首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 718 毫秒
1.
A simple system of shadow cinematography, consisting of a small tungsten halogen lamp, 2 large biconvex lenses and a 16 mm camera, is described for recording the swimming and feeding behaviour of larval fish. The system can be used either with infra-red film to record swimming behaviour independently of ambient light intensity, or with high-resolution film to record food organisms and feeding behaviour. Small plankton organisms of 0.2 mm width can be resolved using high-resolution film. The technique has been used to record the behaviour of plaice larvae (Pleuronectes platessa L.) feeding on the nauplii of Artemia salina L. The perceptive field of the larvae extends to approximately ±60° in azimuth, ±40° in elevation and 1.5 body lengths in range.  相似文献   

2.
P. Munk 《Marine Biology》1995,122(2):205-212
Fish larvae meet diverse environmental conditions at sea, and larval growth and chance of survival depend on a flexible response to environmental variability. The present study focuses on the flexibility of the foraging behaviour of larval cod in a series of laboratory experiments on larval search activity, prey selectivity, and hunger in a variable prey environment. Gadus morhua eggs were collected in March 1992 and 1993 from the Kattegat area, Denmark, fertilised and incubated in the laboratory. After hatching, the larvae were transferred to rearing tanks of 172 litres. The behaviour of larvae (6 to 7 mm long) was observed visually, and prey attacks, swimming activity and gut contents were registered across a range of 1 to 120 copepod nauplii l-1. When prey density decreased, larvae increased their swimming activity, increased their responsiveness to prey (distance of reaction) and decreased their prey size selectivity. Behavioural response was to a large degree determined by the level of hunger, represented by the number of newly ingested prey in the gut. The findings show that cod larvae have a flexible response to changes in feeding conditions and imply that larvae can grow and survive even in the lower range of (mean) prey densities measured at sea.  相似文献   

3.
Food limitation is likely to be a source of mortality for fish larvae in the first few weeks after hatching. In the laboratory, we analyzed all aspects of foraging in cod larvae (Gadus morhua Linnaeus) from 5 to 20 d post-hatching using protozoa (Balanion sp.) and copepod nauplii (Pseudodiaptomus sp.) as prey. A camera acquisition system with two orthogonal cameras and a digital image analysis program was used to observe patterns of foraging. Digitization provided three-dimensional speeds, distances, and angles for each foraging event, and determined prey and fish larval head and tail positions. Larval cod swimming speeds, perception distances, angles, and volumes increased with larval fish size. Larval cod swam in a series of short intense bursts interspersed with slower gliding sequences. In 94% of all foraging events prey items were perceived during glides. Larval cod foraging has three possible outcomes: unsuccessful attacks, aborted attacks, and successful attacks. The percentage of successful attacks increased with fish size. In all larval fish size classes, successful attacks had smaller attack distances and faster attack speeds than unsuccessful attacks. Among prey items slowly swimming protozoans were the preferred food of first-feeding cod larvae; larger larvae had higher swimming speeds and captured larger, faster copepod nauplii. Protozoans may be an important prey item for first-feeding larvae providing essential resources for growth to a size at which copepod nauplii are captured. Received: 20 April 1999 / Accepted: 12 January 2000  相似文献   

4.
An infra-red sensitive video-recording technique was used to study the effects of darkness and light intensities from 0.0001 to 270 photopic lx on the feeding behaviour of herring (Clupea harengus L.). When offered natural zooplankton, consisting of a mixture ofCalanus finmarchicus, Euchaeta norvegica, Oithona similis, Balanus sp. nauplii, and crustacean nauplii as prey, the fish fed by biting (snapping) at light intensities above a threshold of 0.001 lx and were size-selective, taking the larger organisms first. When fed on pure cultures of CaliforniaArtemia sp. nauplii (San Francisco Bay brand), the threshold light intensity was 0.01 lx. Swimming speed increased with increasing light intensity when the fish were actively feeding by biting. When the fish were filter-feeding on high densities ofArtemia sp. nauplii in the light, they continued to school and swimming speed was not related to light intensity.  相似文献   

