首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The photodegradation of aqueous solutions containing 0.2 mM methyl parathion has been studied through the optimization of the [H2O2]/[Fe3+] ratio in a Fe3+/H2O2/UV-C flow system of 1.3 L capacity. The decay kinetics and TOC abatement have been analyzed for the experiments performed at pH 3.0 and room temperature. All experiments lead to the total methyl parathion destruction after a few minutes, following a pseudo-first-order decay kinetics. Total mineralization can be reached after 120 min at the optimum ratio found, due to the synergistic effect of the very oxidizing hydroxyl radical (·OH) produced via the Fenton reagent and the effective photodecarboxylation at 253.7 nm.  相似文献   

2.
The photodegradation of atrazine and the photochemical formation of Fe(II) and H2O2 in aqueous solutions containing salicylic acid and Fe(III) were studied under simulated sunlight irradiation. Atrazine photolysis followed first-order reaction kinetics, and the rate constant (k) corresponding to the solution of Fe(III)-salicylic acid complex (Fe(III)-SA) was only 0.0153 h?1, roughly one eighth of the k observed in the Fe(III) alone solution (0.115 h?1). Compared with Fe(III) solution, the presence of salicylic acid significantly enhanced the formation of Fe(II) but greatly decreased H2O2 generation, and their subsequent product, hydroxyl radical (˙OH), was much less, accounting for the low rate of atrazine photodegradation in Fe(III)-SA solution. The interaction of Fe(III) with salicylic acid was analyzed using Fourier-transform infrared (FTIR) spectroscopy and UV-visible absorption, indicating that Fe(III)-salicylic acid complex could be formed by ligand exchange between the hydrogen ions in salicylic acid and Fe(III) ions.  相似文献   

3.
A titanium dioxide film on a graphite substrate was synthesized by chemical bath deposition from TiCl4 as precursor and with the surfactant cetyl trimethyl ammonium bromide as a linking and assembling agent. Silver was loaded on the TiO2 film by electrodeposition at 0.025?A. Water contaminated with Escherichia coli was disinfected under sunlight irradiation by photolysis (Lys), photocatalysis (PC), photoelectrocatalysis (PEC), and electrocatalysis (EC). The highest rate constant, k, was achieved with EC; k was 5.1?×?10?2 colony forming units (CFU) mL?1?min?1. However, auto-oxidation of Ag occurred during EC and PEC. Meanwhile, the rate constant of disinfection by means of PC was lower than EC and PEC, and k was 3.82?×?10?2 CFU?mL?1?min?1. Nevertheless, the auto-oxidation of Ag in the Ag–TiO2/graphite tablet did not occur during the disinfection process.  相似文献   

4.
To develop an effective method to remove the toxic and carcinogenic polycyclic aromatic hydrocarbons (CPAHs) from textile dyeing sludge, five CPAHs were selected to investigate the degradation efficiencies using ultrasound combined with Fenton process (US/Fenton). The results showed that the synergistic effect of the US/Fenton process on the degradation of CPAHs in textile dyeing sludge was significant with the synergy degree of 30.4. During the US/Fenton process, low ultrasonic density showed significant advantage in degrading the CPAHs in textile dyeing sludge. Key reaction parameters on CPAHs degradation were optimized by the central composite design as followed: H2O2 concentration of 152 mmol/L, ultrasonic density of 408 W/L, pH value of 3.7, the molar ratio of H2O2 to Fe2+ of 1.3 and reaction time of 43 min. Under the optimal conditions of the US/Fenton process, the degradation efficiencies of five CPAHs were obtained as 81.23% (benzo[a]pyrene) to 84.98% (benz[a]anthracene), and the benzo[a]pyrene equivalent (BaPeq) concentrations of five CPAHs declined by 81.22–85.19%, which indicated the high potency of US/Fenton process for removing toxic CPAHs from textile dyeing sludge.  相似文献   

