首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Metalliferous uranium mine overburden soils integrated into arable land or stabilized by perennial rangeland plants evoke concern about the quality of crops and the exposure of grazing and thereby soil-ingesting (wildlife) herbivores to heavy metals (HM) and radionuclides. In a 2-year trial, thirteen annual and perennial forage and rangeland plants were thus potted on, or taken from, cultivated field soil of a metalliferous hot spot near Ronneburg (Germany). The content of soil and shoot tissues in 20 minerals was determined by ICP-MS to estimate HM (and uranium) toxicities to grazing animals and the plants themselves, and to calculate the long-term persistence of the metal toxicants (soil clean-up times) from the annual uptake rates of the plants. On Ronneburg soil elevated in As, Cd, Cu, Mn, Pb, U, and Zn, the shoot mineral content of all test plants remained preferentially in the range of “normal plant concentrations” but reached up to the fourfold to sixfold in Mn, Ni, and Zn, the 1.45- to 21.5-fold of the forage legislative limit in Cd, and the 10- to 180-fold of common herb concentrations in U. Shoot and the calculated root concentrations in Cd, Cu, Ni, and Zn accounted for phytotoxic effects at least to grasses and cereals. Based on WHO PTWI values for the tolerable weekly human Cd and Pb intake, the expanded Cd and Pb limits for forage, and reported rates of hay, roots, and adhering-soil ingestion, the tolerable daily intake rates of 0.65/11.6 mg in Cd/Pb by a 65 kg herbivore would be surpassed by the 11- to 27/0.7- to 4.7-fold across the year, with drastic consequences for winter-grazing and thereby high rates of roots and soil-ingesting animals. The daily intake of 5.3–31.5 mg of the alpha radiation emitter, U, may be less disastrous to short-lived herbivores. The annual phytoextraction rates of critical HM by the tested excluder crops indicate that hundreds to thousands of years are necessary to halve the HM and (long-lived) radionuclide load of Ronneburg soil, provided the herbage is harvested at all. It is concluded that the content in Cd/As, Cd, and Cu exclude herbage/Ronneburg soil from the commercial use as forage or pasture land soil for incalculable time spans. Caution is required, too, with the consumption of game.  相似文献   

2.
Trace element concentrations in soils, plants and animals in National Parks and Wildlife Reserves in Kenya are assessed using geochemical mapping techniques. Soil trace element concentrations are shown to be related to soil parent material and possibly to pedological and hydrological factors. At Lake Nakuru National Park, plant trace element concentrations vary with plant species and the geochemical conditions that influence uptake are discussed. Impala at Lake Nakuru National Park and black rhino at Solio Wildlife Reserve are shown to have a lower blood copper status than animals from other areas. The trace element status of wildlife is assessed also with respect to critical concentrations used for domestic ruminants. It is suggested that at Lake Nakuru National Park, the low soil copper content and high molybdenum content of some plants contributes to the low copper status of impala and may also influence the nutrition of other species.  相似文献   

3.
Efficient phytoremediation of uranium mine tailings by tobacco   总被引:1,自引:0,他引:1  
This investigation shows that tobacco plant roots and leaves accumulate 60?times more uranium than previously reported. Phytoremediation is a convenient technique to clean up polluted soils using herbaceous plants and trees. Increasing research aims to identify novel plant species that accumulate toxic metals. Tobacco plant (Nicotiana tabacum L.) is a promising cultivar for phytoremediation because tobacco is fast growing and easily propagated. Here, we study phytoremediation of uranium by two tobacco varieties Virginia and Burley, bred in natural conditions. Plants were grown on uranium mine tailings with an average uranium content of 15.3?mg?kg?1. Each shoot sample was cross-sectioned into five uniform groups of leaves and stem segments. Results show a substantial variance in uranium uptake according to the section elderliness and origin of the plant parts. The highest concentrations of uranium values recorded in leaves of Burleys and Virginias nearest root shoot sections were 4.18 and 3.50?mg?kg?1, respectively. These values are 60?times higher rates than those previously published for leaves of cultivars grown under similar conditions. Taking into account the level of soil contamination, the content of accumulated uranium demonstrates uranium hyperaccumulatory properties of tobacco plant and its potential utilization in phytoremediation of uranium-contaminated mediums.  相似文献   

4.

