首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
为研究辽东湾表层沉积物中多环芳烃(PAHs)的来源特征,2014年5月采集了20个辽东湾海域表层沉积物样品,并利用气相色谱质谱联用仪对优先控制的16种PAHs进行测定,采用聚类分析、主成分分析-多元线性回归分析、异构体比值3种统计方法对辽东湾表层沉积物中PAHs来源特征进行了研究。结果表明,辽东湾表层沉积物中PAHs含量范围88.5~199.3 ng·g-1,平均值为(126.3±35.3)ng·g-1,其中,萘、菲和荧蒽是PAHs优势组分。通过统计分析结果表明,辽东湾北部表层沉积物中PAHs含量低于西南部,沉积物中PAHs的来源包括石油燃烧来源、煤炭、木材等生物质燃烧来源和石油来源,其中燃烧来源是主要来源,煤炭、木材等生物质燃烧来源占49.9%,石油燃烧来源和石油来源占50.1%。  相似文献   

2.
Surface sediment samples from four downstream sites of Tan‐Sui River in Taipei metropolitan area were collected from 1997 to 1999. The semivolatile organic pollutants present in the sediments were screened by GC/MSD. Several target compounds including sixteen polycyclic aromatic hydrocarbons (PAHs), seven chlorobenzenes, two phthalates and the total amount of C8‐C32 aliphatic hydrocarbons were quantified. The concentration of the 16 PAHs ranges from 0.21 to 5.69 μg/g of which fluoranthene, pyrene and phenanthrene were the highest. The concentration of the total chlorobenzenes ranged from 0.04 to 5.85 μg/g. The concentration of bis(2‐ethylhexyl)phthalate ranges from 3.8 to 35.3 μg/g and that of the total C8‐C32 aliphatic hydrocarbons ranges from 0.94 to 10.6 μg/g. Some of these values are higher than similar sediment survey in Japan in the eighties. The concentration of bis(2‐ethylhexyl)phthalate is much higher than the no‐effect level (0.184 μg/g) set by McDonald. Some of the PAHs have already reached the level of biological effects. As compared with the sediment samples collected from Tou‐Chien River and Pu‐Ze River located at the west of Taiwan, the chlorobenzene concentrations of sediments in Tan‐Sui River are 5–6 times higher, the PAHs are 6–10 times higher and the phthalates are 11–20 times higher. Nonylphenol was also commonly found in the Tan‐Sui River sediment. There is a decreasing tendency of PAHs and phthalates concentration from surface to bottom for the core sample at Taipei Bridge site. Such tendency is less obvious for chlorobenzenes.  相似文献   

3.
Different sample preparation methods for the determination of polycyclic aromatic hydrocarbons (PAHs) in lake and river sediments were compared and evaluated. Freeze‐dried sediment materials were extracted using Soxhlet extraction, ultrasonic agitation and digestion with various solvents and solvent mixtures. Similarly, clean‐up methods using various types of sorbents for separation of PAHs tested.

The following method gives the best results for the determination of PAHs: freeze‐dried sediment samples were extracted using Soxhlet extractor with dichloromethane (6 hr, dark), extracts were cleanup using Silica gel and a mixture of n‐hexa‐ne‐dichloromethane was used for the elution of PAHs.

This method was used for the determination of 7 selected PAHs in sediment samples from Finnish lakes and Czech streams.  相似文献   

4.

