首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In recent years, the ability of microorganisms to decolorize textile wastewater has received great attention due to the environmental persistence and toxicity of these pollutants. In this paper biological decolorization of triphenylmethane dye, C.I. Basic Green 4 (BG 4), by Chlorella species was investigated. The effect of operational parameters (temperature, pH, initial dye concentration and algal concentration) on decolorization efficiency was examined. Results indicated that the desired initial pH was 9. The stability and efficiency of the algae in long-term repetitive operations were also examined. Michaelis-Menten kinetics was employed to describe the apparent correlation between the decolorization rate and dye concentration. The optimal kinetic parameters, Vmax (specific decolorization rate) and Km (maximum specific decolorization rate) were 4.6 mg dye g cell-1 h-1and 151.0 mg L-1, respectively. Fig 10, Tab 2, Ref24  相似文献   

2.
The effect of increasing cadmium concentration (10, 100 and 1000 μmol dm‐3) on the growth, leaf area, content of assimilation pigments, cadmium content and the regulatory ability of the tissue of maize plants was investigated.

The results obtained document, already after 6 days, a significant decrease of dry weight, reduction of leaf area, chlorophyll a and b as well as carotenoids in plants grown in the nutrient solution containing 1000 μmol dm ‐3 of cadmium. A highly significant inhibition of growth, leaf area and assimilation pigments in plants growing in the nutrient solutions with 100 and 10 μmol dm‐3 of cadmium was registered after 17 days of cultivation. In plants growing in the nutrient solution containing 100 μmol dm‐3 of cadmium a demonstrable reduction of the content of assimilation pigments was registered after 11 days of culture.

With increasing cadmium concentration in the nutrient solution as well as in the plant tissue after 6 and 17 days of culture both the range of the regulatory zone and the extent of optimum pH increased into the acid region. The pH values of the isoelectric point decreased with increasing cadmium content in the solution.  相似文献   

3.
4.
The paper presents the results obtained in a study on the effects of organic micropollutants on the central nervous system of the rat, used herein as a suitable model for neurotoxicologic work. Bromoform, a member of the trihalomethane (THM) family, was the pollutant selected since it becomes a characteristic marker in the Barcelona potable water supply.

Analytical data on the GC‐ECD separation of THMs from other volatile halocarbons is presented. A mixed packed column 10% SE‐30/PEG 20M (94:6) at 70°C provides an adequate separation. The distribution of bromoform in rat plasma and tissues showed an accumulation in brain, kidney and fat, increasing in this order and a rapid elimination after 30 min. The effect on the central aminergic metabolism is studied by HPLC. The increased metabolic activity detected could be attributed either to an increased nervous activity, stimulating the metabolism of serotonin, or to its greater degradation.  相似文献   

5.
The photolysis in water solution of three fungicides (Metalaxyl, Benalaxyl, and Furalaxyl) was studied under artificial light. At λ = 254 Benalaxyl and Furalaxyl underwent fast degradation with rearrangement reactions less complex than those of Metalaxyl. Under A = 254–290 the photolysis was very fast and Benalaxyl and Furalaxyl show a common behaviour. This was found to be a kinetic consecutive process leading, at first, to N‐2,6‐xylyl‐D,L‐alaninate (II), which was degraded to 2,6‐dimethylaniline (IV). This amine gives unknown products. Metalaxyl underwent a parallel/consecutive photodegradtion to give (II) and N‐(methoxyacetyl)‐2,6‐dimethylaniline (VI). While (II) was easily converted to (IV) as earlier, (VI) was more stable to photolysis. Under λ > 290 all the fungicides shown very slow degradation with pseudo first order rate constants. The photoproducts were degraded faster than the parent compounds by factors from 13 to 1800. The presence of photosensitizer in water (humic acids or acetone) resulted in total decomposition of fungicides and of their photoproducts.  相似文献   

6.
NutrientdistributionandcyclingofartificialandnaturalsubalpinespruceforestsinwesternSichuan PANGXueyongetal ( 1)………StructurecomparisonofplantcommunitiesatdifferentdistancefromtouristpathinecotourismregionCHENGZhanhongetal ( 8)…………………………………………………………………………………  相似文献   

