首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
阿特拉津在天然水体沉积物中的吸附行为   总被引:17,自引:3,他引:14  
陶庆会  汤鸿霄 《环境化学》2004,23(2):145-151
本文研究了阿特拉津在几种水体沉积物中的吸附、解吸规律,并进一步探讨了沉积物浓度、pH值和离子强度对其吸附行为的影响.结果表明,不同沉积物对阿特拉津的吸附程度由沉积物本身的总有机碳、粘土矿物、阳离子交换容量、比表面积以及铁锰氧化物等理化特性综合作用的结果,有机碳不是影响阿特拉津吸附的唯一重要因素.连续吸附实验结果指出,化合物的起始浓度愈大,吸附时间愈长,阿特拉津的最大吸附容量也愈大,且在解吸过程中表现出一定的滞后性(即不可逆吸附).沉积物浓度与其吸附量呈负相关;溶液的pH值增大,沉积物对阿特拉津吸附能力减弱;离子强度愈大,沉积物对阿特拉津吸附能力愈强.  相似文献   

2.
吸附反应时间对除草剂阿特拉津吸附行为的影响   总被引:2,自引:0,他引:2  
邓建才  蒋新  胡维平  卢信 《生态环境》2007,16(2):402-406
采用批量动态实验方法,对潮土中阿特拉津吸附特征随吸附反应时间变化进行了研究。结果表明,土壤吸附的阿特拉津量随反应时间的变化符合双曲线函数关系。在50μg·L-1~2000μg·L-1浓度系列下,在48h内,土壤颗粒对阿特拉津的吸附属于快反应,土壤吸附的阿特拉津量随吸附反应时间呈指数上升,为吸附实验结束(168h)时土壤吸附阿特拉津总量的58%到90%。当吸附反应时间超过48h后,随反应时间增加,土壤吸附阿特拉津量差异变化不显著。阿特拉津在潮土颗粒和土壤溶液中的相分配可用Freundlich方程描述。吸附容量因子Kf与吸附反应时间之间有极显著的线性正关系(r2=0.9063**,p<0.0001)。无量纲的非线性因子n与吸附反应时间之间也具有显著的线性负关系(r2=0.5666*,p=0.0192)。  相似文献   

3.
阿特拉津降解菌的生长规律及降解特征的实验   总被引:2,自引:0,他引:2  
应用了从农药厂阿特拉津生产车间污泥中分离出的菌种AT菌,进行了菌种生长曲线的测定,求得AT菌的对数期代时为3.87d,生长速率为0.258d^-1;不同基质浓度的降解实验表明,在农药污染质阿特拉津的低浓度体系中,AT菌降解阿特拉津的反应符合一级动力学模式,属于米氏方程曲线的第一阶段的情形,并拟合出关系式V=0.064S。  相似文献   

4.
This report shows an unexpected toxicity decrease during atrazine photoelectrodegradation in the presence of NaCl. Atrazine is a pesticide classified as endocrine disruptor occurring in industrial effluents and agricultural wastewaters. We therefore studied the effects of the degradation method, electrochemical and electrochemical photo-assisted, and of the supporting electrolyte, NaCl and Na2SO4, on the residual toxicity of treated atrazine solutions. We also studied the toxicity of treated atrazine solutions using Artemia nauplii. Results show that at initial concentration of 20 mg L−1, atrazine was completely removed in up to 30 min using 10 mA cm−2 electrolysis in NaCl medium, regardless of the electrochemical method used. The total organic carbon removal by the photo-assisted method was 82% with NaCl and 95% with Na2SO4. The solution toxicity increased during sole electrochemical treatment in NaCl, as expected. However, the toxicity unexpectedly decreased using the photo-assisted method. This finding is a major discovery because electrochemical treatment with NaCl usually leads to the formation of toxic chlorine-containing organic degradation by-products.  相似文献   

