首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
两株联合降解甲基一六○五菌的分离及其特性研究   总被引:2,自引:0,他引:2  
从农药厂污泥中分离得到一个降解甲基一六○五的混合菌群,该菌群由两种菌 M6 和 P3 组成,初步鉴定均为假单胞菌属( pseudmonas .sp) . M6 菌具有一硫代磷酸酯键水解酶,能够催化甲基一六○五水解为对硝基酚, P3 具有对硝基酚降解能力. M6 和 P3 各自均不能彻底矿化甲基一六○五. M6 与 P3 混和可以彻底降解甲基一六○五.质粒消除实验表明, S D S、吖啶橙( O A) 、丝裂霉素及几种消除剂混和处理均不能使 M6 和 P3 丧失一六○五水解和对硝基酚降解能力,质粒检测发现在 M6 中检测到质粒条带,而 P3 中未检测到质粒条带  相似文献   

2.
甲基对硫磷降解菌DLL-1的分离、鉴定及降解性研究   总被引:13,自引:0,他引:13  
从长期施用甲基对硫磷的污染土壤中分离到一株能以甲基对硫磷为唯一碳源生长且能将其完全矿化的细菌 D L L- 1 ,经鉴定,为邻单胞菌( Plesiomonas sp .) .该菌株3 h 内对50 mg/ L甲基对硫磷的降解率为93 % ,24h 内对50 mg/ L甲基对硫磷的降解率为95 % 以上.在葡萄糖铵盐培养基中, D L L1 对甲基对硫磷的耐受浓度和降解速度均增大.降解曲线表明延滞期内,菌体依靠上一生长阶段分泌的酶类对甲基对硫磷进行降解,一旦菌体开始生长,则检测不到中间代谢产物对硝基苯酚的存在.生长情况和粗酶液试验均显示 D L1 优良的降解性状  相似文献   

3.
The phenylurea herbicide diuron [N-(3,4-dichlorophenyl)-N,N-dimethylurea] is widely used alone or in a broad range of herbicide formulations. Its degradation in sugarcane-cultivated soils which have been impacted by the herbicide through repeated applications was studied. Liquid culture experiments with diuron as the only carbon source led to the isolation of different bacterial strains capable of degrading diuron. The bacterial species belonging to the genera Bacillus, Vagococcus, and Burkholderia, identified through biochemical and molecular characterization, degraded diuron to different extents. The isolated Bacillus cereus, Vagococcus fluvialis, Burkholderia ambifaria, and Bacillus spp1 degraded diuron by 21%, 25%, 22%, and 19% of the initially applied concentration of 40?mg?L?1, respectively, after 35 days of incubation in liquid culture media. Small amounts of 3,4-dichloroaniline and the de-methylated metabolite N-(3,4-dichlorophenyl)-N-methylurea were detected in liquid culture media. The combination of V. fluvialis and B. ambifaria showed an enhanced degradation of up to 30% of the initially applied concentration of 40?mg?L?1. Degradation by pure isolates was low (18–25%) compared to the capacities of diuron degradation shown by the bacterial communities (58–74%). This study showed the presence of diuron degraders in sugarcane-cultivated soils impacted by diuron due to repeated applications.  相似文献   

4.
Methyl parathion is an organophosphate insecticide that has been used in agriculture and the domestic sector for several years. This pesticide and others, arriving through different processes, exert significant effects on water quality with serious consequences for environmental and human health. The main objective of this study was to investigate the changes of Glutathione S-transferase enzyme activity in methyl parathion exposed rat tissues. For this purpose, wistar rats (Rattus norvegicus) were injected intraperitoneally with 7 mg kg?1 dose of methyl parathion, while corn oil was applied to control groups in the same way. The liver, kidneys, brain and small intestine were quickly removed after 0, 2, 4, 8, 16, 32, 64, and 72 hours of injection of methyl parathion and the glutathione S-transferase activity was determined in these tissues. As a result it was seen that glutathione S-transferase activity increases in all tissues in the group of male and female rats to which methyl parathion was given. The increase of glutathione S-transferase activity may be a result of methyl parathion's toxic effect because it is one of the most important enzymes of detoxification metabolism.  相似文献   

5.
Studies of adsorption of cadmium by free bacterial and free actinomycete cells, alginate beads and immobilised bacterial or actinomycete cells in alginate beads were performed in ultrapure water. The immobilisation in alginate beads allows the survival of the microorganisms in non-ideal conditions. Here, we found the following affinity for the cadmium ion: R25 free cells<alginate beads<R25 immobilised cells<ZAN 044 immobilised cells<ZAN 044 free cells, obtained with the b Langmuir parameter. The maximum uptakes gave the series: ZAN 044 free cells<ZAN 044 immobilised cells<R25 free cells<alginate beads<R25 immobilised cells.  相似文献   