7.
Natural enemies exert selection pressure on their prey. Predators and parasitoids drive their prey into the evolution of novel traits to cope with this stress. When eggs and juveniles are the target of enemies, defense strategies may rely on adults. However, it is not easy to predict whether adults should actively protect unrelated offspring. Females of the golden egg bug (Phyllomorpha laciniata) mainly oviposit on conspecifics of either sex. Females can also lay eggs on their food plant. Eggs placed on plants suffer from a higher mortality caused by natural enemies than eggs carried by bugs. Females never carry their own eggs and males are seldom related to the eggs they carry. We experimentally explored if conspecifics protect the eggs by studying the behavioral interaction between P. laciniata individuals and the specialist egg parasitoid Gryon bolivari. All bugs exhibited active responses against parasitoids regardless of the sex of the bug, the egg load, and their mating status. Most of the responses prevented parasitoids from reaching the eggs, and thus they reduced the risk of egg parasitization. Although responses of bugs were effective to overcome parasitoid attacks, we suggest that egg protection against parasitoids has evolved as a co-opted trait from a general defense of adult bugs against enemies. In this system, egg defense is not an individual's strategy to protect the offspring, but rather a consequence of the eggs being attached to one's body. It may also explain the low parasitization carried eggs suffer in the wild. The results further highlight the idea of conspecifics as an enemy-free space in P. laciniata.  相似文献   

8.
This study aimed to evaluate the disease antagonism and seed growth promotion effects of streptomyces on Amorphophallus konjac by agar block and axenic fermentation extract experiments. Pot experiments were taken to assess relative biocontrol effiency and effect of streptomyce preparation M (mixture of S. carnosus and S. pactum in solid-state fermentation with 1:1 ratio) on biomass, photosynthetic rate, yield and corm quality of A. konjac K. Koch ex N.E.Br. Results showed that: 1 Streptomyces Act12 had obvious antagonistic activity against six soft rot pathogens, and the diameter of growth inhibition zones ranged from 19.4 to 31.6 mm. Fermentation filtrate of streptomyces exhibited growth-promoting activity on melon seed germination and seedling growth. 2 Streptomyce-derived viable preparations had biocontrol effect on A. konjac regarding soft rot-disease prevention. In the pot experiment, individual inoculation of preparations achieved 65.0% relative biocontrol effect on A. konjac during the harvest stage. After 10 and 20 days of inoculation combined with Pectobacterium chrysanthemi (a bacterial pathogen), the relative biocontrol effiency of streptomyces were 100.0% and 58.4%, respectively. 3 Streptomyces showed obvious growth-promoting effect on growth and yield of A. konjac. In the pot experiment, combined inoculation of streptomyces and Pectobacterium chrysanthemi significantly increased the petiole diameter by 11.1%, net photosynthetic rate by 111.7%, fresh weight of corm by 54.8%, fresh weight of rhizome by 304.2%, and the number of rhizomes by 200.0%, compared with individual inoculation of Pectobacterium chrysanthemi. 4 Individual inoculation with streptomyces improved corm quality of A. konjac. The contents of glucomannan, starch and cellulose significantly increased by 14.0%, 8.1% and 27.7%, respectively compared with control (P < 0.05) . This study indicates that streptomyces promotes the growth of A. konjac, enhances the yield and the content of glucomannan, and at the same time helps disease prevention of A. konjac.  相似文献   

9.
In the 1930s, after only three years of scientific investigation at the University of Michigan Institute for Fisheries Research, cheap labor and government-sponsored conservation projects spearheaded by the Civilian Conservation Corps allowed the widespread adoption of in-stream structures throughout the United States. From the 1940s through the 1970s, designs of in-stream structures remained essentially unchanged, and their use continued. Despite a large investment in the construction of in-stream structures over these four decades, very few studies were undertaken to evaluate the impacts of the structures on the channel and its aquatic populations. The studies that were undertaken to evaluate the impact of the structures were often flawed. The use of habitat structures became an "accepted practice," however, and early evaluation studies were used as proof that the structures were beneficial to aquatic organisms. A review of the literature reveals that, despite published claims to the contrary, little evidence of the successful use of in-stream structures to improve fish populations exists prior to 1980. A total of 79 publications were checked, and 215 statistical analyses were performed. Only seven analyses provide evidence for a benefit of structures on fish populations, and five of these analyses are suspect because data were misclassified by the original authors. Many of the changes in population measures reported in early publications appear to result from changes in fishing pressure that often accompanied channel modifications. Modern evaluations of channel-restoration projects must consider the influence of fishing pressure to ensure that efforts to improve fish habitat achieve the benefits intended. My statistical results show that the traditional use of in-stream structures for channel restoration design does not ensure demonstrable benefits for fish communities, and their ability to increase fish populations should not be presumed.  相似文献   

