首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In order to determine the role of termites in the recycling of organic matter and in humification processes, organic matter from the mound of a wood-feeding termite (Nasutitermes sp.) and from the litter directly below has been studied in secondary forest on the campus of Belem University, in Brazil. The carbon content was slightly lower in the litter (just beneath the mound) than in the mound, but nitrogen was much more abundant in the mound. As a consequence, the C/N ratio of fragmented litter total organic matter is very high, which shows that the humification process is not complete. Therefore, plant debris seemed to be more degraded in the mound than in the litter, indicating a humification gradient from mound to litter. Humic acid extracted from the mound and from the litter was compared by using elemental, E4/E6 ratio, spectroscopic (FTIR) analyses, and Sephadex gel chromatography. First, humic acids were more abundant in the mound than in the litter, showing that humification processes were more advanced in the mound than in the litter. Gel-permeation chromatography showed that the humic acids of the mound contained more low-molecular-weight fractions than those of the litter. In addition, the results of infrared spectra, E4/E6 ratio and elemental composition can confirm the fulvic character of mound material and the humic character of litter material. Therefore, the plant debris seems to follow two different humification pathways in the two environments, as long as the mound is alive.  相似文献   

2.
Fluorescence spectroscopy is widely used to study water pollution. The fluorescence of water natural organic matter can be classified into two groups: the protein-like fluorescence originating from aromatic amino acids and the humic fluorescence originating from humic substances. Actually, the precise molecular origin of the protein-like fluorescence is unknown because this fluorescence may be caused by either free amino acids, peptides or proteins. Therefore, we studied the molecular origin of the protein-like fluorescence of Suwannee River natural organic matter and fractions A, B and C + D obtained by size exclusion chromatography/polyacrylamide gel electrophoresis. Fractions were analyzed by reversed-phase high-performance liquid chromatography. The electrophoretic mobilities of fractions varied in the order C + D > B > A and the molecular size in the opposite order. Our results show that the protein-like fluorescence is almost exclusively located in high molecular size fraction A and medium molecular size fraction B. Retention times and fluorescence emission spectra of authentic free aromatic amino acids tyrosine and tryptophan were identical with the retention times and emission spectra of several chromatographic peaks of fractions A and B. More than 50 % of the protein-like fluorescence is due to free aromatic amino acids incorporated in water natural organic matter.  相似文献   

3.
Dissolved organic matter (DOM) is an important component of plant-soil systems. Its essential role in soil solution chemistry, soil-forming processes and its effects on biota, including soil fauna, bacteria, fungi and plants, is extensively documented in literature. in this contribution several forest leaf litter types are compared as sources of DOM and the released organics are subjected to gel permeation chromatography to reveal their molecular-size distribution. Moreover, complexing properties, as an indication for the podzolization potential of the litter leachates, were established. the occurrence and properties of DOM in different soil horizons were monitored beneath a stand of Scots pine. the effects of the different groups of soluble organics including phenolic, fulvic and humic acids, and of water-extractable humic substances on the performance of herbaceous plants of the forest floor are briefly reviewed.  相似文献   

4.
An overview of the methods used for the isolation and characterization of organic matter in natural waters is presented. Commonly used techniques for the concentration and isolation of organic matter from water, such as preparative chromatography, ultrafiltration and reverse osmosis, and the methods used to analyze the organic matter obtained by these methods are reviewed. the development of methods to obtain organic matter that is associated with fractions of the dissolved organic carbon other than humic substances, such as organic bases, hydrophilic organic acids and colloidal organic matter are discussed. Methods specifically used to study dissolved organic nitrogen and dissolved organic phosphorous are also discussed.  相似文献   

5.
An overview of the methods used for the isolation and characterization of organic matter in natural waters is presented. Commonly used techniques for the concentration and isolation of organic matter from water, such as preparative chromatography, ultrafiltration and reverse osmosis, and the methods used to analyze the organic matter obtained by these methods are reviewed. the development of methods to obtain organic matter that is associated with fractions of the dissolved organic carbon other than humic substances, such as organic bases, hydrophilic organic acids and colloidal organic matter are discussed. Methods specifically used to study dissolved organic nitrogen and dissolved organic phosphorous are also discussed.  相似文献   

6.
Cations in soil are essential for the growth of plants and micro-organisms. Their availability is dependent on soil organic matter. Soil organic matter (SOM) is heterogeneous comprising amino, aliphatic and phenolic acids, but particularly humic substances. All these substances can complex cations selectively. Mechanisms of complexation with dissolved organic matter are discussed. Such complexation can lead to the apparently contradictory observations that dissolved organic matter (DOM) can either increase the concentration of some less soluble nutrients, making them more available for plant uptake, or make them less available and hence less toxic. the importance of DOM is discussed in relation to soil solution, particularly the rhizosphere, and also in relation to aquatic systems. the latter systems contain mainly dissolved humic substances whereas in the soil, non-humic substances assume a greater importance.