6.
A total of 96 bacterial cultures were isolated from soil. Seventeen bacterial isolates were selected following their cultivation on solid media containing 100 mg · L?1 carbofuran as the sole source of carbon and nitrogen. Of the 17 isolates, 10F, 11M, 17N, 23B and 26M were specifically chosen because of their relatively higher growth efficiency and genetic diversity based on Box-polymerase chain reaction analysis. These bacterial cultures had 16S rRNA gene sequences that were most similar to Acinetobacter baumannii (10F), Agrobacterium tumefaciens (11M), Ochrobactrum anthropi (17N), Escherichia coli (23B) and Agrobacterium tumefaciens (26M) with 97, 95, 93, 95 and 94% similarity in their 16S rDNA gene sequence, respectively. Degradation rates of carbofuran in soil inoculated with these isolates were 1.9, 1.5, 1.6, 1.7 and 1.6 times, respectively, faster in comparison with uninoculated soil after 10 days of incubation. The maximum degradation rates of carbofuran (45 and 91%) were detected in soil inoculated with A. baumannii (10F) after 10 and 20 days’ incubation, respectively. These data indicate that these isolates may have the potential for use in bioremediation of pesticide contaminated soil.  相似文献   

7.
Biodegradability of the plant growth retardant paclobutrazol by a microbial consortium in which Pseudomonas was the predominant strain was investigated in batch culture. The consortium which had been isolated from an industrially contaminated sediment was proven to be useful for the treatment of effluents containing paclobutrazol. Paclobutrazol was degraded by the pure isolated strain of Pseudomonas sp. as well as the microbial consortium. Paclobutrazol was utilized as the sole source of carbon and energy. Sixty percent of the paclobutrazol was degraded by the microbial consortium from an initial concentration of 54 mg L?1 within 48 h and more than 98% of an initial concentration of 3.4 mg L?1 was degraded within 36 h. The optimum temperature and pH were determined to be 30°C and 7.0, respectively. A pure strain of a bacterium, isolated from the enrichment culture was identified as Pseudomonas sp. The microbial consortium was tolerant of high pH and could degrade paclobutrazol faster than the pure strain. The degradation rate of this plant growth regulator in an aerobic environment was greater than that under anaerobic conditions.  相似文献   

8.
A potential method to detoxify pesticides in aquatic system is using bioremediation. In this study, four microorganisms (Pseudomonas sp (EB11), Streptomyces sp. (EB12), Aspergillus niger (EB13) and Trichoderma viride (EB14) were isolated from cucumber leaves previously treated with cymoxanil using enrichment technique. These strains were evaluated for their potential to detoxify cymoxanil in aquatic system at the concentration level of 5×10?4M. The effect of pH and temperature on the growth ability of the tested strains was also investigated by measuring the intracellular protein and mycelia dry weight for bacterial and fungal strains, respectively. Moreover, the remaining toxicity of cymoxanil after 28 days of incubation with tested strains was evaluated to confirm the complete removal of any toxic materials (cymoxanil and its metabolites). The results showed that the optimum pH for the growth of cymoxanil degrading strains (bacteria and fungi) was 7. A temperature of 30°C appears to be the optimum for the growth of either fungal or bacterial strains. Pseudomonas sp. (EB11) was the most effective strain in cymoxanil degradation followed Streptomyces sp (EB12), Trichoderma viride (EB14) and Aspergillus niger (EB13), with half-lives of 4.33, 9.5, 17.3 and 24.7 days, respectively. The degradation of cymoxanil by bacterial strains was much faster than fungal one. There is no remaining toxicity of cymoxanil detected in aqueous media previously treated with Pseudomonas sp. (EB11) for 28 days. The results suggest that bioremediation by Pseudomonas sp. (EB11) are promising for the detoxification of cymoxanil in aqueous media.  相似文献   

9.
Biodegradation of α, β, γ and δ hexachlorocyclohexane (HCH) isomers was studied in broth medium and soil microcosm by Bacillus circulans and Bacillus brevis isolated from contaminated soil. Degradation of α and γ isomers by both the bacterial isolates was higher than thermodynamically stable β and δ isomers. However, B. circulans was found more effective than B. brevis for β and δ isomers. Maximum rate of degradation was recorded at 150 mg/L followed by 100 and 50 mg/L. Soil microcosm study revealed maximum degradation of HCH isomers in the treatment containing natural soil, pesticide and bacterial inocula than the treatment having sterilised soil, pesticide and bacterial isolates. Chloride release was positively co-related with HCH degradation in broth medium as well as in soil microcosm, suggesting that B. circulans and B. brevis hold promising potential by having efficient enzyme(s) required for dechlorination of HCH from contaminated sites.  相似文献   

