid of both wild and cultured fish. The predominant (n-3) FUFA was docosahexaenoic acid (22:6 n-3), which also was the most abundant fatty acid in turbot eggs and comprised 24 and 23% of the total egg fatty acids in wild and cultured fish, respectively. Phospholipids, triacylglycerols and cholesterol-wax esters of turbot eggs all exhibited a specific fatty-acid profile distinctly different from that of total lipid. The general pattern of the fatty-acid distribution in lipids of eggs from wild and cultured turbot was similar, but the relative amount of 18:2(n-6) was considerably higher and 20:1(n-9) slightly higher in cultured fish. These differences were extended to all lipid classes and probably reflect the dietary intake of certain vegetable and marine fish oils. Calculations based on light microscopical studies showed that 55 to 60% of the total lipids in cultured turbot eggs are confined to the oil globule. The size of the oil globule remained constant during embryogenesis, and a reduction in size occurred first after hatching and mainly after yolk depletion. This implies that the total amount of lipids utilised during the embryonic development is considerably less than the total lipids present in ovulated turbot eggs. Comparison of the fatty-acid composition of total lipids from eggs and vitellogenin of wild turbot reveals that egg lipids contained a lower level of saturated and a higher level of monounsaturated fatty acids. Eggs also contained wax esters, which were not detected in vitellogenin, suggesting that vitellogenin is not the only source of lipids for turbot eggs.  相似文献   

13.
Fatty acids were extracted from the surface sediments (10 cm) of three sampling sites of Rufiji estuary to infer their sources and biogeochemical pathways. The fatty acids ranging from C8 to C24 were distinguished from this study, and were broadly classified into saturated (SFAs), monounsaturated (MUFAs) and polyunsaturated fatty acids (PUFAs). SFAs were found to be the major fraction at station 1 and 3 where as at station 2, MUFAs dominated. A total of 19 fatty acids with a total concentration of 64.91 μg/g dry weight were characterised at station 1. C16:0 was the most abundant fatty acid contributing 21.94% of total fatty acids (TFAs). C22:2 was the second most abundant, which accounted for 9.46% of TFAs. Fatty acids ranging from C12 to C24 were identified at station 2. C20 fatty acid was the most abundant fatty acid contributing 21.94%, followed by C16:0. At station 3, fatty acids ranging from C8 to C24 were obtained. The PUFA C20:5n-3 was the most abundant fatty acid contributing 21.65%, followed by C24:0 (15.00% of TFAs). The ratio of lower molecular weight (LMW) to higher molecular weight (HMW) biomarkers was used as an indicators to distinguish higher plants organic matter from algae-derived fatty acids.  相似文献   

14.
Fatty acid compositions of the leaves of six species of mangroves were studied to ascertain their use as biomarkers for determining the fate of mangrove organic matter in the habitat and as taxonomic tool. Mangrove leaves were collected from three locations in the western Pacific Ocean: Moreton Bay (MB) (Australia), Hong Kong (China) and Okinawa (Japan). In MB, samples were collected from two sites separated by 15 km: Logan River Estuary (LRE) and Jabiru Island. In addition, along the LRE, leaves were collected from five stations at ∼2–3 km apart. Results show that the analysis of the entire fatty acid profiles of the mangrove leaves is a promising taxonomic tool as the profiles of most species were sufficiently different to be separated in an non-metric multidimensional scaling plot. In addition, geographically separated populations of the same species could also be identified by their fatty acid profiles. In most cases, two non-ubiquitous groups of fatty acids dominated in the mangrove leaves: the polyunsaturated 18:2ω6 and 18:3ω3 and the long chain fatty acids (≥24:0). With respect to the relative contributions of these fatty acids, three groups of species were identified, in which one or both groups of fatty acids may potentially be used as markers of the mangrove organic matter in the estuarine environment.  相似文献   