5.
To examine the impact of development rate on swimming performance, escape response, and morphology, yolk-sac larvae of American plaice (Hippoglossoides platessoides, Fabricius) were reared at two temperatures (5 and 10 °C). Videomicroscopy and silhouette collimation videography were used to examine swimming, escape behaviour, and morphology (standard length, finfold area, and yolk-sac area) of individual larvae. Larvae were examined from 0 d post hatch (dph) to 14 dph for the 5 °C treatment group and from 0 to 6 dph for the 10 °C treatment group (3 August to 17 August 1996). Since larvae were not fed, yolk-sac reserves were essentially exhausted by 14 and 6 dph for the 5 and 10 °C treatment groups, respectively. To control for the effect of testing temperature on behaviour, larvae from each temperature treatment were tested at both 5 and 10 °C. Testing temperature had an effect on some swimming parameters but not on escape response. Swimming performance, escape response, and morphology varied with age, while only morphology and escape response varied with development rate. Morphology and swimming performance, and morphology and escape response were found to be correlated as determined by canonical correlation. This study suggests that both types of swimming behaviours should be examined when developing models of the impacts of predation on the early life history of larval fish. Received: 13 September 1999 / Accepted: 21 June 2000  相似文献   

6.
Larvae of many sessile marine invertebrates settle in response to surface microbial communities (biofilms), but the effects of soluble compounds from biofilms in affecting larval behavior prior to settlement, attachment, and metamorphosis have been little studied. This question was addressed by videotaping the behavior of competent larvae of the serpulid, Hydroides elegans, above settlement-inducing biofilms. Adult worms were collected in Pearl Harbor, Hawaii, USA in November 2012 and spawned almost immediately. Six-day old larvae were placed in five replicated treatments in small cups: (1) with a natural biofilm; (2) with a natural biofilm on an 8-µm screen, 1 mm above the bottom of a clean cup; (3) with a natural biofilm beneath a clean screen; (4) in a clean cup; and (5) in a clean cup with a clean screen. Using the videotapes, larval swimming speeds and trajectories were quantified within 5 min of the larvae being placed in a treatment. Only larvae that touched a biofilm, i.e., in treatments (1) and (2), slowed their swimming speed and increased the amount of time spent crawling rather than swimming. This shows that under these conditions, any soluble cues emanating from a biofilm do not affect settlement behavior. Furthermore, after 24 h close to 100 % of larva in the two accessible biofilm treatments had metamorphosed and <15 % in treatments that included a biofilm under a clean screen and no biofilm at all, strongly suggesting that soluble cues for settlement were not produced by the biofilms over the longer time period.  相似文献   

7.
R. S. Batty 《Marine Biology》1987,94(3):323-327
Larvae of Clupea harengus were reared from spawning herring caught in March 1982 and 1983 in the Firth of Clyde, Scotland. An infra0red observation technique was used to record the behaviour of larval herring both in shallow dishes using a top view and in a tank 2 m deep using a side view. The amount of time larvae spent swimming, which was minimum in complete darkness, increased with increasing light intensity and as the larvae grew. Maximum swimming speeds of feeding larvae were recorded at light intensities between 10 and 100 lux. The presence of food organisms (Artemia sp., Brazilian strain) at light intensities below the feeding threshold (0.1 lux) caused an increase in the proportion of time spent active, but light intensities above the threshold had different effects, depending on developmental stage: larvae of 12 mm increased swimming speed, but 21 mm larvae decreased speed. In the 2 m deep tank in darkness, larvae displayed inactive periods wherein they sank head first, interspersed with periods of upward swimming. As light intensity increased, vertical swimming was replaced by horizontal swimming. These results are discussed with reference to food searching and vertical migration of larval herring in the sea.  相似文献   

