首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
规模化牛场废水灌溉对土壤水分和冬小麦产量品质的影响   总被引:2,自引:0,他引:2  
通过田间小区试验,设置不同的牛场废水灌溉次数,研究了冬小麦牛场废水灌溉过程中土壤水分和冬小麦产量品质的变化特征,结果表明,灌溉牛场废水土壤水分迁移和土壤贮水量与灌溉清水无显著差别,水质对土壤水分变化影响很小;冬小麦生育期内分别灌溉牛场废水2、3和4次与正常施肥灌溉施肥相比,冬小麦产量和灌溉水生产效率提高,分别提高了4.61%、6.48%、6.63%,4次牛场废水灌溉冬小麦产量略有下降,这说明灌溉牛场废水次数过多会对冬小麦造成一定的负面影响;牛场废水灌溉次数越多冬小麦籽粒中蛋白质质量分数越高,分别提高了2.50%、5.83%、8.03%,而全磷质量分数则有降低趋势。综合考虑,冬小麦生育期内牛场废水灌溉次数不应高于3次。  相似文献   

2.
This study aimed to determine whether >110 years of sewage application has led to recognizable changes in the metal chemistry of soils from former sewage farms, Berlin, Germany. Background concentrations of soils and element enrichment factors were used for the evaluation of possible perturbations of natural element abundances in sewage farm soils. Calculations verify that precious metals (Ag, Au) as well as P, Corg, and heavy metals (Cd, Cu, Ni, Pb, Sn, and Zn) are invariably enriched in sewage farm topsoils (0–0.1 m depth) compared to local and regional background soils. Long-term irrigation of soils with municipal wastewater has caused significant heavy metal contamination as well as a pronounced enrichment in precious metals. Leaching of metals including Ag into underlying aquifers may impact on the quality of drinking water supplies.  相似文献   

3.
再生水回灌地下水环境安全风险评价技术方法研究   总被引:2,自引:0,他引:2  
再生水回灌是水资源管理的一条有效途径,也是污水再生利用的重要发展方向。然而,当再生水以农灌、土壤含水层处理(SAT)、河湖入渗和井灌等方式进行地下水回灌时,不可避免的会在回补地下水的过程中造成对地下水环境的污染风险。针对不同回灌方式建立适用于我国的再生水回灌地下水环境安全风险评价技术体系至关重要。借鉴国内外地下水污染风险评价方法,综合分析再生水回灌对地下水产生风险的关键环节,采用层析分析法,从回灌水特征污染物特性、回灌区地下水固有脆弱性以及回灌工程布设方式3个方面,针对地表灌溉、河湖入渗和井灌3种回灌方式,建立了包含污染物浓度水平、分配系数、溶解度、半衰期、半致死剂量、地下水埋深、降雨入渗补给量、地形坡度、土壤介质、包气带介质、含水层介质、含水层厚度、回灌强度、回灌周期、回灌水停留时间以及取水点与回灌点水平距离16个指标在内的风险评价指标体系。在此基础上,结合地下水使用功能,以20个典型再生水回灌场地调研结果和160种再生水回灌地下水污染风险因子物化特性为数据基础,对各指标进行了风险水平的划分,基于聚类分析法,采用各指标风险指数相乘的风险表征方法计算总风险指数,构建了再生水回灌地下水环境安全风险评价技术方法。该方法有效的避免了指标权重计算的主观性,并且能够直观的找出导致风险的主要因素。结果表明:利用建立的风险评价技术方法可将我国再生水回灌地下水环境安全风险划分为3级,风险值〈5为一级,风险值在5-15之间为二级,风险值〉15为三级。在某再生水回灌场地的应用表明,该回灌区地下水环境安全风险为二级,同时得出回灌水特征污染物特性指标是造成该回灌区地下水环境风险的主要因素。  相似文献   