Polycyclic aromatic hydrocarbons (PAHs), organochlorine pesticides (OCPs) and phenolic compounds (PCs) are persistent organic compounds. Contamination of these potentially toxic organic pollutants in soils and sediments is most studied environmental compartments. In recent past, studies were carried out on PAHs, OCPs and PCs in various soils and sediments in India. But, this is the first study on these pollutants in soils and sediments from an urbanized river flood plain area in Delhi, India. During 2018, a total of fifty-four samples including twenty-seven each of soil and sediment were collected and analyzed for thirteen priority PAHs, four OCPs and six PCs. The detected concentration of ∑PAHs, ∑OCPs and ∑PCs in soils ranged between 473 and 1132, 13 and 41, and 639 and 2112 µg/kg, respectively, while their concentrations in sediments ranged between 1685 and 4010, 4.2 and 47, and 553 and 20,983 µg/kg, respectively. PAHs with 4-aromatic rings were the dominant compounds, accounting for 51 and 76% of total PAHs in soils and sediments, respectively. The contribution of seven carcinogen PAHs (7CPAHs) in soils and sediments accounted for 43% and 61%, respectively, to ∑PAHs. Among OCPs, p, p’-DDT was the dominant compound in soils, while α-HCH was found to be dominated in sediments. The concentrations of ∑CPs (chlorophenols) were dominated over ∑NPs (nitrophenols) in both the matrices. Various diagnostic tools were applied for the identification of their possible sources in soil and sediments. The observed concentrations of PAHs, OCPs and PCs were more or less comparable with the recently reports from various locations around the world including India. Soil quality guidelines and consensus-based sediment quality guidelines were applied for the assessment of ecotoxicological health effect.

  相似文献   

5.
The total concentrations of 16 United States Environmental Protection Agency (US EPA)-listed polycyclic aromatic hydrocarbons (PAHs) found in coastal and estuarine sediments along the northern shores of the Bohai and Yellow Seas, China, at any study location varied from 0.236 to 8.34 nM g?1 dry weight (dw). For a given PAH, concentrations varied by one to two orders of magnitude. Ecological risk assessments based on biota–sediment accumulation factors (BSAFs) indicated that the potential ecological hazard of PAHs in the sediments was limited. The average total sediment PAH concentrations were less than the effects range low, indicating that PAHs currently present in the sediments were not harmful to aquatic organisms. The estimated PAH concentration in the aquatic organisms was 0.223 nM g?1 and posed a limited threat to human health via biological concentration from sediment to harvest of the sea. Assuming no additional PAH inputs, 99% of the 16 PAH molecules currently present in the sediments would be degraded in 40 years.  相似文献   

6.
A total of 22 bottom surface sediment samples were collected from Klaip?da Harbour, Lithuania (Baltic Sea). Sediment parameters, such as grain size and concentrations of total organic carbon, aliphatic hydrocarbons (ALHs) and polycyclic aromatic hydrocarbons (PAHs), were determined. Hydrocarbon contamination levels in the sediments were estimated based on classifications provided in the literature, and potential biological effects were assessed based on the effects range low–effects range median values of the Sediment Quality Guidelines and on the total toxic benzo(a)pyrene equivalent. The results demonstrated that concentrations of PAHs and total aliphatic hydrocarbons in the sediments varied between 1.6 and 5456?ng?g?1 d.w. and 6.9 and 727?μg?g?1 d.w., respectively. In most cases, the concentrations of ALHs and PAHs in the sediments indicated low to moderate levels of pollution and were not observed to have any significant adverse effects on living biota. To determine possible sources of hydrocarbons, hydrocarbon compositions were analysed, and ALHs’ and PAHs’ specific diagnostic ratios were calculated. According to the results, the Klaip?da Harbour bottom sediments were dominated by PAHs of pyrogenic origin, whereas the origin of ALHs was mixed, that is, anthropogenic with a biogenic (aquatic and terrestrial) input.  相似文献   

7.
Polycyclic aromatic hydrocarbon (PAH) concentrations and their risks in surface sediments (n = 35) collected from coastal and estuarine areas of the northern Bohai and Yellow Seas, China, were investigated in 2008. Total concentrations of PAHs ranged from 52.3 to 1,870.6 ng/g dry weight. The greatest concentrations were observed in the Dou River of Tangshan where waste water from small factories is discharged into the river without treatment. At other locations, municipal sewage was the primary contributor of PAHs. Regional differences in concentrations of PAHs in sediments are related to human activities. Concentrations of PAHs were significantly correlated with concentrations of organic carbon in sediments. The patterns of relative concentrations and types of PAHs observed and knowledge of the potential sources, as well as the results of a principal component analysis, are consistent with the primary sources of PAHs in sediments of the northern Bohai Sea and Yellow Sea, being derived from the high-temperature pyrolytic processes such as combustion of fossil fuel. While concentrations of PAHs at most locations did not exceed the effects range median stated by the numerical effect-based sediment quality guidelines of the United States, concentrations of PAHs at some locations were similar to or greater than the effects range low.  相似文献   