10.
The secondary metabolites of endophytic Phomopsis sp. strain S4 show antifungal activity against a variety of plant pathogens, which implies that strain S4 has potential prospect in crop disease control. The aim of this study was to explore the inhibition mechanisms of S4 against plant pathogenic fungi. Magnaporthe oryzae was used as the main pathogenic material for the research. Cell membrane changes were detected using antifungal experiments, scanning electron microscopy, Q RT-PCR, and cell content leaking experiments. The results of scanning electron microscopy showed that M. oryzae mycelia, after treatment with S4 fermented product extract, decreased in size, suggesting the integrity of the cell membrane was destroyed. The genes related to ergosterol synthesis, which plays an important role in membrane integrity, were studied though Q RT-PCR. The results showed that the expression levels of ERG1, ERG11, and ERG6 genes were down-regulated by 2.0, 1.40, and 2.7-fold, respectively, whereas that of ERG7 was up-regulated by 1.38-fold, which means the ergosterol synthesis pathway was destroyed. The physiological experiments also showed that the cell contents of M. oryzae mycelia treated with S4 fermented product extract leaked significantly, which was consistent with the Q RT-PCR results. The results showed that S4 fermentation broth exact could destroy the cell membrane integrity by inhibiting ergosterol synthesis, and eventually inhibit M. oryzae cell growth. © 2018 Science Press. All rights reserved.  相似文献   

11.
Summary. The among-leaves allocation of DIBOA, a hydroxamic acid associated with plant resistance, in the shoot of rye (Secale cereale) was evaluated over the vegetative development of the plant. The appropriateness of using the concentration of secondary metabolites, DIBOA in this case, as the parameter to evaluate defense allocation in plants is discussed. Both biological and statistical arguments are put forward to suggest that allocation of chemical defenses should refer to absolute content and not to concentration. Results showed that leaf age was significantly linked to leaf concentration of DIBOA, young leaves having higher concentrations. In contrast, leaf content of DIBOA, our proposed currency of allocation, was not significantly higher in younger leaves. Furthermore, a regression analysis showed that the DIBOA content of leaves was better explained by the leaf relative biomass (proportion of shoot biomass) than by leaf biomass itself. It is suggested that, rather than leaf age, leaf relative biomass is the major factor determining DIBOA allocation in rye shoots. It is proposed that studies addressing within-plant defense allocation should use chemical defense content as the currency, emphasizing the major factors driving this process and its underlying mechanisms. Likewise, it is proposed that studies aiming at characterizing optimal patterns of plant defense should use chemical defense concentration as the currency, and be accompanied by evaluations of the actual resistance against herbivores of the plant parts analyzed, together with the effect on plant fitness. Received 19 February 1999; accepted 28 April 1999.  相似文献   

12.
13.
The samples of soils, earthworms and vegetation (needles, lichens, mosses) were collected for the realization of Project TOCOEN (Toxic Organic Compounds in the ENvironment). The samples were collected from three TOCOEN model areas in Czechoslovakia—one city and two rural areas. The samples were analyzed for polycyclic aromatic hydrocarbons (PAHs), chlorinated pesticides (C1‐PEST) and polychlorinated biphenyls (PCBs).  相似文献   

