首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Nishida  Ritsuo 《Chemoecology》1994,5(3-4):127-138
Summary A number of aposematic butterfly and moth species sequester toxic substances from their host plants. Some of these insects can detect the toxic compounds during food assessment. Some pipevine swallowtails use aristolochic acids among the host finding cues during oviposition and larval feeding and accumulate the toxins in the body tissues throughout all life stages. Likewise, a danaine butterfly,Idea leuconoe, which sequesters high concentrations of pyrrolizidine alkaloids in the body, lays eggs in response to the specific alkaloid components contained in the apocynad host. Insect species sharing the same poisonous host plants may differ in the degree of sequestration of toxins. Two closely ralated aposematic geometrid moth species,Arichanna gaschkevitchii andA. melanaria, sequester a series of highly toxic diterpenoids (grayanotoxins) in different degrees, while a cryptic geometrid species,Biston robstus, does not sequester the toxins, illustrating the diversity in adaptation mechanisms even within the same subfamily. By contrast, a number of lepidopteran species store the same compounds though feeding upon taxonomically diverse plant species. A bitter cyanoglycoside, sarmentosin, was characterised from several moth species in the Geometridae, Zygaenidae and Yponomeutidae, and from the apollo butterflies,Parnassius spp. (Papilionidae), although each species feeds on different groups of plants.Interspecific similarities and differences in life history and ecology are discussed in relation to variable characteristics of sequestration of plant compounds among these lepidopteran insects.  相似文献   

2.
Because of the potential of significant geographic variation in the compositions of snake venoms, much insight can be gained by examining individuals originating from diverse locations, and detailed characterization of any species can only be done by including animals from the entire range. Pakistani N. naja (formerly N. naja karachiensis) venom was decomplexed by applying diverse techniques and found a concoction of proteins (a total of 43 venomous proteins comprising 11 super families) from 6 to 200 kilodaltons in size. Among them three finger toxins (58%), phosphoplipses A2 (19%), snake venom metalloproteinases (5%), l-amino acid oxidases (5%), helvepryns (3%), vespryns (2%), cobra venom factor (2%), 5′-nucleotidases (2%), venom nerve growth factor (2%), and Kunitz type serine protease inhibitor (2%) were included. It is the first report that this venom possesses significantly higher percentage of three finger toxins belonging to the cytotoxins (32% overall) and α‐neurotoxins (32% overall, predominately long chain neurotoxins, 24% overall) compared to N. naja from other geographic locations. Better understanding of intraspecific variations in venom can improve the development of location-specific anti-venoms. Furthermore, this pool of diverse toxins could potentially be a source of novel drug candidates for the treatment of muscarinic acetylcholine receptors mediated nervous disorders.  相似文献   

3.
The rate of species loss is increasing at a global scale, and human-induced extinctions are biased toward predator species. We examined the effects of predator extinctions on a foundation species, the eastern oyster (Crassostrea virginica). We performed a factorial experiment manipulating the presence and abundance of three of the most common predatory crabs, the blue crab (Callinectes sapidus), stone crab (Menippe mercenaria), and mud crab (Panopeus herbstii) in estuaries in the eastern United States. We tested the effects of species richness and identity of predators on juvenile oyster survival, oyster recruitment, and organic matter content of sediment. We also manipulated the density of each of the predators and controlled for the loss of biomass of species by maintaining a constant mass of predators in one set of treatments and simultaneously using an additive design. This design allowed us to test the density dependence of our results and test for functional compensation by other species. The identity of predator species, but not richness, affected oyster populations. The loss of blue crabs, alone or in combination with either of the other species, affected the survival rate of juvenile oysters. Blue crabs and stone crabs both affected oyster recruitment and sediment organic matter negatively. Mud crabs at higher than ambient densities, however, could fulfill some of the functions of blue and stone crabs, suggesting a level of ecological redundancy. Importantly, the strong effects of blue crabs in all processes measured no longer occurred when individuals were present at higher-than-ambient densities. Their role as dominant predator is, therefore, dependent on their density within the system and the density of other species within their guild (e.g., mud crabs). Our findings support the hypothesis that the effects of species loss at higher trophic levels are determined by predator identity and are subject to complex intraguild interactions that are largely density dependent. Understanding the role of biodiversity in ecosystem functioning or addressing practical concerns, such as loss of predators owing to overharvesting, remains complicated because accurate predictions require detailed knowledge of the system and should be drawn from sound experimental evidence, not based on observations or generalized models.  相似文献   