In recent decades, the problem of the constantly increasin level of anthropogenic load on the environment is becoming more and more acute. Some of the most dangerous pollutants entering the environment from industrial emissions are heavy metals. These pollutants are not susceptible to biodegradation over time, which leads to their accumulation in the environment in dangerous concentrations. The purpose of this work is to study the sustainability of cultivated and wild plants of the Poaceae family to aerotechnogenic pollution in the soil. The content of heavy metals in couch grass (Elytrigia repens (L.) Nevski), meadow bluegrass (Poa pratensis L.) and soft wheat (Triticum aestivum) plants grown in the impact zone of Novocherkassk Power Station has been analyzed. Contamination of cultivated and wild cereals with Pb, Zn, Ni and Cd has been established. It has been shown that the accumulation of heavy metals is individual for each plant species. An average and close correlation have been established between the total HM content and the content of their mobile forms in the soil and their content in plants. For the plants studied, the translocation factor (TF) and the distribution coefficient (DC) of HM have been calculated. The TF is formed by the ratio of the concentration of an element in the root plant dry weight to the content of its mobile compounds in the soil. The DC value makes it possible to estimate the capacity of the aboveground parts of plants to absorb and accumulate elements under soil pollution conditions and is determined as the ratio of the metal content in the aboveground biomass to its concentration in the roots. TF and DC values have shown a significant accumulation of elements by plants from the soil, as well as their translocation from the root system to the aboveground part. It has been revealed that even within the same Poaceae family, cultural species are more sensitive to man-made pollution than wild-growing ones.

  相似文献   

5.
The concentrations of 27 elements in Jamaican food categories consisting of fruit, legumes, leafy and root vegetables and other root crops are reported. The main analytical techniques used were neutron activation analysis and flame and graphite furnace atomic absorption spectrophotometry. The results are compared, where possible, with values from Denmark, the United Kingdom, the United States and Nigeria, and with some regulatory limits. Over 75% of the results for antimony, arsenic, barium, cerium, thorium and uranium were below the respective sample detection limits but even among these, some of the maximum values observed indicate that further examination may be useful for those foods grown in the regions of highest uptake and consumed in large amounts. The other elements reported are bromine, cadmium, calcium, caesium, cerium, chromium, copper, europium, hafnium, iron, lanthanum, lead, magnesium, manganese, phosphorus, potassium, rubidium, scandium, samarium, sodium, strontium, thorium, uranium, and zinc. Many of these elements occur at concentration levels above those reported from the other countries but it seems unlikely that most of these will contribute significantly to public health risk. However, at this stage cadmium clearly appears to be the element of greatest concern in the Jamaican food chain. The observed range of cadmium concentrations suggests that factors such as land selection, coupled perhaps where necessary, with suitably modified agricultural practices, is a feasible way to reduce the cadmium content of certain local foods.  相似文献   

6.
Soils are extremely rich in biodiversity, and soil organisms play pivotal roles in supporting terrestrial life, but the role that individual plants and plant communities play in influencing the diversity and functioning of soil food webs remains highly debated. Plants, as primary producers and providers of resources to the soil food web, are of vital importance for the composition, structure, and functioning of soil communities. However, whether natural soil food webs that are completely open to immigration and emigration differ underneath individual plants remains unknown. In a biodiversity restoration experiment we first compared the soil nematode communities of 228 individual plants belonging to eight herbaceous species. We included grass, leguminous, and non-leguminous species. Each individual plant grew intermingled with other species, but all plant species had a different nematode community. Moreover, nematode communities were more similar when plant individuals were growing in the same as compared to different plant communities, and these effects were most apparent for the groups of bacterivorous, carnivorous, and omnivorous nematodes. Subsequently, we analyzed the composition, structure, and functioning of the complete soil food webs of 58 individual plants, belonging to two of the plant species, Lotus corniculatus (Fabaceae) and Plantago lanceolata (Plantaginaceae). We isolated and identified more than 150 taxa/groups of soil organisms. The soil community composition and structure of the entire food webs were influenced both by the species identity of the plant individual and the surrounding plant community. Unexpectedly, plant identity had the strongest effects on decomposing soil organisms, widely believed to be generalist feeders. In contrast, quantitative food web modeling showed that the composition of the plant community influenced nitrogen mineralization under individual plants, but that plant species identity did not affect nitrogen or carbon mineralization or food web stability. Hence, the composition and structure of entire soil food webs vary at the scale of individual plants and are strongly influenced by the species identity of the plant. However, the ecosystem functions these food webs provide are determined by the identity of the entire plant community.  相似文献   