4.
Increasing shortages of fresh water has led to greater use of treated wastewater for irrigation of crops. This study evaluates the spatial variability of soil properties after irrigation with wastewater and freshwater. Geostatistical techniques were used to identify the variability of soil properties at the different sites. A set of physical and chemical soil properties were measured including total nitrogen (TN), total phosphorus (TP), organic matter (OM) and soil moisture. The TN concentration levels varied from 567 to 700 mg·kg-1, while OC levels ranged from 7.3 to 16.3 mg·kg-1 in wastewater-irrigated zones. The concentration levels of TP were between 371.53 and 402.88 mg·kg-1 for the wastewater-irrigated sites. Wastewater irrigation resulted in higher TN, TP and OM concentrations by 18.4%, 8% and 25%, respectively. The highest TN and OM occurred along the wastewater trunk. It was also observed that nitrogen concentrations correlate with the soil's organic matter. The increase of salinity may be associated with the increase of pH, which might suggest that a reduction of pH will be beneficial for plant growth due to the decrease of salinity. The average concentrations of nitrogen in topsoil were higher than those in subsurface soils in irrigated areas. Such differences of the N profile might be due to variations in organic matter content and microbial populations. Consistent with TN and OM, soil C:N decreased significantly with an increase of depth. This phenomenon possibly reflects a greater degree of breakdown and the older age of humus stored in the deeper soil layers. The analysis of pH levels at different depths for the three sites showed that pH values for wastewater irrigation were slightly lower than the controlled sites at the same depths.  相似文献   

5.

Climate change models consistently project future precipitation reduction and temperature increase during the crop growing season in the US Midwest, which may exacerbate surface water scarcity issues confronting regional agriculture. To maintain consistent crop yields under the risk of increased droughts, farmers may shift from rain-fed agriculture to irrigation agriculture, particularly during drought periods. There is an urgent need to understand whether surface water in the Midwest is suitable for irrigation. In this study, irrigation water quality was comprehensively analyzed for commonly used parameters regarding salt content including sodium adsorption ratio (SAR), adjusted sodium adsorption ratio (SARadj), soluble sodium percentage (SSP), electrical conductivity (EC), total dissolved solids (TDS), residual sodium bicarbonate (RSBC), magnesium adsorption ratio (MAR), permeability index (PI), Kelley’s ratio (KR), synthetic harmful coefficient (SHC), and salinity. Results indicate that water in the White River at Muncie was rated mostly in excellent to good condition with regard to irrigation quality. However, the irrigation suitability level exhibited two distinct patterns between May–July and August–October. Specifically, an average of 7.8% of the samples from May to July were unsuitable for irrigation, and an average of 24.5% of samples from August to October were unsuitable for irrigation considering all parameters. Flow rate change over time and the release of pollutants from wastewater treatment plants and combine sewage outflows to the White River impacted on the irrigation water quality variations of the river. This study showed that there are higher risks during the fall season for farmers to use surface water as an irrigation source, and this risk might be greater if extended or more frequent drought events occur in the future. To our best knowledge, this is the first peer-reviewed study on irrigation water quality assessment in the Midwest and provides useful information for farmers and decision makers to consider while formulating applications for irrigation.

  相似文献   

6.
The winemaking process involves the generation of a significant amount of waste and wastewater. These residues should be addressed for recycling or treatment before being returned to environment. As each winery is unique in waste generation and disposal, plans for environmentally friendly waste management are not universal and should be tested for their effectiveness. In this study, a diagnostic was made during three years, in different wineries, throughout Portugal, in order to quantify and characterize the waste and the wastewater produced. The results showed that solid waste and wastewater are mainly produced during the harvest period, corresponding to 74% and 87%, respectively. One ton of processed grape approximately produce 0.13 t marc, 0.06 t lees, 0.03 t of stalks and 1.65 m3 of wastewater. No significant differences (P≤0.05) were observed for grape marc, lees and wastewater ratios, between years or wineries. With respect to the stalk ratio, there was no effect of year but the winery significantly affected this ratio (P≤0.05). During the study period the treated wastewater, since diluted, revealed suitable characteristics for irrigation representing an additional source of water. In this regard, the data acquisition and consolidation ensure the transfer of information and experience which constitute an essential step in a support decision tool design.  相似文献   

7.
猪场废水灌溉对地下水中氮素的影响   总被引:3,自引:0,他引:3  
应用猪场废水处理工程中产出的厌氧水不同灌溉量和3个处理阶段V(出水)∶V(地下水)=1∶5混合对冬小麦-夏玉米轮作系统连续进行3年小区灌溉试验,地下水中总氮、铵态氮、硝态氮和亚硝态氮等指标的监测结果表明:(1)厌氧水不同灌溉量条件下地下水中4种氮素含量总体呈现高量厌氧水(Ha)〉中量厌氧水(Ma)〉低量厌氧水(La)的变化趋势;(2)混水灌溉处理地下水中4种氮素含量均呈V(原水)∶V(地下水)=1∶5混合(Tog)〉V(厌氧水)∶V(地下水)=1∶5混合(Tag)〉V(仿生态塘水)∶V(地下水)=1∶5混合(Teg)的变化趋势。文章的研究能够为制定合理的猪场灌溉制度提供数据支撑。  相似文献   