10.
This article presents the results of laboratory studies of the influence of tetrazine derivatives on the growth kinetic parameters of soil bacteria. 3,6-Dihydrazinotetrazine (DHTz), 3,6- bis(3,5-dimethylpyrazol-1-yl)-dihydro-1,2,4,5-tetrazine (DMPDHT) and N,N′-bis(1,2,4,5-tetrazine-6-(3,5-dimethylpirazylo))hydrazine (BDMPT) were applied. 3,6-Dihydrazinetetrazine had the largest influence on the growth of bacteria, reflected in a significant lengthening of the lag-phase and a decrease in the specific growth rate. Dehydrogenase activity was also determined in bacterial cultures exposed to tetrazine derivatives. Dehydrogenases remained active even at DHTz concentrations of 80 mg · L?1, which completely inhibited bacterial growth. The compounds studied variously influence the kinetics of growth in the bacterial consortium; at the same time, they undergo biodegradation in soil by autochthonous microflora.  相似文献   

11.
In the present study arsenic contaminated simulated water and groundwater was treated by the combination of biological oxidation of tri-valent arsenite [As (III)] to penta-valent arsenate [As (V)] in presence of Acidothiobacillus ferrooxidans bacteria and its removal by adsorptive filtration in a bioreactor system. This method includes the immobilisation of A.ferrooxidans on Granulated Activated Carbon (GAC) capable of oxidising ferrous [Fe (II)] to ferric [Fe (III)]. The Fe (III) significantly converts the As (III) to As (V) and ultimately removed greater than 95% by the bed of GAC, limestone, and sand. The significant influence of Fe (II) concentration (0.1–1.5?gL?1), flowrate (0.06–0.18?Lh?1), and initial As (III) concentration (100–1000?µgL?1) on the arsenic removal efficiency was investigated. The simulated water sample containing the different concentration of As (III) and other ions was used in the study. The removal of other co-existing ions present in contaminated water was also investigated in column study. The concentration of arsenic was found to be <10?µgL?1 which is below Maximum Contaminant Level (MCL) as per WHO in treated water. The results confirmed that the present system including adsorptive-filtration was successfully used for the treatment of contaminated water containing As (III) ions.  相似文献   

12.
The reductive adsorption of hexavalent chromium (Cr6+) using six indigenous microorganisms isolated from contaminated soil and water samples was investigated. Quantification of Cr6+ reduction was determined using the 1,5-diphenylcarbazide method followed measuring the absorbance at OD540. Bacterial isolates identified as Klebsiella pneumoniae, Bacillus firmus and Mycobacterium sp. were capable of absorbing Cr6+ efficiently into their biomass, whereas the fungal isolates, Aspergillus flavus, Aspergillus sp. and A. niger were capable of transforming Cr6+ to Cr3+ relative to cell-wall-binding properties. Infrared spectral analysis of functional groups showed that ?OH, ?NH2 and C?O with conjugated ?NH were the binding groups responsible for adsorption of Cr6+ within the biomass of isolates. The data highlight the promising biotechnological application of these isolates in removing carcinogenic and mutagenic Cr6+ from contaminated ecosystems.  相似文献   

13.
The photodegradation of aqueous solutions containing 0.2 mM methyl parathion has been studied through the optimization of the [H2O2]/[Fe3+] ratio in a Fe3+/H2O2/UV-C flow system of 1.3 L capacity. The decay kinetics and TOC abatement have been analyzed for the experiments performed at pH 3.0 and room temperature. All experiments lead to the total methyl parathion destruction after a few minutes, following a pseudo-first-order decay kinetics. Total mineralization can be reached after 120 min at the optimum ratio found, due to the synergistic effect of the very oxidizing hydroxyl radical (·OH) produced via the Fenton reagent and the effective photodecarboxylation at 253.7 nm.  相似文献   