4.
This study evaluated selection for shell size by three species of tropical intertidal hermit crabs, Clibanarius antillensis, C. sclopetarius, and C. vittatus, from species of shells which are frequently used in nature. Crab size and weight were strongly and significantly related to all measured parameters of the selected shells. The strength of these relationships (r2 values) depended neither on the crab nor on the shell variables taken into account. The relationships between crab size and the dimensions of the selected shells showed higher r2 values than the corresponding relationships with the shells that the crabs had occupied when they were collected (0.482–0.903 in comparison to 0.091–0.652, respectively), indicating that the crabs were occupying sub-optimal shells in nature. Negative allometry was frequently found in the relationships between crab and shell variables, indicating that large crabs select and use proportionally lighter shells than do small crabs. This negative allometry was stronger for the shells used in nature (except for C. antillensis), i.e. larger crabs tended to select heavier shells in the laboratory than in nature. Different allometric relationships were also recorded among the dimensions of shells used in nature and those selected by the hermit crabs in free-access experiments: as shell length increased, the selected shells were heavier and had larger apertures than the shells used in nature. The relationships between crab size and the length and weight of the selected shells did not depend on the species of crab or species of shell, but only on crab size. Therefore, analyses using these variables can be performed without taking the species of crab or shell into account, i.e. data from different crab or shell species can be pooled. The influence of crab and/or shell species was recorded only in the models fitted for aperture length and width, variables which were more related to shell architecture than did shell length or weight. In contrast, if crab weight is used as an independent variable, different crab or shell species can be analyzed together independently of the particular shell parameter. This indicates that crab weight may be less susceptible than crab shield length to shell morphological constraints. Finally, the results indicate that the preferred size of a given shell type chosen by a given hermit crab will depend more on crab size or weight, than on the crab or shell species under consideration, i.e. crab shell-size relationships are not species specific.Communicated by P.W. Sammarco, Chauvin  相似文献   

5.
织纹螺体内的河豚毒素及其衍生物   总被引:1,自引:0,他引:1  
对2002年福建省引起食物中毒的织纹螺毒素进行研究。高效液相色谱-质谱联用(liquid chromatography/mass,LC/MS)的分析结果显示,织纹螺毒素的主要成分是河豚毒素类毒素(tetrodotoxin,TTX),另外还含有4-epiTTX、anhydroTTX、deoxyTTX等成分。生物法对织纹螺毒素的毒力测定结果表明:所收集的26个织纹螺样品中15个检测出毒性,毒素的毒力在5.7~47.3MU·g-1之间。毒力最高的织纹螺样品2003年5月1日来自福安,主要由半褶织纹螺和另一未定种组成。  相似文献   

6.
Two South Australian rocky intertidal platforms were sampled in April 1981 and December 1982 (Marino Rocks) and in December 1982 (Lady Bay), respectively. Three snail species, Nerita atramentosa Reeve, 1855, Bembicium nanum (Lamarck, 1822) and Austrocochlea concamerata (Wood, 1828), exhibited shore-level size-gradients, with smaller individuals occupying the higher intertidal levels. The reef crab (Ozius truncatus M.-Edwards, 1834), whose distribution overlaps that of the gastropods, is an important predator of these gastropods. The shore-level distribution of shell sizes can be explained by differential selection against smaller individuals by reef crabs. The decreased density of small snails at lower intertidal levels may be the result of either their consumption by reef crabs and/or their movement to higher shore levels where crab predation is less intense.  相似文献   

7.
Fiddler crabs consume the surficial microphytobenthos around their burrows during low tide. We studied the spatial and temporal feeding patterns in the species Uca uruguayensis by using sequences of digital pictures of feeding pellets accumulation. Data from 61 crabs, feeding without the interference of neighbors, were fitted to different models using Maximum Likelihood and Bayesian approaches. Initial feeding location was independent from the emergence location, and then, crabs continued holding a main feeding direction (clockwise or counterclockwise), suggesting a systematic mechanism that may avoid feeding over already processed sediment. Crabs used at least half of their potential feeding area, but these areas were heterogeneous. Both sexes developed similar feeding areas; however, females were faster and needed less time to feed than males, suggesting that males are time restricted. Our work also highlights the importance of incorporating other underlying mechanisms of the behavior of species into the study of feeding strategies.  相似文献   