7.
大气CO2体积分数升高对植物N素吸收的影响   总被引:3,自引:0,他引:3  
庞静  朱建国  谢祖彬 《生态环境》2005,14(3):429-433
从影响植物N素吸收的因素来看,大气CO2体积分数升高条件下植物净光合作用增强,碳同化产物增多,利于改善N素吸收的能量和物质基础:植物根系生长增强,生物量增多且空间分布加大,有利于N素吸收;但土壤有效N供应能力的变化存在增强和减弱两种观点。从植物N素吸收的实际情况来看,大气CO2体积分数升高条件下植物N吸收总量并末增加,植物体内N质量分数普遍降低,某些种类植物N吸收形态也发生了改变。因此要阐明大气CO2体积分数升高对植物N素吸收的影响机制,必须探明土壤有效N供应能力的变化:CO2体积分数升高条件下N矿化作用是否增强,微生物和植物间是否存在对有效N的竞争,此外,CO2体积分数升高条件下植物根系形态特征变化和N素吸收(包括主动和被动吸收)的生理机制及其与环境因素的关系也值得进一步研究。  相似文献   

8.
利用连续萃取程序和加入外源化合物进行培养的方法,考察了土壤阳离子交换量(CEC)和土壤粘粒矿物含量的变化对土壤中钍形态分布的影响,随着CEC的增加,土壤中非残留态钍增加,而稳定态钍降低.随着土壤粘粒矿物含量的增加,土壤中残留态钍的含量明显增加,非残留态钍含量降低.  相似文献   

9.
In order to reveal possible cause-and-effect relationships and correlations between geochemical variables and the incidences of various forms of cancer, geochemical maps (soil and groundwater) and cancer maps of Finland are compared using standard methods of correlation analysis. The cancer incidence maps published by the Finnish Cancer Registry and soil and groundwater geochemical maps published by the Geological Survey of Finland, both in colour, were decoded to numerical incidence or concentration values by placing a rectangular grid of 684 evenly spaced observation points over each map representing the entire area of the mainland of Finland,i.e. the points were located at intervals of about 25 kilometres on the ground. Bivariate correlation coefficients were calculated between the variables for cancer incidence and the geochemical data matrices. As a general rule, the results show a low degree of correlation between the variables (r = 0.00 – 0.40), which suggests that the types studied of cancer are not related to the geochemical variables. There are a few possible exceptions, however, such as cancer of the colon in males and females in relation to arsenic and uranium in the soil and hardness of the groundwater, where the Spearman product-moment correlation coefficients are 0.59, 0.55 and 0.51 respectively, so that the cancer case may have a geochemical factor implicated in their aetiology, albeit very vaguely. The relatively high correlation coefficients (0.61, 0.62 and 0.63 respectively) recorded for the dependence of total cancer in females on groundwater hardness and uranium and arsenic in till must be regarded as meaningless in view of the multicausative aetiology of total cancer (all forms combined).  相似文献   

10.
A laboratory experiment was conducted to examine variation of juvenile growth (% d-1) of the polychaete Nereis virens (Sars) in relation to tidal flat plant species as food sources. We used vegetable materials (algae and vascular plants) which are carried along by tidal currents and are found abundantly at the upper tidal level. Juveniles (2-yr-old) markedly increased in wet weight with the algae Laminaria longicruris (weight-specific growth rate : 1.7% d-1) and Enteromorpha intestinalis (: 1.6% d-1) as food sources. A higher value of assimilation efficiency was observed for algal species (L. longicruris 55.1±7.9%; E. intestinalis 54.8±0.5%; Fucus vesiculosus 40.6%) than for marine vascular plants (Spartina alterniflora 26.8±10.9%; Zostera marina 1.4%). The digestion of marine vascular species lasts longer (19 to 38 h) than that of algal species. All these characteristics (growth, assimilation efficiency and duration of the digestive process) seem to correlate positively with lignin and cellulose concentrations in the plant structure.  相似文献   