14.
This study was conducted to assess efficacy of biological control against bacterial leaf blight (BLB) of rice produced by Xanthomonas oryzae pv. oryzae. Five endophytic strains (A1, A2, A3, A13 and A15) and two rhizospherial Bacilli (D29 and H8) were tested for their antagonistic activities against BLB in vitro and in vivo. All seven strains showed high potential of antagonistic activity against X. oryzae pv. oryzae and three phytopathogenic fungi in vitro. Test of 16SrRNA gene sequence were assigned isolates A1, A3 and A13 as Bacillus amyloliquefaciens while isolates A2 and A15 as B. methylotrophicus and B. subtilis, respectively. In greenhouse, four strains of displayed 50.29%–57.86% inhibition rate against the pathogen and significantly increased plant fresh weight from 50.03% to 73.11% and dry weight from 64.11% to 86.65% in treated rice plants. In addition, these strains demonstrated strong capability to produce indole-3-acetic acid, siderophores, solubilizing phosphate and also colonize roots. Real-time quantitative polymerase chain reaction revealed that expression of defense-related genes including OsAOS2, OsJMT1, OsNPR1 and OsPR1b were significantly up-regulated in leaves of D29-exposed rice plants, suggesting that treatment of rice with D29 suppressed BLB through systemic activation of the plant defense system. Therefore, data suggest that Bacillus isolates A13, A15, D29 and H8 support effective antagonistic activity against BLB under greenhouse conditions in addition to their potential to promote growth of rice plants.  相似文献   

15.
Summary. The scope of this work was to examine whether leaf constitutive secondary metabolites play a role in determining bacterial colonization of the phyllosphere. To this aim, we surveyed nineteen native or cultivated plant species that share a common bacterial pool in a North Mediterranean area, and estimated the size of total and ice nucleation active (INA) bacterial populations on their leaves. Large differences in the colonization of their phyllosphere were found; the population size of epiphytic bacteria ranged from 7.5 × 102 to 1 × 106 CFU/g fresh weight, in eucalypt and celery, respectively. Species native in Mediterranean-type climate areas, particularly those belonging to the group of aromatic plants, are characterized by scarce presence of INA bacteria. The antibacterial activity of essential oils, surface phenolics and leaf tissue extracts was also estimated against the INA strains P. syringae and E. herbicola, isolated from two of these plant species. E. herbicola proved more sensitive than P. syringae. Of the species examined, oregano [Origanum vulgare L. subsp. hirtum (Link.) Ietswaart], an aromatic plant, had the highest antimicrobial activity, whereas six species showed no activity at all. Further experiments were performed with oregano and bean (Phaseolus vulgaris L.) that represent two extremes in their secondary metabolite content. Both plants were inoculated with P. syringae. By the end of incubation, the bacterial population on bean plants was about 100 times higher than that on oregano leaves. Scanning electron micrographs showed that bacterial growth on oregano leaves was confined to sites away from glandular hairs. Results from the bacterial colonization survey together with those from the toxicity tests showed that all species rich in antibacterial secondary metabolites harbored low leaf bacterial populations. These results provide substantial evidence that leaf secondary metabolites function as constitutive defense chemicals against microbial invasions. However, the fact that species with non- or moderately active leaf secondary metabolites are not always highly colonized suggests mediation of other unknown factors, the contribution of which requires further investigation.  相似文献   

16.
Monsoon flooding occurred in the main areas of the Khyber Pakhtunkhwa, Punjab, and Balochistan as well as parts of Gilgit Baltistan of Pakistan and Azad Jammu Kashmir in July 2010. Water-borne diseases such as cholera, enteric fever, and dysentery were common among the inhabitants of flood-affected areas which were selected for sample collection. In the present study, 10 sites in District Peshawar were selected and drinking water samples collected. These samples were analyzed for the total plate count (TPC), total coliform bacteria (TCB), total fecal coliform bacteria (TFCB), Escherichia coli (EC), Pseudomonas aeruginosa (PA), Vibrio cholerae (VB), Salmonella Shigella, and Staphylococcus aureus. The TPC ranged from 8 × 101 to 7 × 104 CFU/ml. The TCB ranged from <1.1 to 280 MPN/100 ml. Twenty percent of the samples were contaminated with TFCB, EC, Salmonella, Shigella, and Staphylococcus aureus, while only one sample contaminated with PA. Forty percent of the samples were contaminated with VB. The surface and well water was greatly contaminated by flooding and major improvements on priority basis are essential.  相似文献   