8.
The stage I zoeae of Ebalia tuberosa swam by sculling with the exopodites of the 1st and 2nd maxillipeds and flexed the abdomen to brake or change direction. The larvae gained depth by stopping all natatory movements and sinking passively at rates of 6 mm s-1. The zoeae refused both living and dead nauplii of Artemia spp., as well as two species of diatoms, but fed readily on detritic material on the bottom which they scooped up using the endopodites of the maxillipeds and pressed against the mouthparts using the telson. The setae on the posterior border of the telson were used for grooming the maxillipeds and the anterior mouthparts. Day-old stage I zoeae were negatively geotactic, positively phototactic and responded to pressure increases by swimming upwards and by high barokinesis. By the third day some larvae had become positively geotactic but were photopositive, and the majority responded to pressure increases as in the day-old larvae. Five-day old larvae were still photopositive but the majority had become positively geotactic and fewer himbers responded to pressure. Seven-day old larvae failed to respond to any of the stimuli used and assumed a predominantly benthic lifestyle. It is suggested that this anomalous behaviour is related to the dispersal of the larvae and to the specialized habitat requirements of the adults while the rather unusual morphology of the larvae is related to their feeding behaviour and semi-benthic lifestyle.  相似文献   

9.

Background

Due to the rising number of type 2 diabetes patients, the antidiabetic drug, metformin is currently among those pharmaceuticals with the highest consumption rates worldwide. Via sewage-treatment plants, metformin enters surface waters where it is frequently detected in low concentrations (µg/L). Since possible adverse effects of this substance in aquatic organisms have been insufficiently explored to date, the aim of this study was to investigate the impact of metformin on health and development in brown trout (Salmo trutta f. fario) and its microbiome.

Results

Brown trout embryos were exposed to 0, 1, 10, 100 and 1000 µg/L metformin over a period from 48 days post fertilisation (dpf) until 8 weeks post-yolk sac consumption at 7 °C (156 dpf) and 11 °C (143 dpf). Chemical analyses in tissues of exposed fish showed the concentration-dependent presence of metformin in the larvae. Mortality, embryonic development, body length, liver tissue integrity, stress protein levels and swimming behaviour were not influenced. However, compared to the controls, the amount of hepatic glycogen was higher in larvae exposed to metformin, especially in fish exposed to the lowest metformin concentration of 1 µg/L, which is environmentally relevant. At higher metformin concentrations, the glycogen content in the liver showed a high variability, especially for larvae exposed to 1000 µg/L metformin. Furthermore, the body weight of fish exposed to 10 and 100 µg/L metformin at 7 °C and to 1 µg/L metformin at 11 °C was decreased compared with the respective controls. The results of the microbiome analyses indicated a shift in the bacteria distribution in fish exposed to 1 and 10 µg/L metformin at 7 °C and to 100 µg/L metformin at 11 °C, leading to an increase of Proteobacteria and a reduction of Firmicutes and Actinobacteria.

Conclusions

Overall, weight reduction and the increased glycogen content belong to the described pharmaceutical effects of the drug in humans, but this study showed that they also occur in brown trout larvae. The impact of a shift in the intestinal microbiome caused by metformin on the immune system and vitality of the host organism should be the subject of further research before assessing the environmental relevance of the pharmaceutical.
  相似文献   