8.
长江流域表层沉积物中多环芳烃分布特征及来源解析   总被引:1,自引:0,他引:1  
黄亮  张经  吴莹 《生态毒理学报》2016,11(2):566-572
长江流域沉积物多环芳烃分析表明,多环芳烃浓度总和(不包括苝)约为10.31~1 239 ng·g-1,与国内外其他区域相比,整体处于一个低至中等程度的污染水平。长江自上游至下游,沉积物中多环芳烃含量呈上升趋势,与沿途各省多环芳烃的排放状况相吻合。扬州(YZ)和湘江(XJ)采样点沉积物中多环芳烃含量最高,污染最严重。根据多环芳烃的比值特征,长江流域沉积物中多环芳烃主要受以煤、木材、油类的燃烧影响较大,还有部分来自油类的泄漏,极少量来自自然成因。  相似文献   

9.
The spatial and temporal distributions of polycyclic aromatic hydrocarbons (PAHs) in the Songhua River, Harbin, China, were investigated. Seventy-seven samples, 42 water and 35 sediment samples, were collected in April and October of 2007 and January of 2008. The concentrations of total PAHs in water ranged from 163.54 to 2,746.25 ng/L with the average value of 934.62 ng/L, which were predominated by 2- and 3-ring PAHs. The concentrations of total 16 PAHs in sediment ranged from 68.25 to 654.15 ng/g dw with the average value of 234.15 ng/g dw, which were predominated by 4-, 5- and 6-ring PAHs. Statistical analysis of the PAH concentrations shown that the highest concentrations of the total PAHs were found during rainy season (October of 2007) and the lowest during snowy season (January of 2008). Ratios of specific PAH compounds, including fluoranthene/(fluoranthene + pyrene) (Flu/(Flu + Pyr)) and phenanthrene/(phenanthrene + anthracene) (An/(Ant + PhA)), were calculated to evaluate the possible sources of PAH contaminations. These ratios reflected pyrolytic inputs of PAHs in Songhua River water and a mixed pattern of pyrolytic and petrogenic inputs of PAHs in the Songhua River sediments. Ecotoxicological risk levels calculated for PAHs suggested that there were individual PAHs, which can less frequently cause biological impairment in some samples, but no samples had constituents that may frequently cause biological impairment. Total toxic benzo[a]pyrene equivalent of ΣcPAHs varied from 10.03 to 29.7 ng/g dw and from 0.36 to 1.92 ng/g dw for total toxic tetrachlorodibenzo-p-dioxin equivalent. The level of PAHs indicated a low toxicological risk to this area.  相似文献   

10.
The bioaccumulation and bioavailability of polycyclic aromatic hydrocarbons (PAHs) were characterized in sediment and Paphia undulata (short-neck clam) from six mudflat areas in the west coasts of Peninsular Malaysia. The concentrations of total PAHs varied from 357.1 to 6257.1 and 179.9 ± 7.6 to 1657.5 ± 53.9 ng g ?1 dry weight in sediment and short-neck clam samples, respectively. PAHs can be classified as moderate to very high level of pollution in sediments and moderate to high level of pollution in short-neck clams. The diagnostic ratios of individual PAHs and principal component analysis indicate both petrogenic and pyrogenic sources with significant dominance of pyrogenic source. The first PAHs biota-sediment accumulation factors and relative biota-sediment accumulation factors data for short-neck clam were obtained in this study, indicating a preferential accumulation of lower molecular weight PAHs. Evaluation of PAH levels in sediments and short-neck clams indicates that short-neck clam could be introduced as a good biomonitor in mudflats. The results also demonstrated that under environmental conditions, the sedimentary load of hydrocarbons appears to be one of the factors controlling their bioavailability to biota.  相似文献   