8.
The exploitation of microhabitats is widely considered to increase biodiversity in marine ecosystems. Although intertidal hermit crabs and gastropods may inhabit the same shell type and shore level, their microhabitat may differ depending on the state of the tide. On the south coast of Wales the hermit crab Pagurus bernhardus mainly inhabits the shells of Nucella lapillus (84%). Hermit crab shells had a significantly different encrusting community compared with live N. lapillus shells. At low tide the live gastropods were found on exposed rock surfaces whereas hermit crabs were restricted to tidal pools. Communities encrusting live gastropod shells were characterised by lower species richness and abundance compared with shells inhabited by hermit crabs (12 species found in total). A greater abundance and richness of epibionts was recorded from both shell types during the summer compared with winter. Differences in community composition between shell occupant types were attributed to microhabitats used by gastropods and hermit crabs and the associated desiccation pressures, rather than competitive interactions or shell characteristics. This contradicts earlier studies of subtidal shells where biological processes were considered more important than physical factors in controlling species abundance and richness patterns. The use of rockpool microhabitats by hermit crabs increases the biodiversity of rocky shores, as some species commonly found on hermit-crab-inhabited shells were rare in other local habitats.Communicated by J.P. Thorpe, Port Erin  相似文献   

9.
From May 1977 to February 1979, the use of sponges and ascidians by Cryptodromia hilgendorfi was studied in Moreton Bay, Queensland, Australia. The aim was to investigate patterns of seasonal use, cap making behaviour, cap turnover, the effect of intraspecific interactions on cap life and the effect of movement of crabs between hosts on background matching. C. hilgendorfi uses 12 (of 16 available) species of sponge and 3 species of ascidians to construct caps, which are carried by the crabs using their last two pairs of legs. Cap area increases non-linearly with crab size, and caps are normally two to three times as large as the crabs. Cap making behaviour is described. It occurs during intermoult periods, with females making most of their caps at night. Caps decrease in size with time, but conceal the crabs which commonly occupy exposed sites on sponges. Cap life is independent of crab size, differs between different cap species and is influenced by the presence of other crabs who can dislodge caps through aggressive behaviour. Caps are made from the sponge Suberites carnosus more often than from other available sponges. S. carnosus caps also decay less rapidly than caps made from other sponges. Use of sponge and ascidian species varies seasonally, with Halichondria sp. and S. carnosus being used in all months. C. hilgendorfi exhibits a preference for certain sponges. The majority of crabs carried caps which matched their host sponge or ascidian, but mis-matches varied seasonally with a winter peak following the breeding season. Young C. hilgendorfi settle only on S. carnosus sponges and disperse from this host to other species in the environment. Males and females differ in their rate of discovery of new hosts. Males, despite their greater mobility, find new hosts slower than females. It is hypothesized that males occupy “home ranges” which females do not. Crabs frequently move between sponges, mostly at night. Sponges and ascidian species grow in intimate association with each other, and sponge crabs act a selective asexual propagation mechanism. Depending upon the nature of the interactions between sponge and ascidian species (co-operative or competitive) and whether competitive hierarchies or networks are involved, the sponge crabs may have either stabilizing or destabilizing effects on the sponge community.  相似文献   

10.
Mimicry of females enables weaker males in many species to avoid intrasexual aggression. In fiddler crabs (Uca annulipes), males use their major claw in aggressive interactions to acquire and defend a territory. Males that have autotomised their major claw will be disadvantaged in fighting, but might use their temporary resemblance to females to avoid costly aggressive encounters with other males. We investigated whether: (1) courting males mistake clawless male fiddler crabs for females; (2) clawless males are able to acquire, defend and retain territories as successfully as intact males; and (3) clawless males are more cautious than intact males. Clawless and intact males differed in burrow acquisition methods and fighting behaviour, but were equally successful at acquiring and retaining burrows. While courting males treated clawless males as female, we found no evidence that clawless males mimic the behaviour of females, or that they exploit the advantage of their mistaken identity. Clawless males further appear to avoid male aggression by altering their territorial strategies to minimise the potential for conflict.  相似文献   