10.
Determining the scale of larval dispersal and population connectivity in demersal fishes is a major challenge in marine ecology. Historically, considerations of larval dispersal have ignored the possible contributions of larval behaviour, but we show here that even young, small larvae have swimming, orientation and vertical positioning capabilities that can strongly influence dispersal outcomes. Using young (11–15 days), relatively poorly developed (8–10 mm), larvae of the pomacentrid damselfish, Amblyglyphidodon curacao (identified using mitochondrial DNA), we studied behaviour relevant to dispersal in the laboratory and sea on windward and leeward sides of Lizard Island, Great Barrier Reef. Behaviour varied little with size over the narrow size range examined. Critical speed was 27.5 ± 1.0 cm s−1 (30.9 BL s−1), and in situ speed was 13.6 ± 0.6 cm s−1. Fastest individuals were 44.6 and 25.0 cm s−1, for critical and in situ speeds, respectively. In situ speed was about 50% of critical speed and equalled mean current speed. Unfed larvae swam 172 ± 29 h at 8–10 cm s−1 (52.0 ± 8.6 km), and lost 25% wet weight over that time. Vertical distribution differed between locations: modal depth was 2.5–5.0 and 10.0–12.5 m at leeward and windward sites, respectively. Over 80% of 71 larvae observed in situ had directional swimming trajectories. Larvae avoided NW bearings, with an overall mean SE swimming direction, regardless of the direction to nearest settlement habitat. Larvae made smaller changes between sequential bearings of swimming direction when swimming SE than in other directions, making it more likely they would continue to swim SE. When swimming NW, 62% of turns were left (more than in other directions), which would quickly result in swimming direction changing away from NW. This demonstrates the larvae knew the direction in which they were swimming and provides insight into how they achieved SE swimming direction. Although the cues used for orientation are unclear, some possibilities seemingly can be eliminated. Thus, A. curacao larvae near Lizard Island, on average swam into the average current at a speed equivalent to it, could do this for many hours, and chose different depths in different locations. These behaviours will strongly influence dispersal, and are similar to behaviour of other settlement-stage pomacentrid larvae that are older and larger.  相似文献   

11.
Nanoparticles (NPs) contained in commercial products are released and enter into the aquatic ecosystem, posing serious possible risks to the environment and affecting the food chain. Therefore, investigating the potential toxicity of NPs on aquatic organisms has become an important issue. This study assessed the toxicity and trophic transfer of metal oxide NPs from marine microalgae (Cricosphaera elongata) to the larvae of the sea urchin Paracentrotus lividus. Larvae (24 h old) were fed on 2000 cell mL?1 48 h of microalgae contaminated with 5 mg L?1 of several metal oxide NPs (SiO2, SnO2, CeO2, Fe3O4) for 15 days. Larval viability and development were monitored from the 4-arm stage to the 8-arm pluteus stage. A significant decrease in survival was observed in larvae fed with microalgae exposed to SiO2 and CeO2 NPs. Abnormal development, characterised by skeletal degeneration and altered rudiment growth, was observed in all larvae fed with contaminated NP algae. Our findings revealed that SiO2 and CeO2 NPs exerted a toxic effect in the trophic interaction analysed, by reducing sea urchin larval viability, and all metal oxide NPs induced toxicological effects. In conclusion, metal oxide NPs may enter the food chain and become bioavailable for marine organisms, affecting their development.  相似文献   

12.
Food selection by young larvae of the gulf menhaden (Brevoortia patronus) was studied in the laboratory at Beaufort, North Carolina (USA) in 1982 and 1983; this species is especially interesting, since the larvae began feeding on phytoplankton as well as microzooplankton. When dinoflagellates (Prorocentrum micans), tintinnids (Favella sp.), and N1 nauplii of a copepod (Acartia tonsa) were presented to laboratory-reared, larval menhaden (3.9 to 4.2 mm notochord length), the fish larvae ate dinoflagellates and tintinnids, but not copepod nauplii. Larvae showed significant (P<0.001) selection for the tintinnids. Given the same mixture of food items, larger larvae (6.4 mm notochord length) ate copepod nauplii as well as the other food organisms. These feeding responses are consistent with larval feeding in the northern Gulf of Mexico, where gulf menhaden larvae between 3 and 5 mm in notochord length frequently ate large numbers of dinoflagellates (mostly P. micans and P. compressum) and tintinnids (mostly Favella sp.), but did not eat copepod nauplii. As larvae grew, copepod nauplii and other food organisms became important, while dinoflagellates and tintinnids became relatively less important in the diet. Since the tintinnids and nauplii used in the laboratory feeding experiments were similar in size as well as carbon and nitrogen contents, the feeding selectivity and dietary ontogeny that we observed were likely due to a combination of prey capturability and larval fish maturation and learning.Contribution No. 5575 of the Woods Hole Oceanographic Institution  相似文献   