8.
Paddy fields near a mining site in north part of Guangdong Province, PR China, were severely contaminated by heavy metals as a result of wastewater irrigation from the tailing pond. The following clean water irrigation for 2 decades produced marked rinsing effect, especially on Pb and Zn. Paddy fields continuously irrigated with wastewater ever since mining started (50 years) had 1,050.0 mg kg?1 of Pb and 810.3 mg kg?1 of Zn for upper 20 cm soil, in comparison with 215.9 mg kg?1 of Pb and 525.4 mg kg?1 of Zn, respectively, with clean water irrigation for 20 years. Rinsing effect mainly occurred to a depth of upper 40 cm, of which the soil contained highest metals. Copper and Cd in the farmlands were also reduced due to clean water irrigation. Higher availability of Pb might partly account for more Pb transferred from the tailing pond to the farmland and also more Pb removal from the farmland as a result of clean water irrigation. Neither rice in the paddy field nor dense weeds in the uncultivated field largely took up the metals. However, they might contribute to activate metals differently, leading to a different purification extent. Rotation of rice and weed reduced metal retention in the farmland soil, in comparison with sole rice growth. Harvesting of rice grain (and partially rice stalk) only contributed small fraction of total amount of removed metal. In summary, heavy metal in paddy field resulted from irrigation of mining wastewater could be largely removed by clean water irrigation for sufficient time.  相似文献   

9.
The toxicity of soil irrigated with treated domestic wastewater (site A) and untreated gray wastewater (site B) were investigated. Soil extracts were prepared using distilled water, acid solvent (0.1 mol·L-1 HCl), and organic solvent (acetone:petroleum ether:cyclohexane= 1:1:1) to understand the type of pollutants responsible for the ecotoxicity associated with wastewater irrigation. The soil toxicity was assessed using a luminescence inhibition assay with Vibrio fischeri for acute toxicity, a micronucleus assay with Vicia faba root tips and a single cell gel electrophoresis assay of mice lymphocytes for genotoxicity. The physicochemical properties and the heavy metal (HM) contents of the irrigated soil were also analyzed. The results indicated that the wastewater irrigation at site A had no effects on the soil properties. With the exception of Pb, Zn, Fe, and Mn, the accumulation of HMs (Cu, Ni, and Cr) occurred. However, the irrigation at site A did not result in obvious acute toxicity or genotoxicity in the soil. The soil properties changed greatly, and HMs (Cu, Ni, and Cr) accumulated in site B. There were significant increases in the acute toxic and genotoxic effects in the soils from site B. The ecotoxicity in site B came primarily from organic-extractable pollutants.  相似文献   

10.
The basic objective of this study was to compile the available information on the composition of sewage and industrial wastewaters in India and their effect on soil–plant health upon their use in agricultural fields. The composition of sewage water is quite variable depending upon the contributing source, mode of collection, and treatment provided. The composition of sewage water varied from site to site which was in accordance with the type of industries present in that area. Continuous use of sewage and industrial wastewater irrigation recorded improvement in water retention, hydraulic conductivity, organic C and build-up of available N, P, K, micronutrient status, and soil microbial count. The electrical conductivity although increased due to sewage irrigation, it was within the tolerance limit to cause any soil salinity hazard. The toxic metals like Cd, Cr, Pb, and Ni were found to be accumulated in soil and plant due to long-term use of sewage and industrial wastewater irrigation. The concentration of these metals was higher in leafy vegetables than in grain crops. This warrants the potential hazard to soil–plant health suggesting necessity of their safe use after pretreatment as a cheap potential alternative source of plant nutrients in agriculture.  相似文献   

11.
Vertical distribution of both the concentration and composition of polycyclic aromatic hydrocarbons (PAHs) in ten profiles in Beijing has been investigated. The results showed that PAH concentrations and compositions in topsoil from different sampling sites were different. PAH concentrations were much higher in topsoil of the investigated urban area, industrial region, and paddy field with wastewater irrigation than in other areas. Moreover, PAH concentrations in topsoil were much higher than those at greater depth, where the concentrations were relatively consistent in most soil profiles. The fingerprints of PAHs in the samples from topsoil (0–30 cm) in the same profiles were similar and were obviously different from those at greater depth, suggesting that PAH sources were consistent in topsoil samples and were discriminating between topsoil and deeper soils. PAHs in topsoil mainly arose from mixed sources of combustion of liquid fuel, coal, and/or wood, as well as wastewater irrigation, while those at greater depth were derived from soil genesis and the process of soil formation.  相似文献   