5.
陈为旭  张济宇 《生态环境》2010,19(8):1930-1935
针对花岗石开采加工区域受污染溪水的特点,研究聚合氯化铝PAC(絮凝剂)与聚丙烯酰胺PAM(助凝剂)在不同加入量、不同搅拌转速、不同絮凝反应时间和不同静置沉降时间条件下的污水处理效果。首先通过设计影响絮凝的单因素试验与正交试验,获得影响絮凝效果的主次因子顺序(PAM加入量〉静置沉降时间〉PAC加入量〉絮凝反应时间〉搅拌转速)与絮凝效果最佳的工艺条件(PAC=20mg.L-1、PAM=2.5mg.L-1、搅拌转速=300r.min-1、絮凝反应时间=8min、静置沉降时间=15min)。然后依此对受污染溪水原样进行絮凝处理,使受污染溪水的浊度与SS分别从原来的17.6NTU与300mg.L-1下降至0.98NTU与17mg.L-1,达到《污水综合排放标准》GB8978-1996中的一级标准(SS≤20mg.L-1),这为受污染溪水的降浊处理提供一条有效途径,对保护环境、节约水资源、降低石材企业生产成本与可持续发展具有重要意义。  相似文献   

6.
壳聚糖改性膨润土处理焦化废水的实验研究   总被引:2,自引:0,他引:2  
邵红  姜超  李辉  肖宏康 《生态环境》2010,19(5):1040-1043
焦化废水是煤制焦炭、煤气净化及焦化产品回收过程中产生的废水,其成分复杂多变,属于难处理的工业废水。利用壳聚糖对膨润土进行改性,制备了壳聚糖改性膨润土,并应用于焦化废水的处理,并对影响处理效果的工艺参数进行了优化,结果表明:在pH=8.6,投加量为10g·mL-1,搅拌时间为30min,离心时间为12min条件下,改性膨润土对焦化废水CODcr的去除率达到82.5%以上,处理效果明显优于原土和壳聚糖。此外,通过对原土和壳聚糖改性膨润土进行的比表面积和扫描电镜等表征测定分析可知,壳聚糖的加入并没有改变膨润土的基本框架,只是增大了膨润土的比表面积,从而提高吸附性能。  相似文献   

7.
Cadmium (Cd) is one of the heavy metals which contaminate the environment including water, air, and soil. At low concentrations, Cd produces adverse effects in aquatic organisms. An effort to reduce the level of Cd was conducted by removing the metal with chitosan. The aim of this study was to study the adsorption of Cd by using chitosan isolated from the shrimp Penaeus sp. as a function of stirring duration and chitosan concentration in aqueous solution. In this study, chitin was isolated by using NaOH 3% and HCl 1.25 N, adding NaOH 50% for the transformation of chitin to chitosan. For the adsorption test, chitosan was added to Cd solutions at concentrations of 0.2, 0.4, or 0.6 g per 10 ml Cd(NO3)2, stirring the solution for 5, 10, or 15 min, respectively. The results showed that the yield of isolated chitosan was 56% of crude prawn shell. The optimum concentration of chitosan was 0.6 g/10 ml with a stirring duration 10 min reducing Cd concentration by 91.7%.  相似文献   

8.
An experimental study was carried out to explore the possibility of using a prepared microporous material, Rice Husk Ash (RHA) as an alternative to the commercial Powdered Activated Carbon (PAC), to remove atrazine (ATZ) pesticide from aqueous solution. The effects of contact time and pH on the adsorption were studied using the batch technique. Based on Hückel model calculations, the zwitterion behaviour of atrazine molecule was proved to be related to the pH of zero charge point of adsorbents (6.8 for RHA and 8.2 for PAC). The results showed that the Pseudo Second Order model is applicable to both adsorbents, suggesting that chemisorption is the rate-limiting step. The equilibrium data fitted well with the Langmuir model in the case of RHA, whereas the Freundlich model better fitted the equilibrium data in the PAC case, suggesting the existence of multi-layer adsorption of atrazine. The adsorption for RHA was found to be feasible and spontaneous, with a removal capacity of atrazine of more than 7?mg?g?1. With regard to the BET surface, this removal capacity (50.5?µgATZ / m²RHA) was 25% better than that PAC (37.75µgATZ / m²PAC).  相似文献   