13.
Survival, developmental and consumption rate (Artemia nauplii ingested per day) as well as predation efficiency (ingested per available Artemia nauplii) were studied during the larval development of the shallow-water burrowing thalassinid Callianassa tyrrhena (Petagna, 1792), which exhibits an abbreviated type of development with only two zoeal stages and a megalopa. The larvae, hatched from berried females from S. Euboikos Bay (Aegean Sea, Greece), were reared at 10 temperature–food density combinations (19 and 24 °C; 0, 2, 4, 8 and 16 Artemia nauplii d−1). Enhanced starvation resistance was evident: 92 and 58% of starved zoeas I molted to zoea II, while metamorphosis to megalopa was achieved by 76 and 42% of the hatched zoeas at 19 and 24 °C, respectively. The duration of both zoeal stages was affected by temperature, food density and their interaction. Nevertheless, starvation showed different effects at the two temperatures: compared to the fed shrimp, the starved zoeae exhibited accelerated development at 19 °C (8.4 d) but delayed metamorphosis at 24 °C (5.9 d). On the other hand, both zoeal stages were able to consume food at an increased rate as food density and temperature increased. Predation efficiency also increased with temperature, but never exceeded 0.6. Facultative lecithotrophy, more pronounced during the first zoeal stage of C.tyrrhena, can be regarded as an adaptation of a species whose larvae can respond physiologically to the different temperature–food density combinations encountered in the wide geographical range of their natural habitat. Received: 28 February 1998 / Accepted: 21 October 1998  相似文献   

14.
The swimming behaviour of newly hatched turbot (Scophthalmus maximus L.) larvae was observed in artificial seawater (ASW) and in solutions of 21 l-amino acids at a concentration of 10−5M. The behaviour of 20 larvae was analysed in each solution. Each larva was observed for 1 min. Individual movements were recorded on video and analysed using a computer-assisted program. The larvae swam in convoluted, randomised three-dimensional paths, rested and started swimming again. There were large variations in the swimming behaviour of turbot larvae during ontogeny. In ASW the mean frequency of trajectories longer than a body length of 4 mm larva−1 min−1 increased from 1.2 at Day 1, to 10 at Day 4. Analysing the data (Dunnett's method) revealed that the frequency of swimming trajectories increased in the presence of glycine, histidine and glutamine, and decreased in the presence of proline. The total distance swum increased for glycine but decreased for proline. The threshold concentration for glycine detected by turbot larvae was 10−5M. The straightness index did not change in the presence of the amino acids. The possible role of these changes in behaviour is discussed. Received: 12 June 1997 / Accepted: 13 January 1998  相似文献   

15.
The extent to which behaviour affects the dispersal of pelagic larvae in reef fishes has been a topic of major discussion among marine ecologists. Here, we experimentally quantified the extent to which the displacement of late-stage larvae of Abudefduf saxatilis is due to active movement (i.e. swimming) and drifting. We consider drifting as the component of larval displacement accounted for by the current. Drifting was quantified by comparing larval displacement to the displacement of passive particles in an extended flow chamber that gave larvae the free choice of swimming (i.e. swim with or against the current or not swim at all). We also determine whether drifting results from currents exceeding larval swimming capabilities or from the behavioural choice of larvae of not to swim against adverse currents. To do this, we compare the speeds of larval swimming in the extended flow chamber to those obtained in a smaller chamber in which larvae are behaviourally forced to swim due to space constraints and a retaining fence (most available data on larval swimming is based on this sort of chamber). Within the extended chamber, larvae tended to face the current and swim slower than it. This resulted in a net displacement increasingly determined by drifting. We also found that in the extended chamber, larvae swam at speeds between one and six times slower than the speeds they achieved in the “behaviourally modifying” smaller chamber. This suggests that the net displacement in the extended chamber was in part due to the behavioural choice of the larvae of not to swim. The importance of this “behavioural drifting” is discussed in terms of energy savings required for successful completion of the larval period and post-settlement survival. The idea that larvae may modulate their swimming behaviour raises caution for the use of published data regarding swimming capabilities of reef fish larvae when assessing the extent to which these fish actively affect their dispersal.  相似文献   