11.
珠江水体表层沉积物中PAHs的含量与来源研究   总被引:3,自引:0,他引:3  
杜娟  吴宏海  袁敏  管玉峰 《生态环境》2010,19(4):766-770
沿珠江白鹅潭水域及大学城官州河流域设立6个采样点,利用沉积物捕获器收集沉积物。参照美国EPA8000系列方法及质量保证和质量控制,对各采样点表层沉积物中16种多环芳烃(polycyclic aromatic hydrocarbons,PAHs)进行分析,以阐明珠江广州河段表层沉积物中PAHs的含量和分布特征,并结合特征化合物指数对其来源作初步探讨。珠江广州河段表层沉积物中PAHs总量介于4 787.5~8 665 ng·g^-1,平均值为7 078 ng·g^-1,黄沙码头河涌出口沉积物中总量为最高(8 665 ng·g^-1),芳村码头为最低(4 787.5 ng·g^-1)。16种多环芳烃中菲、荧蒽、芘含量较高,分别占PAHs总量的16.11%、14.47%和17.77%。特征化合物荧蒽/202比值均小于0.5,茚并[1,2,3-cd]芘/276比值均大于0.2,表明珠江广州段表层沉积物中PAHs主要来源于化石燃料的不完全燃烧。  相似文献   

12.
Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous in the environment; there are concerns about them due to their toxic properties. Human activities could significantly contribute to the total PAH burden in river sediments. In this work, we document the analysis of PAHs in sediments taken in the middle stretch of the Biobio River in south central Chile. This river is a principal system, draining more than 24,000 km2 and subjected to a diverse variety of human-made stressors (pulp mill and urban effluents, agricultural drainage systems, etc). During 2003, several sediment samples were taken in more than 45 sampling sites located in the river’s middle stretch. Due to the granulometric characteristics (mainly sandy sediments), only 17 samples were analyzed, taking into consideration the presence of a fine section within the sediment sample. Using HPLC with fluorescence detection, 15 EPA priority PAHs and perylene were analyzed. The composition of PAHs in the sediment samples is rather similar between sites and levels averaged 104 ± 78 ng g−1 d.w. The highest levels were detected downstream from an industrial discharge. A good correlation was observed between PAH levels and organic carbon content in the tested sediments; however, concentrations above 134 ng g−1 d.w. did not indicate correlation. The samples PAH ratios (Flu/Pyr and Chr/B(a)A) reveal a strong pyrolytic PAH pattern in the sediments tested, supporting evidence indicating that PAHs come mainly from pyrolytic sources. This result contrasts with previous records that have shown a natural influence in the upper basin and a petrogenic pattern near the mouth.  相似文献   

13.
多环芳烃(polycyclic aromatic hydrocarbons,PAHs)是环境中普遍存在的稠环类化合物,由于其对人体健康和生态环境产生较大危害,美国环保局将16种PAHs列为优先控制的污染物。PAHs也是太湖流域的主要污染物之一。作为华东地区的重要水系和水源地,研究太湖环境质量的变化对改善太湖流域水生生态系统和提高沿岸居民身体健康具有重要意义。论文研究了太湖胥口湾水域表层水和沉积物的PAHs。结果显示,表层水和沉积物的PAHs总浓度分别为7.2~83 ng·L~(-1)和66~620ng·g~(-1)干重;年均值为29 ng·L~(-1)和218 ng·g~(-1)干重;年均毒性当量浓度为2.4 ng·L~(-1)和28 ng·g~(-1)干重。沉积物中的主要污染物为荧蒽、芘和,影响毒性当量浓度的主要是苯并(a)芘和二苯并(a,h)蒽。4环PAHs在沉积物中占主要,其浓度百分比为44%~48%,而5环PAHs则占毒性当量总浓度的90%以上,说明其危害主要来自5环PAHs。PAHs特征化合物比值分析表明,胥口湾沉积物中PAHs主要来源于煤和木材燃烧,表层水大部分为燃烧和石油的混合来源。污染水平的时空变化特点为丰水期(8月)表层水PAHs浓度偏高,沉积物偏低。湖区和湖岸的PAHs浓度只在丰水期有显著差异,表层水PAHs浓度湖区高于湖岸,沉积物相反;其他时期湖区和湖岸PAHs浓度无显著差异。根据加拿大沉积物环境质量标准,胥口湾整体生态风险水平较低。从时空分布特征来看,个别生态风险较高的点主要分布在湖岸,5月平水期可能是沉积物中PAHs生态风险较高的频发期。  相似文献   