5.
The kinetics of Cr(VI) reduction to Cr(III) by metallic iron (Fe0) was studied in batch reactors for a range of reactant concentrations, pH and temperatures. Nearly 86.8% removal efficiency for Cr(VI) was achieved when Fe0 concentration was 6 g/L (using commercial iron powder (< 200 mesh) in 120 min). The reduction of hexavalent chromium took place on the surface of the iron particles following pseudo-first order kinetics. The rate of Cr(VI) reduction increased with increasing Fe0 addition and temperature but inversely with initial pH. The pseudo-first-order rate coefficients (k obs) were determined as 0.0024, 0.010, 0.0268 and 0.062 8 min?1 when iron powder dosages were 2, 6, 10 and 14 g/L at 25°C and pH 5.5, respectively. According to the Arrehenius equation, the apparent activation energy of 26.5 kJ/mol and pre-exponential factor of 3 330 min?1 were obtained at the temperature range of 288–308 K. Different Fe0 types were compared in this study. The reactivity was in the order starch-stabilized Fe0 nanoparticles > Fe0 nanoparticles > Fe0 powder > Fe0 filings. Electrochemical analysis of the reaction process showed that Cr(III) and Fe(III) hydroxides should be the dominant final products.  相似文献   

6.
This paper describes a study of the treatment of surfactant synthetic solutions by chemical and photolytic oxidation. Synthetic solutions of linear alkylbenzene sulfonates (LAS) are treated in this work as this is a model compound commonly used in the formulation of detergents, with a great presence in urban and industrial waste-waters. The application of ultraviolet (UV) radiation combined with hydrogen peroxide to oxidize linear alkylbenzene sulfonates (LAS) is shown to be suitable as a primary oxidation step since conversions of about 50% of the original compounds are achieved in the most favorable cases. Initially, the influence of the operating variables on the degradation levels is analyzed in this work. A kinetic model that considers the contributions of both direct photolysis and radical attack is also worked out. Direct photolysis is performed to determine the quantum yield in the single photodecomposition reaction. In addition, the rate constant of the reaction between hydroxyl radicals and linear alkylbenzene sulfonates in the oxidizing system H2O2/UV is determined for different operational conditions. Finally, the contribution of each oxidation pathway is quantified, resulting in a higher contribution of the radical reaction than of photolysis in all cases.  相似文献   

7.
There is actually increasing concern about the accumulation of antibiotics, such as tetracycline, in soil and water bodies. There is therefore a need for efficient methods to degrade antibiotics and thus clean waters. Here we tested the degradation of tetracycline using the heterogeneous electro-Fenton-pyrite method and compared the results with the conventional electro-Fenton method. The reaction was performed with a boron-doped diamond or Pt anode and carbon-felt cathode allowing electrogeneration of H2O2 from O2 reduction. Results show an increasing tetracycline mineralization using the following methods: anodic oxidation with electrogenerated H2O2, electro-Fenton and then electro-Fenton-pyrite using boron-doped diamond. Ion-exclusion HPLC revealed the complete removal of malic malonic, succinic, acetic, oxalic and oxamic acids. Nitrogen present in tetracycline was mainly mineralized in NH4 +. The higher efficiency of electro-Fenton-pyrite is explained by self-regulation of soluble Fe2+ and pH to 3.0 from pyrite catalyst favoring larger ·OH generation from Fenton’s reaction.  相似文献   

8.
Four composites of metal oxide doped with activated carbon with a metal oxide weight of 20% were prepared using mechano-mixing method. The nano-catalysts were characterized by N2-adsorption–desorption, X-ray diffraction analysis, transmission electron microscopy, Fourier-transform infrared spectroscopy, UV-diffuse reflectance, and photoluminescence spectroscopy. Photo-catalytic degradation of methylene blue dye under UV 254 nm and visible light was examined. In general, prepared catalysts are more active for degradation of dye under visible light than UV, reaching 96% within 180?min irradiation using the SnO catalyst. Photo-degradation of methylene blue followed pseudo first order reaction mechanism with a rate constant of 14.8?×?10?3?min?1, and the time required for removal of 50% of dye was 47?min.  相似文献   