16.
The aim of this study is to measure the effects of two selective serotonin reuptake inhibitors, fluoxetine and sertraline, and one selective serotonin and norepinephrine reuptake inhibitor, venlafaxine, on the swimming and lateralization behaviour of Sclerophrys arabica tadpoles exposed to predator alarm cues. Tadpoles were exposed to the three pharmaceuticals either at 0.5 µg/L or 2.0 µg/L, either individually or as a mixture for 14 days. Control tadpoles and those exposed to high concentration of drugs individually or as a mixture, and those exposed to the low-concertation mixture reduced their swimming speed. Tadpoles exposed to 0.5 µg/L fluoxetine or venlafaxine did not respond to the alarm cues. Tadpoles exposed to the mixture had similar responses to that of the control. Results indicate that these drugs have an additive mode of action. Tadpoles exposed to the low-concentration mixture increased lateralization of movement.  相似文献   

17.
For nearly a century researchers have investigated the uptake and utilization of dissolved organic matter (DOM) by marine invertebrates, but its contribution to their growth, reproduction, and survival remains unclear. Here, the benefit of DOM uptake was assessed for the marine bryozoan Bugula neritina (Linnaeus 1758) through performance comparisons of individuals in the presence and absence of DOM. The experiments were performed using B. neritina collected from floating docks in Beaufort, NC, USA from July to September 2004. Seawater was subjected to ultraviolet irradiation to reduce naturally occurring DOM, and then enriched with either 1 μM of palmitic acid or a mixture containing 1 μM each of glucose, alanine, aspartic acid and glycine. Larvae in DOM-enriched and DOM-reduced treatments were sampled and induced to metamorphose following 1, 6, 12, and 24 h of continuous swimming at 25°C. Sampled larvae were assessed for initiation of metamorphosis, completion of metamorphosis, and ancestrular lophophore size to determine the extent to which energy acquired from DOM uptake could offset the metabolic costs of prolonged larval swimming. DOM treatment had no significant effect on initiation of metamorphosis, but did have a significant effect on completion of metamorphosis and lophophore size. Larvae swimming in DOM-enriched treatments for 24 h experienced a 20% increase in metamorphic completion rate, compared to larvae swimming for 24 h in the DOM-reduced treatment. In addition, larvae in the amino acid and sugar mixture for 24 h had a significantly larger lophophore surface area and volume (23 and 31%, respectively), compared to larvae in DOM-depleted seawater. To ensure that the increases in performance found in larvae with access to DOM were not due to a decrease in metabolic activity, the respiration rates for these larvae were compared to those of larvae in DOM-depleted seawater. There were no significant differences between these treatments, indicating that the increases in performance were due to the energy acquired from DOM. These results clearly show that for B. neritina, DOM uptake results in increased metamorphic success and in the size of the feeding apparatus following an extended larval swimming duration.  相似文献   

18.
J. M. Last 《Marine Biology》1978,45(4):359-368
An examination was made of the stomach contents of the larvae of the plaice Pleuronectes platessa Linnaeus, 1758; the flounder Platichthys flesus (Linnaeus, 1758), the dab Limanda limanda (Linnaeus, 1758), and the sole Solea solea (Linnaeus, 1758) collected in the eastern English Channel and in the Southern Bight during the winter and spring of 1971. These 4 species of flat fish have distinct diets, and competition for food between them is largely avoided. Plaice larvae fed almost exclusively on Oikopleura dioica; flounder larvae also ate O. dioica, but in addition a wide range of planktonic organisms including phytoplankton, polychaete larvae, lamellibranch larvae, and copepod nauplii. Dab larvae fed mainly on the nauplii and copepodite stages of a variety of copepods, but particularly of Temora longicornis. Some T. longicornis copepodites and polychaete larvae were eaten by sole larvae, but the principal prey of these was lamellibranch larvae. The larvae of all the species began to feed in the yolk-sac stage; the initial food of all except plaice consisted of dino-flagellates, followed by tintinnids and copepod nauplii. Feeding began at dawn and the number of feeding fish and the number of food organisms in their stomachs increased throughout the day to a maximum near sunset. There were no consistent differences between the two areas in the diets of any of the species.  相似文献   