9.
Removal of atrazine from river waters by indigenous microorganisms   总被引:1,自引:0,他引:1  
We report the first data for atrazine removal in low-turbidity freshwaters. Atrazine is a globally applied herbicide, contamination by which may lead to direct and indirect ecotoxicological impacts. Although a common contaminant of surface waters, microbial biodegradation of atrazine in this environment has been little studied, with most work focused on soils by means of selected, atrazine-degrading bacteria-enriched cultures. Here, we measured atrazine removal from river water using a batch incubation system designed to represent environmental conditions, with water from two contrasting UK rivers, the Tamar and Mersey. Atrazine and bacterial inocula prepared from the source water were added to cleaned river water for 21-day incubations that were analysed directly by electrospray ionisation-mass spectrometry. The experimental approach was validated using peptides of different molecular mass. Results show that atrazine concentrations decreased by 11% over 21 days in Tamar samples, a rural catchment with low population density, when atrazine was the only substrate added. In contrast no removal was evident in Mersey samples, an urban catchment with high population density. When a tripeptide was added as a co-substrate, atrazine removal in the Tamar water remained at 11% while that for the Mersey water increased from 0 to 37%. Although degradation of atrazine in aerobic freshwaters is predicted according to its chemical structure, our data suggest that the composition of the bacterial population determines whether removal occurs under these conditions and at these environmentally realistic concentrations.  相似文献   

10.
Bioaugmentation with genetically engineered microorganisms (GEMs) in a membrane bioreactor (MBR) for enhanced removal of recalcitrant pollutants was explored. An atrazine-degrading genetically engineered microorganism (GEM) with green fluorescent protein was inoculated into an MBR and the effects of such a bioaugmentation strategy on atrazine removal were investigated. The results show that atrazine removal was improved greatly in the bioaugmented MBR compared with a control system. After a start-up period of 6 days, average 94.7% of atrazine was removed in bioaugmented MBR when atrazine concentration of influent was 14.5 mg/L. The volumetric removal rates increased linearly followed by atrazine loading increase and the maximum was 65.5 mg/(L·d). No negative effects were found on COD removal although carbon oxidation activity of bioaugmented sludge was lower than that of common sludge. After inoculation, adsorption to sludge flocs was favorable for GEM survival. The GEM population size initially decreased shortly and then was kept constant at about 104–105 CFU/mL. Predation of micro-organisms played an important role in the decay of the GEM population. GEM leakage from MBR was less than 102 CFU/mL initially and was then undetectable. In contrast, in a conventionally activated sludge bioreactor (CAS), sludge bulking occurred possibly due to atrazine exposure, resulting in bioaugmentation failure and serious GEM leakage. So MBR was superior to CAS in atrazine bioaugmentation treatment using GEM.  相似文献   

11.
阿特拉津对不同肥力土壤磷酸酶的影响   总被引:6,自引:0,他引:6  
通过室内恒温培养法,研究除草剂阿特拉津对4种长期定位施肥处理下的土壤的磷酸酶活性的影响。试验结果表明,在阿特拉津质量分数不同和处理时间长短不同的情况下,阿特拉津对土壤磷酸酶的活性既有激活作用又有抑制作用。在试验过程中,4种不同肥力的土壤其磷酸酶活性随着处理时间的延续而呈现出“降低→升高→降低→升高”的消长趋势。不同阿特拉津质量分数对磷酸酶的影响没有规律,同一质量分数处理既有激活作用,也有抑制作用。在4种不同肥力的土壤中,磷酸酶活性最高的是以氮、磷、钾无机肥配合有机肥施用的土壤。  相似文献   