14.
Oil pollution is one of the major factors causing environmental deterioration. Bioremediation of oil contaminated environments by microorganisms attracts much research attention. This study aimed to screen efficient oil-degrading bacteria from oil contaminated soil and analyze their characteristics and catabolic genes. Oil-degrading bacteria were screened from oil contaminated soil in minimal medium containing crude oil and identified by morphological, physiological and biochemical characteristics and 16S rDNA sequence analysis. Their growth and degradation characteristics were studied with ultraviolet spectroscopy and GC-MS analysis. The surfactant production was studied by adopting culture method. The major oil-degrading related genes were detected by t he PCR a mplification. As a result, t hree oil-degrading bacteria strains named KB1, 2182 and JC3-47 were isolated from the oil contaminated soil samples. The strains could use crude oil as the sole carbon source to degrade oil with a degrading rate of 41.02%, 32.26% and 55.90%, respectively, when cultured in minimal medium containing crude oil for 3 days. The bacteria were identified to belong to genus Rhodococcus. With 100% similarity of 16S rDNA sequences of the three strains with known ones of Rhodococcus, KB1 was preliminarily identified as Rhodococcus erythropolis, 2182 as Rhodococcus equi, and JC3-47 as Rhodococcus qingshengii. They grew well at 10-50 °C, with the initial pH of 3-9 and the NaCl concentration of 0-5%. The optimal temperature for bacterial growth was 35 °C, 35 °C and 30 °C respectively. KB1 and 2182 could grow at pH 2 and 9.0% of NaCl. The bacteria grew well in broth containing different organic substrates as sole carbon source, such as n-dodecane, n-octadecane, benzene, methylbenzene, xylene and naphthaline. KB1 and JC3-47 could grow well in broth containing pyrene. GC-MS analysis revealed that the bacteria could effectively degrade medium- and long-chain alkane components in crude oil. The bacteria produced biosurfactants and decreased the surface tension of the culture broth. They also showed adhesion activities to n-hexadecane. The oil-degrading related genes such as alkane monooxygenase, aromatic-ring-hydroxylating dioxygenase and catechol dioxygenase genes were detected in all the three strains. Besides, biphenyl dioxygenase genes were detected in KB1 and 2182. The isolated Rhodococcus spp. strains could effectively degrade petroleum hydrocarbons with high adaptabilities to extreme environments such as high salt and low temperature. They are supposed to be applied broadly in the bioremediation of oil contaminated soil in such environments.  相似文献   

15.
3-Hydroxypropionic acid (3-HP) is an emerging platform chemical with a high added-value. Resting cells of Acetobacter sp. can efficiently catalyze 1,3-propanediol (1,3-PDO) to 3-HP. Glucose is oxidized by the membrane-bound dehydrogenase, resulting in an acidic environment that inhibits cell growth and reduces the biomass. We deleted the gdh gene for glucose dehydrogenase (GDH), and investigated the effects on cell growth, carbon metabolism, and 3-HP production. The gdh gene knocked-out showed a 1.72-fold increase in biomass in the mixed medium containing glucose and glycerol. A carbon flux analysis showed that glucose was converted to gluconic acid by GDH, followed by an oxidation to 2-ketogluconic acid. In addition, a small percentage of the gluconic acid was degraded via the pentose phosphate pathway. Glycerol was phosphorylated and entered the central pathway (gluconeogenesis). Results indicate that the deletion of gdh can effectively promote higher cell densities and improve the catalytic performance for the production of 3-HP, and thus provide a theoretical reference for improving the carbon source utilization and the catalytic performance of acetic acid bacteria. © 2018 Science Press. All rights reserved.  相似文献   

16.
A kinetic and mechanistic study on the aerobic dye sensitized photooxidation of the mono—nitro and chlorophenols was carried out. A singlet molecular oxygen mechanism operates in the photooxidation. Solvent and substituent effects, suggest the intermediacy of a complex with partial charge transfer character, as has been postulated for other phenols.

Chemical (reactive) and physical interactions of the substrates with singlet molecular oxygen were discriminated. Quantum yields for photooxidation (higher for the chlorophenols) range from 3 × 10‐2 to 2 × 10‐3, as measured by substrate or oxygen consumption. These values indicate the viability of a singlet molecular oxygen photooxidation as a way for the degradation of nitro and chlorophenol environmental contaminants.  相似文献   