9.
This work is dedicated to the removal of free cyanide from aqueous solution by oxidation with hydrogen peroxide H2O2 catalyzed by neutral activated alumina. Effects of initial molar ratio [H2O2]0/[CN?]0, catalyst amount, pH, and temperature on cyanide removal have been examined. The presence of activated alumina has increased the reaction rate showing thus, a catalytic activity. The rate of removal of cyanides increases with rising initial molar ratio [H2O2]0/[CN?]0 but decreases at pH 10 to 12. Increasing the alumina amount from 1.0 to 30 g/L has a beneficial effect, and increasing the temperature from 20 °C to 35 °C improves cyanide removal. The kinetics of cyanide removal has been found to be of pseudo-first-order with respect to cyanide and the rate constants have been determined.  相似文献   

10.
Here we show that the photolysis of FeCl2+ upon UV irradiation of Fe(III) at pH 0.5, yielding Cl and then Cl2−•, upon further reaction with Cl, induces phenol degradation. The photolysis of FeCl2+ can be highlighted and studied as the huge interference by FeOH2+ can be avoided under such conditions. Our data allowed the assessment of a photolysis quantum yield for FeCl2+ of 5.8 × 10−4 under UVA irradiation, much lower compared to the literature value of 0.5. The discrepancy can be explained if the photolysis process is efficient but photoformed Fe2+ and Cl undergo recombination inside the solvent cage.  相似文献   

11.
Aqueous solutions of organophosphorus pesticides were completely mineralized via in-situ generated hydroxyl radicals (HO·) by the Electro-Fenton process. Formation of Fenton's reagent (H2O2, Fe2+) was carried out by simultaneous reduction of O2 and Fe3+ on carbon cathode in acidic medium. The electrochemistry combined with Fenton's reagent provides an excellent way to continuously produce the hydroxyl radical, a powerful oxidant. We demonstrate the efficiency of the Electro-Fenton process to degrade three organophosphorus insecticides: malathion, parathion ethyl and tetra-ethyl-pyrophosphate (TEPP). Degradation kinetics and removals of chemical oxygen demand (COD) have been investigated. Here we show that the mineralization efficiency was over 80% for three organophosphorus pesticides.  相似文献   

12.
The transformation of the fungicide carbendazim (methyl-2 benzimidazole carbamate) induced by hydroxyl radical generated by the UV photolysis of H2O2 has been studied in dilute aqueous solution. The efficient reaction of hydroxyl radicals with carbendazim led to the rapid degradation of carbendazim. The study of reaction kinetics yielded a second order rate constant of 2.2±0.3 109 M−1 s−1 for HO· radicals with carbendazim. This value is in agreement with a high reactivity of HO· radicals with carbendazim. Most degradation products were identified by high performance liquid chromatography mass spectrometry (HPLC-MS). In the presence of hydrogenocarbonate and carbonate ions, hydroxyl radicals were quenched and in turn carbonate radicals CO3 ·− were formed. Carbonate radicals are indeed known to react efficiently with compounds containing electron-rich sites such as nitrogen or sulfur atoms. The use of a kinetic modelling software gave evidence for the occurrence of such reactions with carbendazim. The second order rate constant of carbonate radical with carbendazim was equal to 6±2 106 M−1 s−1. Electronic Publication  相似文献   