11.
Dissolved amino acids (3H-phenylalanine, 3H-proline) were accumulated and incorporated into proteins and glycoproteins by sea anemones. On objects (glass rods, pipe cleaners or filter paper) which had touched labelled anemones, tritiated substances could be detected. The mucus of labelled anemones was analysed by disc-electrophoresis. Tritium activity was found in the bands (stained by amino black). Anemone fishes adapted to labelled anemones had 4 times more tritium activity on their surface than control fishes. Most radioactivity was found on those regions which made closest contact with the anemones. The mucus of anemone fishes adapted to labelled anemones was also analysed by disc-electrophoresis. The analysis revealed protein-containing fractions in which 3H-amino acids were incorporated. The pattern of tritium activity in disc-electropherograms from labelled anemones corresponds to that of fishes adapted to those anemones. Anemones produce specific substances which influence the discharge of their nematocytes. These substances have special functions in the normal behaviour of the anemones. The substances provide protection against self-nettling and prevent the discharge of nematocytes into nearby objects which the tentacles continuously contact. The production of these substances by anemones is completely separate from the association with anemone fishes. The fishes thus simply exploit a mechanism existing independently in the anemones. Therefore, it is possible to form, in an aquarium, unnatural associations between anemone fishes and anemone species which never live in association with fishes in their natural biotope. On the basis of previous information, as well as on these new data, it is possible to develop a model which explains the control of nematocyte discharge: Substances with inhibitory qualities (protecting substances) are produced by the anemones themselves, and de-sensitize the sensory inputs of the anemones (nematocytes and sensory cells). Sensitization takes place as soon as the anemones come into contact with “stimulating substances”. This happens if anemones are touched by food objects or by anemone fishes which have been previously isolated from anemones. The surfaces of these fishes are not impregnated with protecting substances. Adapted anemone fishes, neighbouring anemones of the same species and other “adapted” objects are coated with the inhibitory substances and thus do not induce nematocyte discharge.  相似文献   

12.
To respond appropriately to communication signals, animals must have the ability to decipher signal meaning. At a basic level, interpreting the difference between territorial and courtship signals can be vital for the survival and reproduction of social animals. Male and female fiddler crabs communicate with claw-waving displays, but the function of these waves remains uncertain. Species differ in the context in which they wave: Some wave during courtship, some during territorial defence and some during both. In this paper, we provide evidence that males of an Australian species of fiddler crab, Uca perplexa, use two different types of claw waving display, lateral and vertical. Lateral waves are employed solely in a courtship context, whilst vertical waves are employed during courtship as well as territorial interactions. Using video recordings, we show that lateral waves were produced spontaneously (broadcast), and their frequency increased only in the presence of female wanderers. Vertical waves were not broadcast but were elicited by male wanderers during agonistic interactions and female wanderers during close range courtship. Male resident U. perplexa were able to discriminate the sex of wandering crabs on the mudflat at distances of 32 cm. During all resident–wanderer interactions, residents attempted to maintain a position directly between the wanderer and the home burrow and orient themselves to face females and to present the major claw towards males. To our knowledge, this is the first demonstration of the multiple use of waving displays in a fiddler crab species.  相似文献   

13.
M. Mascaró  R. Seed 《Marine Biology》2001,139(6):1135-1145
Information concerning the way juvenile crabs choose their diet from a variety of prey types can be useful for a better understanding of community dynamics, as well as for the adequate management of natural resources. Prey size and species selection by juvenile Carcinus maenas (15-35 mm carapace width, CW) and Cancer pagurus (20-40 mm CW) feeding on four bivalves of contrasting shell morphology were investigated. When offered a wide size range of Mytilus edulis, Ostrea edulis, Crassostrea gigas, and Cerastoderma edule presented individually, crabs generally showed evidence of size-selective predation. Cancer pagurus selected larger mussels relative to the size of their chelae (relative prey size, RPS) than did Carcinus maenas of similar and even larger carapace width. However, the RPS of selected O. edulis and Cerastoderma edule were similar for all crabs, suggesting that certain prey features constitute effective barriers even to the powerful chelae of Cancer pagurus. When offered a wide size range of mussels and oysters simultaneously, all crabs consistently selected mussels. When offered O. edulis and Crassostrea gigas, crabs consumed both these oyster species in similar numbers. Carcinus maenas consumed similar numbers of mussels and cockles; Cancer pagurus, however, showed no preference for either prey in the smaller size classes but selected more mussels than cockles as prey increased in size. Although previous studies report that adult Carcinus maenas select prey species according to their profitability (amount of food ingested per unit of handling time, milligrams per second), consumption rates of the size classes of prey selected by juvenile shore crabs did not always parallel prey value. Although variations in crab strength can account for many of the differences between the foraging strategy of juvenile and adult C. maenas, our results suggest that juvenile crabs are less species selective than adults as a result of the restrictions imposed on small individuals that have limited access to larger prey.  相似文献   