17.
《Ecological modelling》2004,175(2):197-216
A Finite Element Ecological Model for the Lagoon of Venice (VELFEEM) has been used to test the responses of the Lagoon of Venice ecosystem to variations in physical conditions.The model is obtained by coupling a finite element hydrodynamic model, that computes the velocity fields of water, an energetic model to compute the water temperature fields, and an ecological model that simulates the dynamic of phytoplankton, zooplankton, nutrients (ammonia, nitrate and phosphate) organic detritus (organic nitrogen, organic phosphorous and CBOD) and dissolved oxygen.The transport model is a two-dimensional barotropic finite element model which allows for a better resolution of the lagoon morphology.The ecological model has been developed by starting from the ecological module EUTRO of WASP (Water Analysis Simulation System released by US EPA), and by adapting it to the peculiarity of the Lagoon of Venice.A reference condition has been identified by running a 1-year simulation under climatologic condition. Then, the sensitivity to physical forcing (tide and wind) and to the input of macronutrients has been investigated, by comparing model predictions of spatial and temporal evolution of major state variables and of an aggregate index of Water Quality Trophic Index (TRIX).  相似文献   

18.
Both laboratory and commercial preparations of humic substances (HSs) such as fulvic acids and humic acids along with HC1‐HF preparation of Manitoba peat soil organic matter were characterized using Fourier Transformation (FT) proton (1H) and carbon‐13 (13C) nuclear magnetic resonance (NMR) spectroscopy. All the samples were dissolved in a solution of 0.4 N NaOD in D2O. In the case of ‘H‐NMR spectroscopy, all the investigated humic samples displayed resonance absorption peaks in the region of 1–4 ppm indicating the likely presence of aliphatic protons in the preparations. However, with the exception of one fulvic acid preparation (extracted from Manitoba Carrol clay‐loam soil with 0.5 N NaOH), 1H‐NMR spectra of all other samples provided evidence for strong aromatic character. The aliphatic and aromatic characteristics of such samples of HSs were further confirmed with the aid of 13C‐NMR spectra.  相似文献   

19.
The objective of this study is to provide an improved climatology of sea level extremes on seasonal and long-term time scales for Hawaii and the U.S-Trust islands. Observations revealed that the Hawaiian and U.S.-Trust islands, by and large, display a strong annual cycle. For estimating the statistics of return period, the three-parameter generalized extreme value (GEV) distribution is fitted using the method of L-moments. In the context of extremes (20- to 100-year return periods), the deviations in most of the Hawaiian Islands (except at Nawiliwili and Hilo) displayed a moderate sea-level rise (i.e., close to 200 mm), but the deviations in the U.S.-Trust islands displayed a considerably higher rise (i.e., more than 300 mm) in some seasons due to typhoon-related storm surges. This rise may cause damage to roads, harbors, and unstable sandy beaches. Correlations between the El Niño-Southern Oscillation (ENSO) climate cycle and the variability of seasonal sea level have been investigated. Results show that correlation for the station located west of the International Date Line (DL) is strong, but it is moderate or even weaker for stations east of the DL. The skill of SST-based Canonical Correlation Analyses (CCA) forecasts was found to be weak to moderate (0.4–0.6 for Honolulu, Kahului, Hilo, and Wake, and 0.3 or below for Kahului, Mokuoloe, and Johnston). Finally, these findings are synthesized for evaluating the potential implications of sea level variability in these islands.  相似文献   

20.
Subcellular distributions and chemical forms of cadmium (Cd) in the leaves, stems and roots were investigated in low-Cd accumulation cultivars and high-Cd accumulation cultivars ofpakchoi (Brassica chinensis L.). Root cell wall played a key role in limiting soil Cd from entering the protoplast, especially in the low-Cd cultivars. The high-Cd cultivars had significantly higher leaf and stem Cd concentrations than the low-Cd cultivars in cell wall fraction, chloroplast/trophoplast fraction, organelle fraction and soluble fraction. In low-Cd cultivars, which were more sensitive and thus had greater physiological needs of Cd detoxification than high-Cd cultivars, leaf vacuole sequestrated higher proportions of Cd. Cd in the form of pectate/protein complexes (extracted by 1 tool. L~ NaC1) played a decisive role in Cd translocation from root to shoot, which might be one of the mechanisms that led to the differences in shoot Cd accumulation between the two types of cultivars. Furthermore, the formation of Cd- phosphate complexes (extracted by 2% HAc) was also involved in Cd detoxification within the roots of pakchoi under high Cd stress, suggesting that the mechanisms of Cd detoxification might be different between low- and high-Cd cultivars.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号