13.
Singlet oxygen (1O2) and hydroxyl radical (·OH) play an important role in the degradation of pollutants in surface waters. However, the mechanism underlying the photochemical generation of 1O2 and ·OH in wastewaters is poorly known. Here we studied the photo-induced generation of 1O2 and ·OH in different sewage treatment plant units. The correlation between the generation of 1O2 and ·OH and the water constituents was discussed. Our results show that in sewage units the 1O2 formation rate ranges from 2.19 × 10?8 to 6.74 × 10?8 mol L?1 s?1, and the ·OH formation rate ranges from 1.7 × 10?11 to 3.06 × 10?10 mol L?1 s?1. The average 1O2 formation rates in the various sewage units are similar to those in wetland and estuarine waters containing rich dissolved organic matter and 2–4 times higher than those in lake and seawater samples. The average ·OH formation rates of the sewage units are 5–50 times higher than for other water samples reported. The ·OH generation rate increased with the iron content with a correlation coefficient of 0.85, which indicates that the photo-Fenton reaction plays a dominant role in ·OH generation in sewage wastewater.  相似文献   

14.
This article reports the first use of coupled electrocoagulation and electro-Fenton (EF-EC) to clean domestic wastewater. Domestic wastewater contains high amounts of organic, inorganic and microbial pollutants that cannot be usually treated in a single step. Here, to produce an effluent suitable for discharge in a single process step, a hybrid process combining electrocoagulation and electro-Fenton was simultaneously used to decrease chemical oxygen demand (COD), turbidity and total suspended solids (TSS) from domestic wastewater. The electrocoagulation–electro-Fenton process was firstly tested for the production of H2O2 using Ti–IrO2 and vitreous carbon- or graphite electrodes arranged at the anode and the cathode, respectively. The concentration of H2O2 recorded at 1.5 A of current intensity during 60 min of electrolysis using vitreous carbon- and graphite electrodes at the cathode was 4.18 and 1.62 mg L?1, respectively. By comparison, when the iron electrode was used at the anode, 2.05 and 1.06 mg L?1 of H2O2 were recorded using vitreous carbon and graphite, respectively. The H2O2 concentration decrease was attributed to hydroxyl radical formation generated by the Fenton reaction. Electro-Fenton using iron electrode at the anode and vitreous carbon at the cathode with a current density imposed of 0.34 A dm?2 ensures the removal efficiency of 50.1 % CODT, 70.8 % TSS and 90.4 % turbidity. The electrocoagulation–electro-Fenton technique is therefore a promising secondary treatment to simultaneously remove organic, inorganic and microbial pollutants from domestic, municipal and industrial wastewaters.  相似文献   

15.
Nowadays, the water ecosystem is being polluted due to the rapid industrialization and massive use of antibiotics, fertilizers, cosmetics, paints, and other chemicals. Chemical oxidation is one of the most applied processes to degrade contaminants in water. However, chemicals are often unable to completely mineralize the pollutants. Enhanced pollutant degradation can be achieved by Fenton reaction and related processes. As a consequence, Fenton reactions have received great attention in the treatment of domestic and industrial wastewater effluents. Currently, homogeneous and heterogeneous Fenton processes are being investigated intensively and optimized for applications, either alone or in a combination of other processes. This review presents fundamental chemistry involved in various kinds of homogeneous Fenton reactions, which include classical Fenton, electro-Fenton, photo-Fenton, electro-Fenton, sono-electro-Fenton, and solar photoelectron-Fenton. In the homogeneous Fenton reaction process, the molar ratio of iron(II) and hydrogen peroxide, and the pH usually determine the effectiveness of removing target pollutants and subsequently their mineralization, monitored by a decrease in levels of total organic carbon or chemical oxygen demand. We present catalysts used in heterogeneous Fenton or Fenton-like reactions, such as H2O2–Fe3+(solid)/nano-zero-valent iron/immobilized iron and electro-Fenton-pyrite. Surface properties of heterogeneous catalysts generally control the efficiency to degrade pollutants. Examples of Fenton reactions are demonstrated to degrade and mineralize a wide range of water pollutants in real industrial wastewaters, such as dyes and phenols. Removal of various antibiotics by homogeneous and heterogeneous Fenton reactions is exemplified.  相似文献   