14.
The abundance of nearly one-quarter of the world's shorebird species is declining. At the same time, the number of non-native species in coastal ecosystems is increasing rapidly. In some cases, non-native species may affect negatively the abundance and diversity of shorebird prey species. We conducted an experimental study of the effects of the introduced European green crab (Carcinus maenas) on prey consumption by wintering Dunlin (Calidris alpina) in a central California estuary. We placed green crabs and Dunlin sequentially in field enclosures and measured changes in density of benthic invertebrate prey (e.g. polychaetes and small clams), Dunlin biomass, and gut contents of both Dunlin and crabs and observed foraging behavior of Dunlin. Green crabs significantly affected Dunlin foraging success through both direct and indirect multitrophic linkages. In enclosures with high densities of green crabs, crab foraging reduced the availability of polychaetes, and Dunlin consumed significantly fewer polychaetes compared with Dunlin in enclosures without crabs. High densities of green crabs were also associated with increased availability of small clams. Dunlin consumed significantly more small clams compared with Dunlin in enclosures without crabs. In our literature survey of studies of effects of non-native invasive species on shorebirds, we found three prior experiments that addressed the effect of non-native invasive species on shorebirds. Results of two of these studies showed positive direct effects of non-native invertebrates on shorebirds, 1 showed negative direct effects of a non-native plant on shorebirds through habitat conversion, and none showed indirect effects of non-native invertebrates. We suggest future management of shorebirds explicitly examine how non-native marine species, particularly invertebrates, directly and indirectly affect shorebirds.  相似文献   

15.
The Chinese mitten crab Eriocheir sinensis is an indigenous and economically important species in China, but can also be found as invasive species in Europe and America. Mitten crabs have been exploited extensively as a food resource since the 1990s. Despite its ecological and economic importance, the genetic structure of native mitten crab populations is not well understood. In this paper, we investigated the genetic structure of mitten crab populations in China by screening samples from ten locations covering six river systems at six microsatellite loci. Our results provide further evidence that mitten crabs from the River Nanliujiang in Southern China are a genetically differentiated population within the native range of Eriocheir, and should be recognized as a separate taxonomic unit. In contrast, extremely low levels of genetic differentiation and no significant geographic population structure were found among the samples located north of the River Nanliujiang. Based on the reproductive biology of mitten crabs and the geography of their habitat we argue that both natural and human-mediated gene flow are unlikely to fully account for the similar allele frequency distributions at microsatellite loci. Large population sizes of mitten crabs suggest instead that a virtual absence of genetic drift and significant homoplasy of microsatellite alleles have contributed to the observed pattern. Furthermore, a coalescent-based maximum likelihood method indicated a more than two-fold lower effective population size of the Southern population compared to the Northern Group and low but significant levels of gene flow between both areas.  相似文献   

16.
The distribution of the introduced European green crab, Carcinus maenas, was investigated in the central California embayments of Bodega Bay Harbor (BBH), Tomales Bay, and Bolinas Lagoon using baited traps and snorkel surveys. Adult green crabs were very spatially limited in all three embayments and occurred primarily in warm, shallow areas that lacked large native Cancer spp. crabs. The green crabs that were found in closest proximity to populations of Cancer spp. exhibited high levels of limb damage and loss; damage was strongly correlated with low ratios of intertidal area: edge, indicative of narrow areas of intertidal that are more easily accessed by large Cancer spp. moving up to forage during periods of tidal inundation. Up to 70% of the green crabs tethered in areas of BBH that are utilized by Cancer spp. experienced limb loss, while those tethered in the marsh, where there are no Cancer spp., were undamaged. The results suggest that the potential distribution of green crabs in the northeastern Pacific will be far less than has been predicted, and that their impacts may be largely attenuated through predation by and competition with native crab species.  相似文献   