12.
探讨了将经过一定处理后的土霉素废水与清洁水混合 ,作为农业生产灌溉用水的可能性。试验表明 ,经处理后的污水不仅不会增加农业环境负担 ,而且能起到改良土壤和增加农作物产量的作用  相似文献   

13.
不同填料对人工湿地模拟柱中指示菌的去除   总被引:5,自引:0,他引:5  
为研究不同填料对指示菌的去除效果,选取沸石、无烟煤、页岩、蛭石、陶瓷滤料、砾石、钢渣、生物陶粒8种填料,进行垂直流人工湿地模拟柱净化污水试验。结果表明,8种填料中对3种指示菌(异养细菌、大肠菌群和粪链球菌)去除率较高的为钢渣(99.9%)和无烟煤(95.9%),推测主要是因为其出水分别呈碱性和酸性造成。除钢渣和无烟煤外,去除率较高的为沸石和蛭石,去除率较低的为陶瓷滤料和生物陶粒。相关分析结果表明6种填料(不包括钢渣和无烟煤)对指示菌去除率与填料的渗透系数间存在负相关关系,推测它们主要是通过过滤吸附的机制去除指示菌。  相似文献   

14.
本文介绍了利用美达棉纤维持载生物摸法处理石化废水中油的试验结果。当废水在柱内停留时间为6.3h,废水中油的处理效果是令人满意的。在同一含停留时间下入流水的CODcr从420mg/L变到1832mg/L时,出流水的CODcr在168.5mg/L以下。  相似文献   

15.
The effect of textile mill wastewater on germination, delay index, physiological growth parameters, and plant pigments of two cultivars of chickpea was studied. The aim of this study was to evaluate the suitability of textile mill wastewater (treated and untreated) at different concentrations (0, 6.25, 12.5, 25, 50, 75, and 100%) for irrigational purposes. The textile effluent did not show any inhibitory effect on seed germination at a lower concentration (6.25%). The other reported plant parameters (delay index, root length, shoot length, dry weight, chlorophyll, and carotenoid) also followed a similar trend. Seeds germinated in 100% effluents but did not survive for longer periods. It has also been concluded that the effect of the textile effluent is cultivar-specific, and due care should be taken before using the textile mill wastewater for irrigation purposes.  相似文献   

16.
土壤污染物来源及前沿问题   总被引:29,自引:7,他引:29  
人类活动对土壤系统的影响日趋严重。土壤污染物主要来自污染的大气沉降,废水和污水灌溉,工业废渣和城市垃圾,以及农药施用等。土壤污染对环境和人体健康造成极大的危害。文章通过计算得出了大气汞沉降和酸沉降在中国的累积沉降量,并通过调查分析中国各项污染物来源的最新资料,详细论述了各主要污染因素对土壤系统的影响。文章阐述了污染物在土壤系统中主要的物理化学行为,主要包括污染物在土壤生态系统中的吸附、迁移和扩散、酸沉降对土壤系统的影响等三个方面。最后回顾了该领域的研究现状和主要的前沿问题,并对进一步的深入研究提出了建议。  相似文献   

17.
The effect of textile mill wastewater on germination, delay index, physiological growth parameters, and plant pigments of two cultivars of chickpea was studied. The aim of this study was to evaluate the suitability of textile mill wastewater (treated and untreated) at different concentrations (0, 6.25, 12.5, 25, 50, 75, and 100%) for irrigational purposes. The textile effluent did not show any inhibitory effect on seed germination at a lower concentration (6.25%). The other reported plant parameters (delay index, root length, shoot length, dry weight, chlorophyll, and carotenoid) also followed a similar trend. Seeds germinated in 100% effluents but did not survive for longer periods. It has also been concluded that the effect of the textile effluent is cultivar-specific, and due care should be taken before using the textile mill wastewater for irrigation purposes.  相似文献   