17.
Extracts of 39 species of Caribbean gorgonians were tested for antimicrobial activity against 15 strains of marine bacteria. The bacteria consisted of three opportunistic pathogens, Vibrio parahaemolyticus, Leucothrix mucor, and Aerococcus viridans, and 12 strains isolated from either healthy or decayed gorgonians. Overall, only 15% (79 out of 544) of the tests resulted in antibacterial activity with 33% (13 out of 39) of the gorgonians inhibiting only one bacterial strain and 23% (9 out of 39) showing no activity. The extracts of four Pseudopterogorgia species showed relatively high levels of activity, inhibiting 43 to 86% of the bacterial strains. The potency of the active Pseudopterogorgia species was variable, however, and three additional Pseudopterogorgia species were inactive against all bacterial strains. With the exception of one sensitive strain, Vibrio species were resistant to gorgonian metabolites. Our results indicate that organic extracts of most Caribbean gorgonians do not possess potent, broad-spectrum antibacterial activity inhibitory to the growth of opportunistic marine pathogens and bacteria associated with healthy and decayed gorgonian surfaces. These findings suggest that the inhibition of bacterial growth is not the primary ecological function of gorgonian secondary metabolites and that bacteria may not be important selective agents in the evolution of gorgonian secondary chemistry.  相似文献   

18.
Boron is an essential micronutrient for plants, but can above certain concentrations be toxic to living organisms. A major environmental concern is the removal of boron from contaminated water and fly ash. For this purpose, the samples were collected from a fly ash dumping site, Nagasaki prefecture, Japan. The chemical characteristics and heavy metal concentration of the samples were performed by X-ray fluorescent analysis and leaching test. For bacterial analysis, samples were collected in sterile plastic sheets and isolation was carried out by serial dilution method. The boron tolerant isolates that showed values of maximum inhibitory concentration toward boron ranging from 100 to 260 mM level were screened. Based on 16S rRNA sequencing and phylogenetic analysis, the isolates were most closely related to the genera Bacillus, Lysinibacillus, Microbacterium and Ralstonia. The boron tolerance of these strains was also associated with resistant to several heavy metals, such as As (III), Cr (VI), Cd, Cu, Pb, Ni, Se (III) and Zn. Indeed, these strains were arsenic oxidizing bacteria confirmed by silver nitrate test. These strains exhibited their salt resistances ranging from 4 to 15 % were determined in Trypticase soy agar medium. The boron tolerant strains were capable of removing 0.1–2.0 and 2.7–3.7 mg l?1 boron from the medium and fly ash at 168 h. Thus, we have successfully identified the boron tolerant and removal bacteria from a fly ash dumping site for boron remediation.  相似文献   

19.
The growth of Antarctic Phaeocystis pouchetii and associated bacteria in culture, and the binding and release of manganese were investigated using cultures derived from three clonal isolates collected from Prydz Bay, Antarctica, in November and December 1982. The cultured strains accumulated manganese from the culture medium. The concentration of Mn2+ in the alga was up to 58 times that of the medium. The Mn2+ apparently binds to the mucilage secreted by the cells and gives the alga its characteristic brown colour. Oxidation or complexing of Mn2+ by P. pouchetii was also indicated. Bacterial growth on the mucilage is inhibited in rapidly growing cultures by acrylic acid produced in the mucilage. Once the growth of P. pouchetii and production of ccrylic acid slow, bacterial numbers increase, leading to the solubilization of the mucilage and the release of Mn2+. In cool-temperate, subpolar and polar seas where P. pouchetii may form dense blooms, the binding and subsequent release of manganese may have important consequences for competing phytoplankton.  相似文献   

20.
A total of 35 bacterial strains were isolated from the industrially polluted Cuddalore coast, on the southeast coast of India. Of these, 17 strains were cadmium resistant and the remainder were sensitive. Six strains (C-1, C-8, C-10, C-12, C-14 and N-1) were selected based on high levels of cadmium tolerance (>150 mg L?1) and were termed highly cadmium-resistant bacteria (HCRB). These HCRB were identified on the basis of morphological, biochemical and partial sequencing of their 16S rRNA genes. The antibiotic-susceptibility patterns and minimum inhibitory concentrations (MIC) of different metals (Cu2+, Pb2+ and Zn2+) against each HCRB were determined. Among the isolates, C-14 showed high degrees of metal and antibiotic resistance compared with other HCRB. Growth rates of HCRB at two different Cd2+ concentrations (50 and 100 mg L?1) and under different metal conditions (Cd2+, Cu2+ and Pb2+) were also investigated. HCRB growth rates were lower in the metal-treated condition than in the untreated condition. Isolates C-14 and N-1 removed>80% of Cd2+ from cadmium-treated broth. However, isolate C-14 removed 92.3% of Cd2+ compared with 86.5% for isolate N-1. Bacteria showing residual growth rates under metal stress conditions might be useful in metal removal applications under growing conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号