SOM in the rhizosphere is derived from plant, microbial and animal remains but much, especially the water-soluble compounds, are acquired through root exudation. Exudation has important consequences for enhanced nutrient availability as a result of the production of non-humic substances such as amino, aliphatic and phenolic acids. in future, the role of root exudation in relation to DOM and nutrient availability should be investigated more fully, particularly as predicted elevated CO2 levels are likely to have a major impact on root exudation, nutrient availability, and possibly ecosystem community structure and functioning. It is likely that more information will become available on aquatic systems as more highly sensitive techniques and equipment capable of dealing with low concentrations of DOM in these systems become available.  相似文献   

7.
Cations in soil are essential for the growth of plants and micro-organisms. Their availability is dependent on soil organic matter. Soil organic matter (SOM) is heterogeneous comprising amino, aliphatic and phenolic acids, but particularly humic substances. All these substances can complex cations selectively. Mechanisms of complexation with dissolved organic matter are discussed. Such complexation can lead to the apparently contradictory observations that dissolved organic matter (DOM) can either increase the concentration of some less soluble nutrients, making them more available for plant uptake, or make them less available and hence less toxic. the importance of DOM is discussed in relation to soil solution, particularly the rhizosphere, and also in relation to aquatic systems. the latter systems contain mainly dissolved humic substances whereas in the soil, non-humic substances assume a greater importance.

SOM in the rhizosphere is derived from plant, microbial and animal remains but much, especially the water-soluble compounds, are acquired through root exudation. Exudation has important consequences for enhanced nutrient availability as a result of the production of non-humic substances such as amino, aliphatic and phenolic acids. in future, the role of root exudation in relation to DOM and nutrient availability should be investigated more fully, particularly as predicted elevated CO2 levels are likely to have a major impact on root exudation, nutrient availability, and possibly ecosystem community structure and functioning. It is likely that more information will become available on aquatic systems as more highly sensitive techniques and equipment capable of dealing with low concentrations of DOM in these systems become available.  相似文献   

8.
Nanoparticles occurring in the environment originate either from engineered, synthetically produced nanoparticles, or from naturally produced nanoparticles. The latter can be formed in natural media by light-induced reduction of metal ions in presence of natural organic matter, such as humic substances occurring widely in waters, soils and sediments. There is actually few knowledge on the effect of sunlight and of the nature of organic matter on nanoparticle formation. Therefore, we studied here the photoreduction of silver(I) ion to silver nanoparticles with and without ferrous ion under oxic and anoxic conditions, using humic and fulvic acids as proxies of natural organic matter. UV light-induced formation of silver nanoparticles was monitored up to 60 min by measuring surface plasmon resonance in air-saturated mixture and nitrogen-saturated mixture of silver(I) ion–organic matter. Results show that the surface plasmon resonance intensity was about 2.5 times higher in the nitrogen-purged solution mixture than the air-saturated solution. This finding suggests the oxygen-containing species had no major role in forming silver nanoparticles. Therefore, photo-driven formation of silver nanoparticles most likely involved photoactivation of silver(I) ion and natural organic matter complexes. We observed also that both iron(II) and iron(III) ions highly modified the surface plasmon resonance spectra of the particles with broader features. Results also reveal that in the presence of humic acid, the intensity of the surface plasmon resonance peak decreased by at least 50 %, while almost no change in the intensity was seen when fulvic acid was used. Overall, our findings demonstrate that the ligand–metal charge transfer process, affected by the nature of organic matter, i.e., humic acid versus fulvic acid, was influenced by redox iron species.  相似文献   