14.
为了解广东典型湿地环境表层沉积物及鱼体中多环芳烃(PAHs)的污染特征,分别于2014年10月和2015年4月采集沉积物及鱼类样品,分析其中16种US EPA优控多环芳烃的主要来源和风险。结果表明,广东典型湿地环境表层沉积物中多环芳烃的含量范围为139.4~1 134.3 ng·g~(-1)干重,鱼类肌肉中多环芳烃含量范围为11.1~33.9 ng·g~(-1)湿重。表层沉积物中有机碳与不同环数的多环芳烃含量均呈现显著的正相关关系。来源分析的结果表明,研究区域表层沉积物中多环芳烃的主要来源为石油排放及燃烧来源的混合。风险评估的结果表明,该区域表层沉积物中多环芳烃存在一定的生态风险,需引起重视;通过食用鱼类造成的致癌风险为2.25×10~(-6)~4.23×10~(-6),略高于美国环保局(US EPA)推荐的可接受风险(10~(-6)),存在一定的潜在致癌风险。对于成年人来说,研究区域鱼类肌肉中多环芳烃产生致癌风险允许的最大日食用量(CR_(lim))范围为124.5~234.6 g·d~(-1),尽管食用这几种鱼的致癌风险不大,居民摄入时仍应加以控制。  相似文献   

15.
多环芳烃(PAHs)具有高的疏水性,在水体中优先分布于沉积物.采用物种敏感性分布法(SSDs法),依据水生生物慢性毒性数据计算5%物种危害浓度(HC5);并结合欧盟委员会风险评价技术导则(TGD)进而得到沉积物预测无效应浓度(PNEC-sed),以报道的太湖的沉积物中浓度数据作为预测环境浓度(PECsed);用商值法P...  相似文献   

16.
High-altitude lake sediments can be used as natural archives to reconstruct the history of pollutants. In this work, the temporal distribution of polycyclic aromatic hydrocarbons (PAHs) was determined in a sediment core collected from the southern Tibetan Plateau (TP), which was dated by using the 210Pb dating method and validated with the 137Cs fallout peak. The concentrations of the anthropogenic PAHs (Σ8PAH) in the sediment core ranged from 0.83 to 12 ng/g dw, and the fluxes of the Σ8PAH were in the range of 2.1–27 g/cm2/year. The temporal variations in the concentration and input flux of anthropogenic PAHs were low with little variability before the 1950s, and then gradually increased from the 1950s to the 1980s, and an accelerated increase was observed after the early 1980s. The content of total organic carbon played an insignificant role in affecting the time trends of PAHs in the sediment core. Diagnostic concentration fractions of PAH components indicate PAHs in the lake sediment of the southern TP which are mainly from biomass burning and/or from long-range atmospheric transport.  相似文献   

17.
The concentrations of polycyclic aromatic hydrocarbons (PAH), total carbon (TC), total organic carbon (TOC), total nitrogen (TN) and dissolved inorganic nitrogen (DIN) in water and sediments of Lake Baikal and its tributaries were measured. It was found that according to existing water and sediment quality standards limiting permissible PAH concentrations, both surface waters and sediments in Lake Baikal watershed can be considered as unpolluted with PAHs compounds. Nevertheless, the spatial distribution of PAH concentrations in lake water indicates the existence of some point PAH sources in and around the lake. These sources were natural oil seeps and communal facilities such as residential coal-fired and oil-fired boilers. It was observed that concentrations of PAHs in both water and sediments are controlled by organic matter content and organic matter mineralisation degree, as indicated by PAH-to-carbon and nitrogen-to-carbon ratios respectively. It was found that PAH/TOC and PAH/TC ratios characterise PAH loading on water and sediments respectively, whereas DIN/TOC and TN/TC ratios characterise self-purification of water and sediments respectively. It was proved that PAH/TOC and DIN/TOC ratios can be used as tracers to evaluate the PAH contributions from tributaries to Lake Baikal.  相似文献   