11.
The results of lysimeter experiments conducted since 1991 dealing with the behavior of PAH in soil/plant systems demonstrate that the PAH pollution to cultivated plants may be caused by both atmospheric deposition and by the soil-to-plant transfer observed in contaminated sites. In the latter, a “direct contamination” of plant surfaces with PAH-loaded soil particles and the subsequent PAH turnover by desorption/adsorption processes is seen to dominate—at least for the most relevant PAHs toxic to humans, benzo(a)pyrene and dibenz(a,h)anthracene. Leafy vegetables growing close to the soil surface are therefore endangered most by a PAH contamination of the soil. The soil-to-plant transfer via “direct contamination” can be reduced to a high degree by covering the contaminated soil with different mulch materials. Systematic PAH transfer via root uptake could not generally be observed. From the reported results, a trigger value in the soil of 1 mg·kg?1 for benzo(a)pyrene is proposed to make a judgement on PAH contaminated soils with regard to the soil-to-plant transfer pathways. Soils with excessive concentrations of benzo(a)pyrene demand special attention when considering the recommendations for the growth and consumption of cultivated vegetables. The “soil”as well as the “deposition pathways” must be integrated into a complete risk assessment of locations with food plant production, especially in urban areas.  相似文献   

12.
The lower reaches of the Heihe River, in northwestern China, is characterised by unique local edaphic conditions that have influenced the development of local desert riparian forests. This study examines the variations in spatial variation patterns to reveal the relationships between plant species diversity and soil moisture/salinity/texture gradients at different soil depths, providing insights into the management and restoration of vegetation in ecosystems in the study area. The species–environmental relationships are investigated by redundancy analysis based on the plant species diversity matrix and the edaphic gradient matrix. A survey of 61 sampling plots identified 37 plant species in the study area. The distribution pattern of the plant species diversity are mainly affected by soil moisture, soil salinity, and soil texture at different soil depths. These edaphic factors are able to explain 98.47% of the total variation in the analysed vegetation dataset. Soil moisture, salinity, and texture content vary in terms of both the soil depths and the vegetation types in the study area. The plant community Class IV, xeric shrub, has the lowest soil water content among different vegetation types. The surface soil salinity differs for different plants and follows the order: Sophora alopecurides?>?Tamarix chinensis?>?Populus euphratica.  相似文献   

13.
Microbial associations may influence the negative effects of potentially toxic elements on plants. In a greenhouse experiment, the growth; biochemical response; and Pb, Fe, and Zn uptake of Onopordum acanthium L. were investigated in response to inoculation with arbuscular mycorrhizal fungi, AMF (a mixture of Funneliformis mosseae, Rhizophagus irregularis, and Rhizophagus fasciculatus) and plant growth-promoting rhizobacteria, PGPR (a mixture of Pseudomonas species including P. putida, P. fluorescens, and P. aeruginosa) at increased Pb levels in soil. The treatments were arranged as a factorial experiment based on a randomised complete block design. Results revealed that inoculation with AMF and PGPR decreased Pb toxicity in plants. Inoculated plants with AMF and PGPR had higher shoot and root dry weight compared with the non-inoculated plants. In this study, AMF and PGPR inoculation led to a significant increase (P?≤?.05) in chlorophyll a, b, chlorophyll a+b, carotenoid, proline, and relative water content of plants. Furthermore, AMF and PGPR inoculation likely played a more important role in growth and Pb uptake in O. acanthium L. Our results suggest that AMF and Pseudomonas bacteria could be effective bio-inoculants for enhancing the plant growth and Pb uptake by inhibiting the adverse effects of Pb in O. acanthium.  相似文献   