15.
Changes in the protein, lipid, glycogen, cholesterol and energy contents, total amino acid and fatty acid profiles of Octopus vulgaris and O. defilippi tissues (gonad, digestive gland and muscle) during sexual maturation (spermatogenesis and oogenesis) were investigated. Both species showed an increase of amino acids and protein content in the gonad throughout sexual maturation (namely in oogenesis), but allocation of these nitrogen compounds from the digestive gland and muscle was not evident. The major essential amino acids in the three tissues were leucine, lysine and arginine. The major non-essential amino acids were glutamic acid, aspartic acid and alanine. With respect to carbon compounds, a significant increasing trend (P<0.05) in the lipid and fatty acid contents in the three tissues was observed, and, consequently, there was also little evidence of accumulated lipid storage reserves being used for egg production. It seems that for egg production both Octopus species use energy directly from food, rather than from stored products. This direct acquisition model contrasts with the previous model for Octopus vulgaris proposed by ODor and Wells (1978: J Exp Biol 77:15–31). Most of saturated fatty acid content of the three tissues was presented as 16:0 and 18:0, monounsaturated fatty acid content as 18:1 and 20:1 and polyunsaturated fatty acid content as arachidonic acid (20:4n-6), eicosapentaenoic acid (20:5n-3) and docosahexaenoic acid (22:6n-3). Though cholesterol is an important precursor of steroid hormones, this sterol content exhibited variations that do not seem to be related with the maturation process. Moreover, significant differences (P<0.05) were obtained between genders, suggesting that perhaps there is a greater physiological demand for cholesterol during spermatogenesis than oogenesis. If the component sterols of octopus are of a dietary origin, considerable variation in the cholesterol content between species might be expected on the basis of the sterol composition of their prey. The glycogen reserves increased significantly in the gonad and decreased significantly (P<0.05) in the digestive gland and muscle of O. vulgaris (these trends were not evident in O. defilippi). Glycogen may play an important role in the maturation process and embryogenesis of these organisms, because carbohydrates are precursors of metabolic intermediates in the production of energy. It was evident that sexual maturation had a significant effect upon the gonad energy content, but the non-significant energy variation (P>0.05) in the digestive gland and muscle revealed no evidence that storage reserves are transferred from tissue to tissue. The biochemical composition of digestive gland and muscle may not be influenced by sexual maturation, but rather by other biotic factors, such as feeding activity, food availability, spawning and brooding.Communicated by S.A. Poulet, Roscoff  相似文献   

16.
We studied the lipid dynamics (lipid contents, classes and fatty acids) during oogenesis and early embryogenesis of 7 viviparous and 3 oviparous deepwater chondrichthyans. Mature pre-ovulated ovarian follicles of all species were high in lipid content, indicative of large energetic expenditure and high maternal investment. Larger lipid reserves were found in viviparous dogshark (28–36% wet weight, ww) compared to oviparous chimaeras (19–24% ww) and catshark, F. boardmani (18% ww). Neutral lipids and monounsaturated fatty acids were the main source of lipidic energy during vitellogenesis and gestation. For most species, there was a peak in total lipid content, levels of storage lipids and essential fatty acids at time of ovulation. Interspecific variation of total lipid yolk reserves and lipid class profiles was largely explained by differences in parity mode, reproductive (continuous vs. non-continuous oocytes development) strategy and depth-related physiological adaptations. Fatty acid profiles were less variable among species with the most important fatty acids including: 16:0, 18:1ω9, 20:1ω9, 20:4ω6 and 22:6ω3. These findings provide a greater biochemical understanding of different maternal-embryonic relationships among chondrichthyans, which can be used as a baseline for subsequent comparative studies.  相似文献   

17.
The aim of the study was to determine the response of Salix purpurea?×?viminalis L. growing on Pleurotus ostreatus spent mushroom substrate (SMS) with different copper (Cu) addition. The content of Cu in roots, leaves and shoots was reduced by SMS addition. A decrease of biomass was observed with simultaneous Cu concentration increase. SMS induced leaf and root elongation of Cu-treated plants. Variation in the profile of low molecular weight organic acids with the domination of oxalic and acetic acids was observed. The total phenolic content significantly increased for plants cultivated with SMS, while the biosynthesis of salicylic acid was considerably weakened. The content of sugars was generally reduced by SMS. Alteration in the level of the stress-related molecules suggests mitigation of the harmful effect of Cu on Salix hybrid metabolism by SMS addition. This pointed to the possibility of using SMS in contaminated soil to reduce the toxic effect of metals on plants used in phytoextraction.  相似文献   