18.
The distribution of aliphatic hydrocarbons and polycyclic aromatic hydrocarbons (PAHs), and their degradability by bacteria in epipelic and benthic sediments from Qua Iboe Estuary mangrove ecosystem and associated creeks were investigated. The research findings revealed that total aliphatic hydrocarbons in sediments ranged from 16.82 mg·kg ?1 to 210 mg kg ?1, wheras total PAHs ranged from 6.30 to 35.55 mg·kg ?1 dry weight of sediment. Low molecular mass (i.e. the 2–3-ring) PAHs were predominant in almost all the sampling points, whereas the higher molecular masses (4-, 5- and 6-ring PAHs) had the lowest concentrations. In general, the sediment samples ES 2 (39.7%), ES 3 (24.8%), BS 1 (46.7%), BS 2 (49.9%) and BS 3 (44.2%) showed<50% contributions of Σ combustion–derived PAH (COMP-PAH) concentration to the Σ PAH concentrations, whereas ES 1 (57%) contained>50% of COMP-PAHs. Our results have also shown that many mangrove bacteria have strong capacity to utilise Qua Iboe Light (QL) crude oil as the sole source of carbon and energy, while lower number of bacterial species including Bacillus sp., Micrococcus sp., Pseudomonas aeruginosa, Alcaligenes sp. and Flavobacterium sp. exhibited detectable PAHs degradability; and as such may serve as efficient degraders of QL crude oil contamination of mangrove ecosystem.  相似文献   

19.
本研究在汾河流域上、中、下游及其部分支流布设29个采样点,对其水体和表层沉积物多环芳烃(PAHs)的空间分布规律及生态风险进行了分析和讨论。结果表明,汾河流域水相中丰水期PAHs总量浓度范围是0.530~16.002μg·L~(-1),平均浓度为(2.738±3.078)μg·L~(-1),枯水期PAHs总量浓度范围是0.588~12.916μg·L~(-1),均值为(2.762±3.132)μg·L~(-1)。就空间分布而言,汾河流域整体呈现上游污染较轻,中下游污染严重的特点。PAHs的组成规律显示,丰水期和枯水期PAHs含量均以低环(2~3环)为主,不同采样期低环PAHs所占比例分别为96.5%和90.4%。与其他15个研究地区水体PAHs含量比较,汾河流域水体中PAHs污染程度的国内外对比处于中等到较高程度的污染。丰水期和枯水期水体中PAHs来源于石油源和植物、木材、煤的燃烧,主要受到流域煤化工、燃煤电厂排放污染物的影响。地表水健康风险评价结果显示,汾河流域丰水期和枯水期分别有13.8%和20.7%的点位存在一定的健康风险。汾河流域沉积相中16种PAHs平均浓度为(3.774±1.987)μg·g-1,其污染主要集中在流域中下游地区。PAHs的组成规律显示,PAHs含量集中在低环(2~3环),约占总量的75%左右。与本研究提到的河流、湖泊及港口沉积物中PAHs含量比较,汾河流域沉积物中PAHs污染程度仍处于中等偏高的污染水平。丰水期沉积相中PAHs以燃烧源和石油源为主,部分来自典型石油类产品的输入。表层沉积物生态风险评价结果显示,对于提出的12种PAHs的生态风险的效应区间低值(ERL值)或效应区间中值(ERM值)以及苯并(b)荧蒽(Bb F)和苯并(k)荧蒽(Bk F)这2类没有最低安全值的PAHs化合物来说,汾河上、中、下游流域均有采样点的PAHs可能存在着对生物的潜在生态风险。通过本研究可全面地了解该流域多环芳烃的空间分布规律及其可能的来源,并且为汾河流域多环芳烃污染的控制和生态风险评价提供科学依据。  相似文献   

20.
Distribution (seasonal and spatial) of aliphatic and polycyclic aromatic hydrocarbons (PAHs) in surface sediments of the Chitrapuzha River, Cochin, India, was investigated using gas chromatography. Significantly high concentrations prevailed during the pre-monsoon season with the industrial zones of the river appearing to be hot spots with particularly elevated levels of the hydrocarbons. AHCs ranged between 7754 and 41,173?ng/g with an average of 25,256?ng/g, while total PAHs varied from 5046 to 33,087?ng/g. n-Alkane indices and PAH diagnostic ratios point to petroleum contamination in the sediments. The significance of PAHs in the sediments was explored using universally accepted interpretation tools. Observed levels of PAHs in sediments of Chitrapuzha are likely to cause adverse effects on biota.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号