14.
Summary The palatability of plants was studied in young, immature and adult geese of three species,Anser anser, Anser indicus andBranta canadensis, with respect to secondary plant metabolites. In their first 1–4 weeks of life, hand-reared goslings feed on a wide variety of plants, more or less irrespective of their allelochemical contents. Older birds become more selective, but still consume plants which are normally considered to be unpalatable or even toxic for other animals. Choice experiments were performed with pure secondary metabolites which were offered on otherwise highly palatable food items, such as leaves ofTaraxacum officinale. These experiments revealed a similar trend, in that very young goslings discriminate their food much less than older goslings or adult geese. In general, food contaminated with essential oils was rejected, whereas alkaloids, glycosides, amines and sulfur compounds were tolerated to a remarkable degree. In consequence, especially young, but also adult geese must have a high capacity to tolerate and/or to detoxify dietary allelochemicals. Another detoxification mechanism became evident during the experiments: geese ingest soil and mud quite regularly. It could be shown experimentally that the respective soil had a high capacity to bind alkaloids. We assume that geophagy is a means (besides a presumed active detoxification in the liver) to adsorb and thus reduce the contents of dietary allelochemicals.  相似文献   

15.
Geochemical mapping of soils and selected plant species has been carried out in the Mole National Park, Ghana. The distribution of the essential nutrients: cobalt, copper and manganese is largely controlled by bedrock geology, while the geochemical dispersion of Ca, I, Fe, Mg, Mo, P, K, Se, Na and Zn has been modified by soil and hydromorphic processes. From selective extraction experiments, Fe, Mn and Co are found to be largely fixed in the soil mineral fraction. Larger proportions of Cu, I, Mo, Se and Zn are EDTA extractable and have a high chelation potential.Cobalt, Cu and Mn were preferentially concentrated in grass species while molybdenum and selenium are concentrated in browse plants. Copper uptake is antagonistic to Fe, Mo and Zn accumulation in all plant and grass samples. Similarly, Se and Mn appear antagonistic and Fe uptake is antagonistic to Co, Cu, Mn, Mo and Zn.The low concentration of P points to a potential dietary deficiency of this element throughout the park. Cobalt deficiency may also occur due to a love extractability of these elements in the soils and low concentration in plants. However, the lack of data on the elemental requirements of wildlife allows only tentative conclusions to be drawn.  相似文献   

16.
Nishida  Ritsuo 《Chemoecology》1994,5(3-4):127-138
Summary A number of aposematic butterfly and moth species sequester toxic substances from their host plants. Some of these insects can detect the toxic compounds during food assessment. Some pipevine swallowtails use aristolochic acids among the host finding cues during oviposition and larval feeding and accumulate the toxins in the body tissues throughout all life stages. Likewise, a danaine butterfly,Idea leuconoe, which sequesters high concentrations of pyrrolizidine alkaloids in the body, lays eggs in response to the specific alkaloid components contained in the apocynad host. Insect species sharing the same poisonous host plants may differ in the degree of sequestration of toxins. Two closely ralated aposematic geometrid moth species,Arichanna gaschkevitchii andA. melanaria, sequester a series of highly toxic diterpenoids (grayanotoxins) in different degrees, while a cryptic geometrid species,Biston robstus, does not sequester the toxins, illustrating the diversity in adaptation mechanisms even within the same subfamily. By contrast, a number of lepidopteran species store the same compounds though feeding upon taxonomically diverse plant species. A bitter cyanoglycoside, sarmentosin, was characterised from several moth species in the Geometridae, Zygaenidae and Yponomeutidae, and from the apollo butterflies,Parnassius spp. (Papilionidae), although each species feeds on different groups of plants.Interspecific similarities and differences in life history and ecology are discussed in relation to variable characteristics of sequestration of plant compounds among these lepidopteran insects.  相似文献   

17.
This report shows a higher soil quality under medicinal plants versus food-crop plants. Long-term continuous cultivation of food crops induces changes of soil properties that can lead to fertility loss and, in turn, decline of food productivity. Effect of cropping on soil changes has been studied mainly for food crops and vegetables worldwide, whereas soil changes in herbal fields are scarcely known. Therefore, we compared here soil nutrients and soil chemical properties of herbal fields, cultivated with Chinese medicinal plants, and food-crop fields. Fields are located at the famous traditional planting base of Chinese medicinal plants in Anguo, China. The results showed that in herbal fields, soil nitrate, available P, soil organic matter (SOM), and electrical conductivity decreased with soil depth, whereas soil pH and soil water content increased with depth. In herbal fields, soil nitrate, available P contents, and soil electrical conductivity were higher than those of food-crop fields at various soil layers. SOM and soil water content were similar in herbal and food-crop fields. Soil pH of herbal fields at 0–20 cm was lower than those of food-crop fields. Findings show overall that soil nutrient accumulation and changes under medicinal plants are higher than food-crop fields.  相似文献   