19.
Competent cyprid larvae of the barnacle Balanus amphitrite Darwin were prevented from metamorphosing in the laboratory for 3 or 5 d using three different techniques (holding at low temperature, crowding, and detaining on a silanized surface). We then assessed the effects of prolonging larval life on post-metamorphic growth and survival, in comparison with control individuals that metamorphosed soon after they were competent to do so. Seven experiments were conducted over 2 yr (July 1987 to September 1989). In all experiments (each with six replicates per treatment), postponing larval metamorphosis for 3 or 5 d dramatically depressed postmetamorphic growth rate (P<0.05), although metamorphic success and post-metamorphic survival were not affected (P>0.10). The results suggest that B. amphitrite cyprids deferring their metamorphosis in the field may be less successful in competing for space, at least during the first few weeks of postlarval life.  相似文献   

20.
Herring larvae were obtained via artificial spawning (Baltic spring spawners, Downs herring). Eggs were immediately transported to the Marine Station (“Meeresstation”) of the Biologische Anstalt Helgoland, transferred into 140] tanks, and incubated at about 10°C. Sea water was circulated through an internal filter. Artificial illumination (neon tubes) was kept at about 1000 Lux (water surface) during 12 h per day; it was than decreased gradually to complete darkness within 30 min. Dawn was also simulated in order to avoid abrupt changes in light intensity. Food consisted of wild plankton (mainly crustacean nauplii) caught every day on Helgoland Roads, and of Artemia salina nauplii. The larvae were fed 1 to 3 times a day; they took the food always within the first half hour after it was offered. Over periods of 5 min each, the time spent for various activities (different modes of swimming, feeding) were recorded. The behavioural patterns of comparable larvae were filmed. The initial phase of prey catching consists of s-shaped body bending; usually the main bend of the body (upper arrows in Figs. 2 and 3) bears a typical directional relationship to the swimming path of the prey focussed (lower arrows). Such body bending is not always succeeded by subsequent steps of prey catching. In the normal prey catching process, aiming is followed by sudden stretching of the body and swallowing of the prey within 0.2 to 0.3 sec. Yolk sac larvae can use their pectoral fins, larvae of more then 15 mm total length also their tail- and dorsal-fins, for stabilization and correction of prey catching movements. In yolk sac larvae, complete prey catching lasts about 1 to 3 sec. Percentage successful prey catching manoeuvres increases with age and experience (Table 2). Initial success percentage was about 1% in Baltic Sea larvae (Kiel) and about 10% in Downs larvae; it rose within 30 to 35 days in Kiel larvae to nearly 60%, in Downs larvae to over 70%. The possible reasons for these differences are discussed; they may be related to body size and composition of planktonic food. Visual perception of food depends on optic capacities of larvae, size and distance of prey, visibility, and “duration of presentation” (time span during which the image of the prey is projected onto the retina). This, in turn, appears to be subject to frequency and amplitude of undulating movements of the head during swimming. The percentage of body positioning for prey catching attains maximum values at prey distances of 2 to 8 mm in yolk sac larvae (Downs), and of 3 to 40 mm in larvae of 15 to 20 mm body length; it decreases steadily with increasing prey distance. Larvae up to 15 mm total length take mainly copepod nauplii, larger larvae preferably copepodites. Distance of prey perception is wider in the horizontal than in the vertical plane; in fact, larvae do not perceive prey underneath the horizontal plane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号