18.
Summary. As Salicaceous plants produce new leaves for a prolonged period of time, they expose a wide range of differentially aged leaves to herbivores during the growing season. In this work, I show that young leaves of three Salicaceous species, Populus tremula L., Salix phylicifolia L. and S. pentandra L., contain more nitrogen than conspecific old leaves. In P. tremula and S. pentandra young leaves also contained more low-molecular weight secondary compounds, phenolic glucosides. Leaves of S. phylicifolia did not contain phenolic glucosides in detectable amounts. Furthermore, in P. tremula and S. pentandra young leaves contained less polymeric digestability-reducing phenolics, condensed tannins, than old leaves. In S. phylicifolia, higher concentrations of condensed tannins were found in young leaves. In laboratory feeding trials with six leaf beetle species, young leaves of the studied plants were invariably preferred in all tested herbivore × host species combinations. In particular, it is remarkable that three leaf beetle species with known different overall relationships to phenolic glucosides equally preferred more glucoside-containing young S. pentandra leaves over conspecific old ones. Four beetle species were found to prefer young leaves of S. phylicifolia despite the higher content of condensed tannins in young leaves. These results indicate that the general preference of leaf beetles for young leaves of Salicaceous plants probably does not primarily result from variable distribution of secondary compounds. Apparently, the preference for young leaves is fundamentally due to variation in leaf nutritive traits, such as nitrogen content. Received 9 February 2001.  相似文献   

19.
The total lipid and wax ester content as well as the fatty acid and alcohol composition of all copepodid stages and adults of Calanus finmarchicus s.l. were investigated at different locations in the North Sea in 1983 and 1984. Total lipid and the wax ester proportion increased exponentially until Copepodid V. The females were sometimes lower in lipids than the Stage V. The wax ester proportion reached about 90% of total lipids in males and Copepodid V and up to 40% in Copepodid I. The major fatty acids were 16:0, 20:5, and 22:6 and the major fatty alcohols were 16:0, 20:1 and 22:1. At one station the 18:4 acid became one of the dominant acids, because of a Phaeocystis sp. bloom, indicating that the fatty acids of the diet are incorporated mostly unchanged into the lipids of the copepods. The other main fatty acids 20:1 and 22:1 are probably synthesized de novo, serving as precursors for the principal alcohols 20:1 and 22:1. Their levels decreased in the younger stages due to increases in 16:0 alcohol. The fatty alcohol-forming enzyme seems to be specific for saturated and monounsaturated acids, which may be synthesized de novo or derived from diet.  相似文献   

20.
Surface sediments from the Svartnes basin (195 m deep) in Balsfjorden, northern Norway (ca. 70°N), were partially characterized to assess the nature and origin of the organic material present and its potential nutritive value for sediment-ingesting animals. Seasonal analyses were carried out on material collected between May 1979 and August 1980 for total organic matter, organic C and N, acid-extractable amino acids and lipids extractable with chloroform:methanol. Little or no seasonal variation was seen in any of the parameters analysed. The mean apparent organic content was 9.3% of sediment dry weight, the organic C content was 2.38%, the organic N content was 0.26% and the C:N ratio was 9.1:1. Acid hydrolysis of sediment yielded 575 mg of amino acids and 41 mg of NH3 per 100 g sediment dry weight, the composition of the amino acids being similar to that of nutritionally highquality animal or microbial protein. Glucoseamine was not detected in acid hydrolysates of sediment, consistent with the absence of chitin. Chloroform:methanol extraction yielded 133 mg of material per 100 g sediment dry weight, 62% of which was accounted for by saponifiable lipids (fatty acids) and non-saponifiable lipids present in approximately equal amounts. Fatty alcohols accounted for 30% of the non-saponifiable lipids and phytol accounted for 40% of the fatty alcohols. Small amounts of very long-chain fatty alcohols characteristic of terrestrial plants were present, but long-chain monounsaturated fatty alcohols characteristic of marine zooplankton were essentially absent. Very small quantities of long-chain ketones characteristic of marine coccolithophores were detected. The major fatty acids present in sediments were 16:0, 14:0, 16:1 (n-7) and 18:1 (n-9), and 11% of the total fatty acids were comprised of a mixture of odd-numbered straight-chain and branched-chain moieties characteristic of micro-organisms. The data point to small amounts of material characteristic of marine and terrestrial photosynthetic organisms being present in sediments at any given time, whereas material characteristic of marine zooplankton is not present. The presence of material characteristic of micro-organisms is consistent with conversion of sedimenting material into a pool of sediment micro-organisms. Although the biological availability to sediment-ingesting organisms of the esterified fatty acids and the acid-extractable amino acids in sediments remains to be assessed, the maximum amounts available are equivalent to approximately 60 mg of polar lipid and 575 mg of protein per 100 g sediment dry weight. These amounts are small in relation to the production rates in the photic zone of the fjord, implying that the bulk of the energy flow in Balsfjorden occurs in its relatively short pelagic food chains.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号