17.
The blowfly Lucilia bufonivora shows high host specificity for toads despite the host’s toxic skin secretion, which consists mainly of bufadienolides. These toxins are effective blockers of the Na+, K+-ATPase, an enzyme that is essential for many physiological processes in animals. Whereas common toad (Bufo bufo) toxins were identified in the larvae of the fly, few toxins were found in the pupae and empty puparia as trace amounts, while adult flies were entirely free of these toxic compounds. Similar results were obtained when larvae of generalist necrophagous blowflies (L. sericata, Calliphora vicina) fed on toad carcasses. Analysis of the Na+, K+-ATPase gene revealed no amino acid substitution at positions known to mediate resistance to bufadienolides in other systems. Alternative mechanisms of resistance such as efficient excretion of the compounds may enable the flies to use this poisonous food source.  相似文献   

18.
B. J. Hill 《Marine Biology》1994,120(3):379-384
The portunid crabScylla serrata (Forskål) is shown to migrate offshore to spawn. Records of 447S. serrata caught as bycatch by trawlers in the tropical waters of northern Australia were analysed with respect to area, depth, distance offshore and month of capture as well as the sex and size of the crabs and whether the females were ovigerous. The crabs were caught mainly in three areas that correspond to the tiger prawn trawl fishery, at between 10 and 60 m depth (mean 28.5 m), 3 to 95 km offshore (mean 17.9 km). Most (87%) of the crabs were captured in October and November, which suggests they move offshore in September and October. No crabs were reported from offshore by February. Over 97% of the crabs caught offshore were female, of these 61.5% were ovigerous. The size range of females (100–109 to 200–209 mm carapace-width size classes) and males (120–129 to 200–209 mm carapace-width size classes) caught was similar. The frequent occurrence in coastal waters of females that are larger than the modal size at spawning, as well as mature females with spent ovaries, suggests that many females return to the coast after spawning. Although some species of portunid crab are euryhaline, mature females of estuarine species migrate to the sea to spawn. The migration byS. serrata described here is far more extensive than would be required to reach sea water salinities; it probably provides a dispersal mechanism for larvae to enable the megalopa stage to recruit to habitats distant from those of the parents.  相似文献   

19.
Little is known about the metabolism of deep-living, benthic invertebrates, despite its importance in estimating energy flow through individuals and populations. To evaluate the effects of depth and broad taxonomic group/locomotory mode, we measured the respiration rates of 25 species of benthic decapod crustaceans and 18 species of echinoderms from the littoral zone to the deep slope of Hawaii. Specimens were collected by hand, trap, or submersible and maintained in the laboratory at temperatures close to ambient temperatures recorded at the time of collection. After acclimatization to laboratory conditions, oxygen consumption was measured for each individual in closed chambers. Overall, crustaceans had higher metabolic rates than echinoderms, and within the crustaceans, caridean shrimps had higher rates than crabs and lobsters. These differences are probably related to locomotory mode and general levels of activity. At in situ environmental temperatures, metabolic rates of deeper-living invertebrates are much lower than those of shallower living species, but this decline is explained by changes in temperature. When the data were compared with similar data sets collected off California and in the Mediterranean, Hawaiian crabs, lobsters, and echinoderms had lower metabolic rates than similar species in the other regions after adjustments for temperature were made. Some of these differences could be methodological. Regional food web models should use broad taxonomic groupings and region-specific data when possible.  相似文献   

20.
Paralytic shellfish toxin profiles of the dinoflagellate Gymnodinium catenatum Graham were investigated as a possible biochemical marker to distinguish different geographic populations of this species. Isolates obtained between 1986 and 1988 from Japan, Tasmania (Australia) and Galicia (Spain) were cultured under similar conditions and the toxins produced were analyzed using HPLC. Variations in temperature, salinity, and nitrate and phosphate levels in the culture medium had no significant effect on the toxin profile, suggesting that toxins can be used as a stable biochemical marker for this dinoflagellate. All the isolates produced mainly toxins of the N-sulfocarbamoyl group (C1–C4, gonyautoxins 5 and 6) but their relative abundance differed according to their geographic origin. Furthermore, only the Australian population produced the newly found 13-deoxydecarbamoyl toxins, and these could readily be used to distinguish the Australian populations from those of the other two countries.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号