18.
The present research focused on the experimental investigation of phytoreclamation of areas affected by sewage sludge disposal and improving the quality of the sludge. It was conducted in two stages: laboratory and pilot applications. This paper reports on the first stage, which tested, under greenhouse conditions, the possibility of using various species of plants cultivated in the sludge from the Thessaloniki Wastewater Treatment Plant (ThWWTP, Greece) with different amendments. The results of the 30-day experiment showed that the quality of the output sludge material varied significantly in comparison to the input sludge material. These variations were considered as positive, as the output sludge obtained texture and structure, aeration conditions were improved, and the content of some trace metals, excess nutrients (e.g., P), and salts (of Na) were reduced. These were all influenced by both the type of treatment and the plant species used. In conclusion, the best treatments, T1, T3, and T4 (soil/sludge mixture 70%/30%, soil/sludge/gravel mixture 50%/25%/25%, and soil/sludge/gravel mixture 45%/45%/10%, respectively), and the best suited plant species, Helianthus annuus L. and Zea mays L., were proposed to be used in the pilot application (in situ) at the site within the ThWWTP.  相似文献   

19.
The predominant pathway for human exposure to chromium in non‐occupationally exposed individuals is via food with a daily intake of around 30–100 μgd–1, with vegetables providing a major contribution. Unlike reports of chromium essentiality to man and animals, plants appear not to require chromium in spite of some early reports of a stimulatory growth effect.

Most reports on chromium in plants have been concerned with their growth on soils amended with sewage sludge, pF‐ash, tannery waste, or on ultra basic soils, which contain extreme concentrations of the element. Experimental studies with plants grown in hydroponic solution have often been undertaken at unrealistically high concentrations to examine the uptake of chromium in various forms, either as CrIII or CrVI at different pHs. In most cases, reports on chromium in plants deal with element concentrations and plant/soil relationships rather than detailed biochemical and physiological processes.

In general, chromium is largely retained in the roots of plants, although the oxidation state of chromium, pH, presence of humates and fulvates and plant species, affect plant uptake and transport. Leaves usually contain higher concentrations than grains. The uptake of CrIII is largely a passive process, whereas CrVI uptake is a metabolically mediated process via the sulphate pathway and is thus readily transported around the plant. The presence of a compound similar to trioxalate CrIII has been recorded while little chromium has been reported to be associated with cell organelles or soluble proteins.  相似文献   

20.
Kahmen A  Renker C  Unsicker SB  Buchmann N 《Ecology》2006,87(5):1244-1255
The relationship between plant diversity and productivity has largely been attributed to niche complementarity, assuming that plant species are complementary in their resource use. In this context, we conducted an 15N field study in three different grasslands, testing complementarity nitrogen (N) uptake patterns in terms of space, time, and chemical form as well as N strategies such as soil N use, symbiotic N fixation, or internal N recycling for different plant species. The relative contribution of different spatial, temporal, and chemical soil N pools to total soil N uptake of plants varied significantly among the investigated plant species, within and across functional groups. This suggests that plants occupy distinct niches with respect to their relative N uptake. However, when the absolute N uptake from the different soil N pools was analyzed, no spatial, temporal, or chemical variability was detected, but plants, and in particular functional groups, differed significantly with respect to their total soil N uptake irrespective of treatment. Consequently, our data suggest that absolute N exploitation on the ecosystem level is determined by species or functional group identity and thus by community composition rather than by complementary biodiversity effects. Across functional groups, total N uptake from the soil was negatively correlated with leaf N concentrations, suggesting that these functional groups follow different N use strategies to meet their N demands. While our findings give no evidence for a biodiversity effect on the quantitative exploitation of different soil N pools, there is evidence for different and complementary N strategies and thus a potentially beneficial effect of functional group diversity on ecosystem functioning.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号