12.
The interaction between atrazine, a triazine herbicide, and a series of decay fungi was characterized in terms of biodegradation of the herbicide and its influence on fungal growth. The following fungi were studied: thermophilic cellulolytic (Penicillium sp. 13) and noncellulolytic (Humicola lanuginosa sp. 5 and 12) strains isolated from self‐heated plant composts, mesophilic diphenol oxidase producing strain Mycelia sterilia INBI 2–26, white‐rot fungi Cerrena maxima, Coriolopsis fulvocinerea and Coriolus hirsutus. Competitive enzyme immunoassay was elaborated for detection of atrazine in cultural liquid. During agar plate cultivation the growth of Humicola sp. 5 was promoted by atrazine whereas the growth of Humicola sp. 12 and Penicillium sp. 13 was suppressed whereas M. sterilia INBI 2–26 was not affected by the herbicide. Neither atrazine‐accelerated nor atrazine‐depressed thermophilic strains decomposed atrazine during 21‐day cultivation according to ELISA data. In contrast, white‐rot fungi Coriolus hirsutus, Coriolopsis fuhocinerea and Cerrena maxima degraded nearly 50% of the herbicide in 5‐day submerged cultivation and 80–92% of the herbicide up to the 40th day. The soil strain M. sterilia INBI 2–26 decomposed 70% of atrazine in 17‐day cultivation. The degradation level depended of the time of atrazine introduction to the growing media. The relationships between the degree of atrazine decomposition and laccase and Mn‐peroxidase production were shown.  相似文献   

13.
This article reports the complete mineralization of atrazine. Atrazine has been the most widely used s-triazine herbicide. Atrazine occurs in natural waters and presents a potential danger for public health because atrazine is considered as an endocrine disruptor. The use of chemical, photochemical and photocatalytic advanced oxidation processes (AOPs) to decontaminate waters containing atrazine only allowed its conversion into the cyanuric acid as ultimate end products, since it cannot be completely degraded by hydroxyl radicals (OH) produced by these techniques. The same behavior was previously reported for anodic oxidation and electro-Fenton with Pt anode, although better performances were found using boron-doped diamond (BDD) anode but without explaining the role of generated OH. Here, the oxidative action of these radicals in such electrochemical AOPs has been clarified by studying the mineralization process and decay kinetics of atrazine and cyanuric acid in separated solutions by anodic oxidation with BDD and electro-Fenton with Pt or BDD anode using an undivided cell with a carbon-felt cathode under galvanostatic conditions. Results showed that electro-Fenton with BDD anode was the more powerful treatment to degrade both compounds. Almost total mineralization, 97% total organic carbon (COT) removal, of atrazine was only feasible by this method with a faster removal of its oxidation intermediates by OH formed at the BDD surface than that formed in the bulk from Fenton reaction, although the latter process caused a more rapid decay of the herbicide. Cyanuric acid was much slowly mineralized mainly with OH produced at the BDD surface, and it was not degraded by electro-Fenton with Pt anode. These results highlight that electrochemical advanced oxidation processes (EAOPs) using a BDD anode are more powerful than the classical electro-Fenton process with Pt or PbO2 anodes.  相似文献   

14.
Extractable atrazine and its metabolites (hydroxyatrazine, deethylatrazine and deisopropylatrazine) were evaluated in agricultural soils from the temperate humid zone (Galicia, NW Spain) under laboratory conditions. The experiment was performed with five soils with different properties (organic C, soil texture and atrazine application history), both unamended and treated with atrazine at field application rate. Measurements of the atrazine compounds were made at different time intervals (1, 3, 6, 9 and 12 weeks) during a 3-month incubation period. Results showed that only hydroxyatrazine was detected in the extractable fraction of the unamended soils, with values remaining relatively constant throughout the incubation period. Atrazine addition notably increased the concentration of the parent compound and its degradation products; deisopropylatrazine and hydroxyatrazine were the main metabolites detected in the extractable fraction of the treated soils, whereas deethylatrazine was not detected. After 7 days incubation, values of total extractable residues, expressed as percentage of initially added atrazine, ranged from 75 to 86% (25–68% of atrazine, 7–11% of hydroxyatrazine and 9–57% of deisopropylatrazine). The values decreased rapidly during the first 3 weeks of incubation, showing values of 2–8% in soils with higher atrazine application and from 28 to 30% in soils with lower application history. At the end of the incubation, 2–8% of total extractable residues were still detected (0–4% of atrazine, 2–3% of hydroxyatrazine and 0–2% of deisopropylatrazine), indicating a residual effect of atrazine addition. These variations in the extractable fraction indicated that most added atrazine was rapidly degraded, especially in soils with higher application history.  相似文献   