9.
褐煤风化过程中化学特性的变化   总被引:2,自引:0,他引:2  
本文测定了6种不同风化程度褐煤的化学性状。结果表明,随着在自然界堆积风化时间的延长,褐煤的总碳,总氮含量及碳氮比都下降,灰分含量则增大,可提取的腐植酸及黄腐酸量明显增大,且紫外吸光值呈系统变化,尤其是黄腐酸中聚乙烯吡咯烷酮树脂可吸附部分(黄腐酸中腐植部分)随风化加深而降低,各种不同风化程度褐煤中腐植酸的红外吸收光谱变化不是很明显,且与土壤腐植吸收光谱相似。  相似文献   

10.
Considerable organic matter remains in municipal solid waste landfill leachate after biological treatments. Humic substances (HSs) dominate the organic matter in bio-treated landfill leachate. In this study, the HSs from landfill leachate treated by membrane bioreactor (MBR-HSs) were analyzed via elemental analysis, ultraviolet-visible spectroscopy, Fourier transform infrared spectroscopy, and charge polarized magic-angle spinning-13C-nuclear magnetic resonance. The characteristic absorption in the UV wavelength range indicated the presence of high C=C and C=O double bonds within the MBR-HSs. Compared with commercial HSs, MBR-HSs had lower carbon content [48.14% for fulvic acids (FA) and 49.52% for humic acids (HA)], higher nitrogen content (4.31% for FA and 6.16% for HA), lower aromatic structure content, and higher carbohydrate and carboxylic atoms of carbon content. FA predominantly had an aliphatic structure, and HA had less condensed or substituted aromatic ring structures than natural HA. The aromatic carbon content of MBR-HSs was lower than that of humus-derived HSs but higher than that of waste-derived HSs, indicating that MBR-HSs appeared to be more similar to humus-derived HSs than waste-derived HA.  相似文献   

11.
• Humification evolution was identified with non-destructive characterization method. • Humification process from precursors to fulvic and humic acid was confirmed. • MnO2 alone had limited oxidation ability to form HA. • MnO2 played a key role as a catalyst to transform FA to HA in the presence of O2. • MnO2 could affect the structure of the humification products. Abiotic humification is important in the formation and evolution of organic matter in soil and compost maturing processes. However, the roles of metal oxides in abiotic humification reactions under micro-aerobic remain ambiguous. The aim of this study was to use non-destructive measurement methods to investigate the role of MnO2 in the evolution of humic substances (HSs) during oxidative polymerization of polyphenol-amino acid. Our results suggested a synergistic effect between MnO2 and O2 in promoting the polymerization reaction and identified that MnO2 alone had a limited ability in accelerating the transformation of fulvic acid (FA) to humic acid (HA), whereas O2 was the key factor in the process. Two-dimensional correlation spectroscopy (2D-COS) showed that the evolution in the UV-vis spectra followed the order of 475–525 nm>300–400 nm>240–280 nm in the humification process, indicating the formation of simple organic matter followed by FA and then HA. 13C nuclear magnetic resonance (13C NMR) analysis revealed that the products under both air and N2 conditions in the presence of MnO2 had greater amounts of aromatic-C than in the absence of MnO2, demonstrating that MnO2 affected the structure of the humification products. The results of this study provided new insights into the theory of abiotic humification.  相似文献   

12.
苏欣颖  王宇  程欣  周剑霜 《环境化学》2021,40(1):312-320
研究雨雪中的溶解性有机物(DOM)将有利于把握其理化性质及其在生态系统中的行为和功能.本研究运用三维荧光光谱(EEMs)技术结合平行因子分析(PARAFAC)、紫外-可见光谱技术(UV-vis),对哈尔滨市2018年3月1日降雪样品中DOM的光谱特性及来源进行解析.结果表明,降雪样品中DOM的相对分子质量较大,芳香构造程度较高,C=C不饱和双键结构较多,腐殖化程度更高,结构更复杂,芳环上含氧官能团含量较少,有机质疏水性较强;EEMs结合PRAFAC解析出3种组分,分别为类腐殖质类物质(C1和C2)和类色氨酸(C3),荧光特征参数(荧光指数FI、自生源指数BIX、腐殖化系数HIXb和新鲜指数β∶α)表明,降雪样品中DOM受陆源和生物源同时作用,腐殖化程度较高且受到陆源影响严重,自生源组分较少,新生成的DOM比例较低.  相似文献   