16.
The photodegradation of Acid blue 74 in aqueous solution employing a H2O2/ultraviolet system in a photochemical reactor was investigated. The kinetics of decolorization were studied by application of a kinetic model. The results show that the reaction of decolorization followed pseudo-first order kinetics. We demonstrate that there is an optimum H2O2 concentration, at which the rate of the decolorization reaction is maximum. Irradiation at 253.7 nm of the dye solution in the presence of H2O2 results in complete discoloration after ten minutes of treatment.  相似文献   

17.
The degradation of selected chlorinated aliphatic hydrocarbons (CAHs) exemplified by trichloroethylene (TCE), 1,1-dichloroethylene (DCE), and chloroform (CF) was investigated with Fenton oxidation process. The results indicate that the degradation rate was primarily affected by the chemical structures of organic contaminants. Hydroxyl radicals (·OH) preferred to attack the organic contaminants with an electron-rich structure such as chlorinated alkenes (i.e., TCE and DCE). The dosing mode of Fenton’s reagent, particularly of Fe2+, significantly affected the degradation efficiency of studied organic compound. A new “time-squared” kinetic model, C = C o exp(?k obs t 2), was developed to express the degradation kinetics of selected CAHs. This model was applicable to TCE and DCE, but inapplicable to CF due to their varied reaction rate constants towards ?OH. Chloride release was monitored to examine the degree of dechlorination during the oxidation of selected CAHs. TCE was more easily dechlorinated thanDCE and CF.Dichloroacetic acid (DCAA) was identified as the major reaction intermediate in the oxidation of TCE, which could be completely removed as the reaction proceeded. No reaction intermediates or byproducts were identified in the oxidation of DCE and CF. Based on the identified intermediate, the reaction mechanism of TCE with Fenton’s reagent was proposed.  相似文献   

18.
In this study, FeVO4 was prepared and used as Fenton-like catalyst to degrade orange G (OG) dye. The removal of OG in an aqueous solution containing 0.5 g·L–1 FeVO4 and 15 mmol·L–1 hydrogen peroxide at pH 7.0 reached 93.2%. Similar rates were achieved at pH 5.7 (k = 0.0471 min–1), pH 7.0 (k = 0.0438 min–1), and pH 7.7 (k = 0.0434 min–1). The FeVO4 catalyst successfully overcomes the problem faced in the heterogeneous Fenton process, i.e., the narrow working pH range. The data for the removal of OG in FeVO4 systems containing H2O2 conform to the Langmuir–Hinshelwood model (R2 = 0.9988), indicating that adsorption and surface reaction are the two basic mechanisms for OG removal in the FeVO4–H2O2 system. Furthermore, the irradiation of FeVO4 by visible light significantly increases the degradation rate of OG, which is attributed to the enhanced rates of the iron cycles and vanadium cycles.
  相似文献   

19.
Photoelectro-Fenton was applied for the removal of acid yellow 36 (AY36) from synthetic aqueous solution using iron electrodes. A Box–Behnken design was used for optimization of the effects of pH, H2O2 concentration, current density, and reaction time. Individual effects of these variables were more important than their interaction effects. The derived model was in good agreement with the experimental results. Total organic carbon was determined in solution and sludge in order to clarify the removal mechanism. Increase of H2O2 concentration and current density led to domination of oxidation and coagulation mechanisms, respectively. The effects of scavenging and inhibiting agents were also investigated: (1) presence of alcohols can reduce the efficiency through competition with dye for reaction with hydroxyl radicals; (2) anions (NO3?, HCO3?, and H2PO4?) scavenged hydroxyl radicals and reduced decolorization of AY36.  相似文献   

20.
We show that the degradation of phenol by Fe(III) and hydrogen peroxide is faster in the presence of humic acids. This is most likely due to faster reduction of Fe(III)-humate complexes by H2O2/HO2·/O2–· when compared with Fe(III)-H2O complexes. The fact that humic acids, a major class of naturally occurring compounds, favour the Fenton reaction has great relevance in the field of water and soil decontamination, where organic compounds usually have a negative effect. Furthermore, it adds insight into the self-depuration processes of natural aquifers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号