15.
生物炭对土壤中阿特拉津吸附特征的影响   总被引:3,自引:0,他引:3  
为探究生物炭对土壤中阿特拉津的吸附特征及影响因素,采用批处理实验研究了灭菌(T1)、5%秸秆生物炭+灭菌(T2)、未灭菌(T3)和5%秸秆生物炭+未灭菌(T4)条件下对土壤中阿特拉津吸附特征及土壤理化性质的影响.结果表明,在最初0—12 h内,不同处理下阿特拉津吸附量均随时间的延长而快速增加,而在12—96 h内增加较为缓慢并逐渐趋于平衡.在96 h时,T2和T4处理下阿特拉津最大吸附量分别达到46.22 mg·kg-1和46.43 mg·kg-1,而未添加生物炭的T1和T3处理则有所降低,分别为44.20 mg·kg-1和43.09 mg·kg-1.准二级动力学模型更好地拟合不同处理下土壤对阿特拉津吸附特征,T2和T4处理下吸附速率常数K分别为0.257 kg·mg-1·h-1和0.339 kg·mg-1·h-1,显著高于未添加生物炭处理的T1和T3处理(K分别为-0.083 kg·mg-1·h-1和-0.261 kg·mg-1·h-1).内扩散模型显示添加生物炭后,土壤对阿特拉津的吸附是一个由边界扩散、内部孔隙扩散等多因素控制的复杂化学过程.添加生物炭可显著提高土壤pH、有机碳、碱解氮、速效磷和速效钾含量,其中土壤有机碳含量与阿特拉津最大吸附量之间存在显著的正相关关系(P<0.05).由此可见,添加生物炭可以提高土壤对阿特拉津的固持能力,减少其淋溶迁移风险,从而达到修复阿特拉津污染土壤的目的.  相似文献   

16.
Atrazine is one of the most widely applied and persistent herbicides in the world. In view of limited information on the regional contamination of atrazine in soils in China, this study investigated the spatial distribution and environmental impacts of atrazine in agricultural soils collected from the Yangtze River Delta (YRD) as an illustrative analysis of rapidly developing regions in the country. The results showed that the concentrations of atrazine in the YRD agricultural soils ranged from <1.0 to 113 ng/g dry weight, with a mean of 5.7 ng/g, and a detection rate of 57.7 % in soils. Pesticide factory might be a major source for the elevated levels of atrazine in Zhejiang Province. The contamination of atrazine was closely associated with land use types. The concentrations and detection rates of atrazine were higher in corn fields and mulberry fields than in rice paddy fields. There was no significant difference in compositions of soil microbial phospholipids fatty acids among the areas with different atrazine levels. Positive relationship (R = 0.417, p < 0.05, n = 30) was observed between atrazine and total microbial biomass. However, other factors, such as soil type and land management practice, might have stronger influences on soil microbial communities. Human health risks via exposure to atrazine in soils were estimated according to the methods recommended by the US EPA. Atrazine by itself in all the soil samples imposed very low carcinogenic risks (<10?6) and minimal non-cancer risks (hazard index <1) to adults and children.  相似文献   