13.
A disturbance, such as species invasion, can alter the exchange of materials and organisms between ecosystems, with potential consequences for the function of both ecosystems. Russian olive (Elaeagnus angustifolia) is an exotic tree invading riparian corridors in the western United States, and may alter stream organic matter budgets by increasing allochthonous litter and by reducing light via shading, in turn decreasing in-stream primary production. We used a before-after invasion comparison spanning 35 years to show that Russian olive invasion increased allochthonous litter nearly 25-fold to an invaded vs. a control reach of a stream, and we found that this litter decayed more slowly than native willow. Despite a mean 50% increase in canopy cover by Russian olive and associated shading, there were no significant changes in gross primary production. Benthic organic matter storage increased fourfold after Russian olive invasion compared to pre-invasion conditions, but there were no associated changes in stream ecosystem respiration or organic matter export. Thus, estimated stream ecosystem efficiency (ratio of ecosystem respiration to organic matter input) decreased 14%. These findings show that invasions of nonnative plant species in terrestrial habitats can alter resource fluxes to streams with consequences for whole-ecosystem functions.  相似文献   

14.
Sea water was collected at several stations in the Bay of Lim at a depth of one meter below the surface, and before analysis, was filtered with 0.45-μm Millipore filters. Shallow water sediments were collected at the same locations. Humic acids used in this work were separated from near-shore sediments taken from various saline waters of the Bay of Lim. The prepared humic acids were then analysed for their elementary composition and also for positions of their hydrolytic products to obtain more data on how and to which characteristic part, the trace elements were related. The hydrolysis of humic acids was done by chemical methods in order to obtain four main components: amino acids, sugars, phenols and condensed benzene core. Neutron activation analysis was used for trace element analysis in evaporated portions of filtered sea water, sediments, soil, living organisms, humic acids and their hydrolytic products. This work was undertaken to obtain more data on the organic matter present in sediments and in seagrass flats, and also to collect more data on trace elements that are associated with typical and representative samples for the Bay of Lim. Analyses of trace elements associated with either humic acids or their hydrolytic products were performed with the purpose of gaining evidence as to which part of humic acids metals are bound. Humic acids or their decomposition products play an important role in the distribution and availability of a number of essential or nonessential trace elements. Results of this work indicate that humic acids influence the process of redistribution of trace elements in the investigated local coastal area.  相似文献   

15.
不同时期添加蘑菇渣对落叶堆肥过程的影响   总被引:3,自引:0,他引:3  
研究不同时期添加蘑菇渣对落叶堆肥过程的影响.结果表明:堆肥降温期添加蘑菇渣有利于提高有机质的降解率,堆肥末期各处理有机质降解率分别为15.85%,10.17%,12.90%和15.16%;有利于吸收固定堆肥中的氨,减少氨的挥发,降低堆肥的pH值.在堆肥初始一次性添加蘑菇渣,有利于堆肥总氮的积累,提高堆肥产品中胡敏酸和腐殖质含量,降低堆肥总氮损失率.在堆肥初始和降温期分次添加蘑菇渣有利于堆肥硝态氮的合成,富里酸的分解以及HA/FA的增加.在整个堆肥过程中,各处理HA和HA/FA均呈增加趋势,FA呈降低趋势,较好地反映了落叶堆肥的腐熟程度.在堆肥不同阶段添加蘑菇渣各有其优点,综合后认为在堆肥初始添加蘑菇渣的效果最为理想.  相似文献   

16.
Organo-clay complexes in soil are a major sink for xenobiotics and, thus, often enhance their persistence dramatically. However, the knowledge on environmental processes of non-extractable residue formation on a short time scale is very restricted. Therefore, this study examined the distribution of 4-(3,5-dimethylhept-3-yl)phenol (NP) and 4-chloro-2-methylphenoxyacetic acid (MCPA) in soil over a short time period of 48 h and in different soil sub-fractions. The overall proportion of organo-clay-associated bound residues was not only abundant but also in the same range for both substances (MCPA: 8%; NP: 11% of applied 14C-radioactivity). However, a more detailed view revealed two different distribution patterns: a higher proportion of clay-associated NP was accompanied by a lower content of bound residues, whereas a smaller fraction of clay-associated MCPA was characterized by a higher proportion of non-extractable residues. Further on, a selective accumulation of bound residues among clay-associated humic fractions was observed. NP residues were linked predominantly to humic acids, whereas MCPA residues tended to be incorporated more into fulvic acids. It was evident that the overall distribution was influenced primarily by the physico-chemical properties of the contaminants. This study demonstrates in detail a rapid initial incorporation accompanied by a specific distribution into soil sub-fractions for selected xenobiotics in soil and points to a complex interaction of clay-associated organic matter with low molecular weight compounds.  相似文献   