18.
Domestic wastewater is generated continuously and in large quantities. It can serve as an alternative water nutrient source for irrigation. In the present study Abelmoschus esculentus L. (Ladyfinger) was irrigated using untreated wastewater (T1), treated wastewater (T2) and rainwater (T3) in pot experiments. The effect was seen on nutrient fortication, growth and yield of the plant and the nutrient status of the soil. Additionally the build up of Cr, Cu and Zn from the irrigation water were anlayzed in different parts of the plant biomass and in the soil. The sapling survival rate was found to be 87% in T1 followed by T2 and T3. Root shoot ratio under different treatments was found in the order T3 (0.46) >T2 (0.35) >T1 (0.31). The chlorophyll a, b and carotene content in the leaves (mg g(-1)) was found to be 6.3, 0.5, 0.9 under T1, 4.8, 0.4, 0.8 under T2 and 3.2, 0.3, 0.5 under T3 respectively and all the three varied in the order T1>T2>T3. The same trend was found in case of total dry matter (g) T1 (6.3) >T2 (3.7) >T3 (2.3) at p < or = 0.05. There was a considerable increase in nutrients in the soil under T1 and T2 as compared to T3 after final harvest. The organic matter (%), NO3-N and PO4(3-) (mg kg(-1)) content post harvest soil was found to be 3.4, 71, 90 under T1 and 2.9, 52, 63 under T2 respectively. Also, there was an increase in cations Na, K, Ca and Mg in the soil irrigated with T1 and T2 after the final harvest. Thus irrigation with wastewater generally increased soil fertility. Only a small percentage of the heavy metal was bioaccumulated by the plant parts from the irrigation water. There was hardly any metal accumulation in fruits. Bulk of the metal ions remained in the soil.  相似文献   

19.
Six soil profiles irrigated and non-irrigated with sewage wastewater were investigated for soil pH, electrical conductivity (EC), organic matter (OM), and CaCO3. The distributions and chemical fractions of Cu, Zn, Cd, and Pb, and their lability were also studied. The results indicated that pH, EC, OM, and CaCO3, as well as metal fractionation in soil profiles were affected by wastewater irrigation, especially in the surface layer. The surface layer (0-15 cm) irrigated with wastewater exhibited a 0.6 unit decrease in soil pH, a 40.6% decrease in CaCO3, and a 200% increase in EC as compared with that of the non-irrigated soil. The soil OM increased from 0.04% to 0.35% in the surface layer. The irrigation of soil with wastewater resulted in transformation of metals from the carbonate fraction (CARB) towards the exchangeable (EXCH), Fe-Mn oxide (ERO), and organic (OM) fraction for Zn, towards the EXCH, the OM, and residual fraction for Cu, and towards the exchangeable (EXCH) fraction for Cd. It was concluded that the use of sewage wastewater led to salt accumulation and an increase in the readily labile fraction of Zn, Cu, and Cd in the surface layer. Therefore, this reason may limit the use of wastewater under arid and semi-arid conditions.  相似文献   

20.
In the paper concepts for wastewater treatment of the future are discussed by the use of a) one flow diagram based on established, compact, proven technologies (i.e. nitrification/denitrification for N-removal in the mainstream) and b) one flow diagram based on emerging, compact technologies (i.e. de-ammonification in the main stream).The latter (b) will give an energy-neutral wastewater treatment plant, while this cannot be guaranteed for the first one (a). The example flow diagrams show plant concepts that a) minimize energy consumption by using compact biological and physical/chemical processes combined in an optimal way, for instance by using moving bed biofilm reactor (MBBR) processes for biodegradation and high-rate particle separation processes, and de-ammonification processes for N-removal and b)maximize energy (biogas) production through digestion by using wastewater treatment processes that minimize biodegradation of the sludge (prior to digestion) and pretreatment of the sludge prior to digestion by thermal hydrolysis. The treatment plant of the future should produce a water quality (for instance bathing water quality) that is sufficient for reuse of some kind (toilet flushing, urban use, irrigation etc.). The paper outlines compact water reclamation processes based on ozonation in combination with coagulation as pretreatment before ceramic membrane filtration. In the paper concepts for domestic wastewater treatment plants of the future are discussed by the use of a) one flow diagram based on established, compact, proven technologies (i.e. nitrification/denitrification for N-removal in the mainstream) and b) one flow diagram based on emerging, compact technologies (i.e. de-ammonification in the main stream).The latter (b) will give an energy-neutral wastewater treatment plant, while this cannot be guaranteed for the first one (a). The example flow diagrams show plant concepts that a) minimize energy consumption by using compact biological and physical/chemical processes combined in an optimal way, for instance by using moving bed biofilm reactor (MBBR) processes for biodegradation and high-rate particle separation processes, and de-ammonification processes for N-removal and b)maximize energy (biogas) production through digestion by using wastewater treatment processes that minimize biodegradation of the sludge (prior to digestion) and pretreatment of the sludge prior to digestion by thermal hydrolysis. The treatment plant of the future should produce a water quality (for instance bathing water quality) that is sufficient for reuse of some kind (toilet flushing, urban use, irrigation etc.). The paper outlines compact water reclamation processes based on ozonation in combination with coagulation as pretreatment before ceramic membrane filtration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号