17.
PurposeLittle is known about the ecotoxicity of nanomaterials and there are no specific guidelines for sample preparation and testing. We set out to establish whether the method used to prepare TiO2 dispersions had a significant impact on aquatic ecotoxicity. We also followed the formation of agglomerates during the incubation period.MethodsWe applied the algal growth inhibition test (OECD test guideline no. 201). Dispersions were prepared by stirring and/or ultrasonication for different durations, and by filtration according to an OECD procedure recommended for testing difficult substances.ResultsSamples stirred for 7?d were not toxic, but EC20 values could be calculated for all the other treatments. Shorter treatments generated EC20 values in the range 1–27?mg/L. Only the shortest treatment (1 min stirring, 1 min ultrasonication) produced an unusually high EC20 value, indicating low toxicity. Development of agglomerate size and of toxicity depends on the nanoparticles. We found that ecotoxicity was predominantly caused by a fraction of nanoparticles and agglomerates obtained by passing dispersions through a 0.22-µm filter.ConclusionsWe propose a short treatment regime to generate the most relevant ecotoxicity data for TiO2, for example stirring for 1?min followed by 3 min ultrasonication. Until more data concerning the ecotoxicity of different fractions are available, we recommend the testing of unfiltered dispersions rather than filtrates. Relating ecotoxicity to the total hydrodynamic surface of the nanomaterials rather than concentration does not seem to improve the accuracy of ecotoxicity assessments using the algal growth inhibition test.  相似文献   

18.
A solution of atrazine in a TiO2 suspension, an endocrine disruptor in natural water, was tentatively treated by microwave-assisted photocatalytic technique. The effects of mannitol, oxygen, humic acid, and hydrogen dioxide on the photodegradation rate were explored. The results could be deduced as follows: the photocatalytic degradation of atrazine fits the pseudo-first-order kinetic well with k = 0.0328 s−1, and ·OH was identified as the dominant reactant. Photodegradation of atrazine was hindered in the presence of humic acid, and the retardation effect increased as the concentration of humic acid increased. H2O2 displayed a significant negative influence on atrazine photocatalysis efficiency. Based on intermediates identified with gas chromatography-mass spectrometry (GC-MS) and Liquid chromatography-mass spectrometry (LC-MS/MS) techniques, the main degradation routes of atrazine are proposed.  相似文献   

19.
Inhibition of photosystem II (PSII) activity by atrazine was investigated in the green alga Chlamydomonas reinhardtii during different states of the cell cycle. The algal cultures were maintained under continuous light or under light/dark cycle (16/8?h) to obtain homogenized cell cycle distribution. The cycle state of algal population was determined by the DNA content using flow cytometry and defined as newly divided cells before the initiation of DNA replication (G0/G1) and cells at the end of the replication cycle with fully duplicated DNA content (G2/M). Under different synchronized states of the cell population, the photosynthetic activity was investigated after treatment at 10, 100, and 1000?µmol?L?1 atrazine exposed for 24?h by using fluorescence parameters related to PSII activity measured with a plant efficiency analyzer and pulse-amplitude modulated methods. In this study, we found that the atrazine effect was different depending on cell cycle phases and the period of illumination. Algal cells under light–dark cycle showed inhibition of the PSII electron transport leading to an increase of heat energy dissipation by the PSII reaction center. Algal cells grown under continuous light was shown to be more resistant to atrazine than the cells grown under light–dark cycle.  相似文献   

20.
The transport of the s‐triazine herbicide, atrazine, through the red, calcareous earth soils of the South Australian Riverland was investigated. Small, undisturbed soil cores were extracted from the inter‐row topsoil of a vineyard adjacent to the River Murray, approximately 10 km south‐west of Overland Corner, South Australia. The vines were grown in a deep (1–4 m) reddish brown, strongly alkaline, sandy loam with a low organic carbon content (<2%). Atrazine concentrations in the leachate were dependent on application rate and soil type. High application rates on subsoil gave high rates of leaching for a longer time compared to the same application rate on topsoil and/or lower application rates on either topsoil or subsoil. Overall, 37–65% of the applied atrazine was detected in the leachate from subsoil cores, 14–25% in topsoil core leachates. Small amounts of atrazine (< 10% of applied dose) were found only in the top 2 cm of the core profiles. The results suggest that this herbicide is somewhat mobile in such strongly alkaline, sandy loam soils and that the irrigated soils of this region are likely to be prone to leaching of atrazine, and therefore that groundwater supplies in this area may be at risk of contamination through use of triazine herbicides.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号