17.
王婷  郭红岩  季荣 《生态环境》2010,19(5):1226-1231
近地面大气臭氧(O3)含量不断升高对生态环境的影响已引起人们的广泛关注,然而O3含量升高对土壤有机碳的矿化及转化影响却少有研究。土壤有机碳是全球碳循环的重要组成部分,土壤碳库的微小变化将引起大气CO2浓度的显著改变。文章以典型土壤腐殖质单体化合物儿茶酚为代表,利用14C示踪技术,研究了O3含量比当前背景升高约0.15μmol·mol-1时对土壤中腐殖质苯酚类前体化合物的矿化及转化的影响。结果表明,O3含量升高会对土壤中培育12d后儿茶酚的矿化及残留物分布具有显著的影响,而且这种影响程度和规律同土壤有关。O3含量升高促进了黄棕壤中儿茶酚的矿化,增加了儿茶酚残留物在黄棕壤腐殖酸(HA)中的总量,并使残留物在HA中偏向于同大分子结合。O3含量升高对灰潮土中儿茶酚的矿化有抑制作用,但对儿茶酚残留在HA内总量及分布没有显著影响。O3含量升高对儿茶酚在土壤中的稳定性及归趋的影响可能是O3对于微生物活性的抑制作用和O3的直接氧化作用的共同结果。后续工作中应研究土壤腐殖质中其它组份的稳定性及转化对近地面大气O3含量升高的响应,以全面考察O3含量升高对土壤碳库的影响。  相似文献   

18.
Elemental analysis, fluorescence spectroscopy and differential scanning calorimetry (DSC) were applied to the study of fulvic acids isolated from different stages during olive mill waste composting. The fulvic extracted acids are characterized by a high nitrogen content and O/C ratio values that may result from the high degree of humification and the synthesis of more condensed humic complexes. This was confirmed by fluorescence spectroscopy in the synchronous-scan mode by the decrease of shoulder intensities at intermediate wavelengths indicating the increase of polycondensation and conjugation of unsaturated structures and the greater uniformity of fluorophores. Fluorescence spectra in the emission, excitation and synchronous modes became simpler with compost maturation. This was confirmed by DSC results which proved the high degree of polycondensation of aromatic nuclei of fulvic acid molecules during olive mill waste composting.  相似文献   

19.
Elemental analysis, fluorescence spectroscopy and differential scanning calorimetry (DSC) were applied to the study of fulvic acids isolated from different stages during olive mill waste composting. The fulvic extracted acids are characterized by a high nitrogen content and O/C ratio values that may result from the high degree of humification and the synthesis of more condensed humic complexes. This was confirmed by fluorescence spectroscopy in the synchronous-scan mode by the decrease of shoulder intensities at intermediate wavelengths indicating the increase of polycondensation and conjugation of unsaturated structures and the greater uniformity of fluorophores. Fluorescence spectra in the emission, excitation and synchronous modes became simpler with compost maturation. This was confirmed by DSC results which proved the high degree of polycondensation of aromatic nuclei of fulvic acid molecules during olive mill waste composting.  相似文献   

20.
The adsorption of heavy metals on soil from the Neihu Landfill Site in Taipei City was investigated in order to assess the groundwater pollution problems. The effects of soil organic matter and the behaviors of organic complexing ligands like EDTA and humic acid to the overall adsorption process were studied and discussed. For explaining the results, the pH value of soil system and the properties of the soil/aqueous interface were chosen as two significant and interacted factors for discussion. The concept of the specific adsorption mechanism was also demonstrated and discussed. The results showed that the complexing ligands existing in soil liquid phase have more influences than natural organic matter does. The competitive sequences of different organic matter contents indicated that organic functional sites preferentially bind with Cu and Cd. The presence of EDTA and humic acid which formed ligandlike complexes will reduce Cd adsorption efficiency. These effects will induce mobility and the fate of heavy metals in soils, such as bioavailability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号