首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 55 毫秒
1.
The position of alien plant species in the Dutch coastal dune vegetation is evaluated considering 12 archaeophytes and 20 neophytes (including one moss), all of widespread occurrence in the coastal area of the Netherlands. Almost all archaeophytes have become part of natural vegetation types. Open scrub communities, in particular Hippophae rhamnoides-Sambucus nigra scrub at the leeside of the outer dunes, and calciphilous moss-dominated pioneer vegetation are relatively rich in archaeophytes. Among neophyte vascular species a contrast is apparent between herbaceous and woody species. The majority of herbaceous neophytes are characteristic of man-disturbed habitats and are only infrequently observed in natural vegetation types. However, woody species (as well as the moss Campylopus introflexus) have entered into natural vegetation on a large scale and behave in an invasive way.  相似文献   

2.
In multiply invaded ecosystems, introduced species should interact with each other as well as with native species. Invader-invader interactions may affect the success of further invaders by altering attributes of recipient communities and propagule pressure. The invasional meltdown hypothesis (IMH) posits that positive interactions among invaders initiate positive population-level feedback that intensifies impacts and promotes secondary invasions. IMH remains controversial: few studies show feedback between invaders that amplifies their effects, and none yet demonstrate facilitation of entry and spread of secondary invaders. Our results show that supercolonies of an alien ant, promoted by mutualism with introduced honeydew-secreting scale insects, permitted invasion by an exotic land snail on Christmas Island, Indian Ocean. Modeling of land snail spread over 750 sites across 135 km2 over seven years showed that the probability of land snail invasion was facilitated 253-fold in ant supercolonies but impeded in intact forest where predaceous native land crabs remained abundant. Land snail occurrence at neighboring sites, a measure of propagule pressure, also promoted land snail spread. Site comparisons and experiments revealed that ant supercolonies, by killing land crabs but not land snails, disrupted biotic resistance and provided enemy-free space. Predation pressure on land snails was lower (28.6%), survival 115 times longer, and abundance 20-fold greater in supercolonies than in intact forest. Whole-ecosystem suppression of supercolonies reversed the probability of land snail invasion by allowing recolonization of land crabs; land snails were much less likely (0.79%) to invade sites where supercolonies were suppressed than where they remained intact. Our results provide strong empirical evidence for IMH by demonstrating that mutualism between invaders reconfigures key interactions in the recipient community. This facilitates entry of secondary invaders and elevates propagule pressure, propagating their spread at the whole-ecosystem level. We show that identification and management of key facilitative interactions in invaded ecosystems can be used to reverse impacts and restore resistance to further invasions.  相似文献   

3.
Eschtruth AK  Battles JJ 《Ecology》2011,92(6):1314-1322
The widely held belief that riparian communities are highly invasible to exotic plants is based primarily on comparisons of the extent of invasion in riparian and upland communities. However, because differences in the extent of invasion may simply result from variation in propagule supply among recipient environments, true comparisons of invasibility require that both invasion success and propagule pressure are quantified. In this study, we quantified propagule pressure in order to compare the invasibility of riparian and upland forests and assess the accuracy of using a community's level of invasion as a surrogate for its invasibility. We found the extent of invasion to be a poor proxy for invasibility. The higher level of invasion in the studied riparian forests resulted from greater propagule availability rather than higher invasibility. Furthermore, failure to account for propagule pressure may confound our understanding of general invasion theories. Ecological theory suggests that species-rich communities should be less invasible. However, we found significant relationships between species diversity and invasion extent, but no diversity-invasibility relationship was detected for any species. Our results demonstrate that using a community's level of invasion as a surrogate for its invasibility can confound our understanding of invasibility and its determinants.  相似文献   

4.
An Integrated Approach to the Ecology and Management of Plant Invasions   总被引:18,自引:0,他引:18  
Plant invasions are a serious threat to natural and managed ecosystems worldwide. The number of species involved and the extent of existing invasions renders the problem virtually intractable, and it is likely to worsen as more species are introduced to new habitats and more existing invaders move into a phase of rapid spread. We contend that current research and management approaches are inadequate to tackle the problem. The current focus is mostly on the characteristics and control of individual invading species. Much can be gained, however, by considering other important components of the invasion problem. Patterns of weed spread indicate that many species have a long lag phase following introduction before they spread explosively. Early detection and treatment of invasions before explosive spread occurs will prevent many future problems. Similarly, a focus on the invaded ecosystem and its management, rather than on the invader, is likely to be more effective. Identification of the causal factors enhancing ecosystem invasibility should lead to more-effective integrated control programs. An assessment of the value of particular sites and their degree of disturbance would allow the setting of management priorities for protection and control. Socioeconomic factors frequently play a larger part than ecological factors in plant invasions. Changes in human activities in terms of plant introduction and use, land use, and timing of control measures are all required before the plant invasion problem can be tackled adequately. Dealing with plant invasions is an urgent task that will require difficult decisions about land use and management priorities. These decisions have to be made if we want to conserve biodiversity worldwide.  相似文献   

5.
Propagule pressure can determine the success or failure of invasive plant range expansion. Range expansion takes place at large spatial scales, often encompassing many types of land cover, yet the effect of landscape context on propagule pressure remains largely unknown. Many studies have reported a positive correlation between invasive plant abundance and human land use; increased propagule pressure in these landscapes may be responsible for this correlation. We tested the hypothesis that increased rates of seed dispersal by fig-eating birds, which are more common in urban habitats, result in an increase in invasive strangler fig abundance in landscapes dominated by human land use. We quantified abundance of an invasive species (Ficus microcarpa) and a native species (F. aurea) of strangler fig in plots spanning the entire range of human land use in South Florida, USA, from urban parking lots to native forest. We then compared models that predicted juvenile fig abundance based on distance to adult fig seed sources and fig-eating bird habitat quality with models that lacked one or both of these terms. The best model for juvenile invasive fig abundance included both distance to adult and fig-eating bird habitat terms, suggesting that landscape effects on invasive fig abundance are mediated by seed-dispersing birds. In contrast, the best model for juvenile native fig abundance included only presence/absence of adults, suggesting that distance from individual adult trees may have less effect on seed limitation for a native species compared to an invasive species undergoing range expansion. However, models for both species included significant effects of adult seed sources, implying that juvenile abundance is limited by seed arrival. This result was corroborated by a seed addition experiment that indicated that both native and invasive strangler figs were strongly seed limited. Understanding how landscape context affects the mechanisms of plant invasion may lead to better management techniques. Our results suggest that prioritizing removal of adult trees in sites with high fig-eating bird habitat may be the most effective method to control F. microcarpa abundance.  相似文献   

6.
Abstract:  Alien invasive species represent a severe risk to biodiversity. Such is the case of buffel grass ( Cenchrus ciliaris L.), a native species of Southern Asia and East Africa, which was introduced to the United States and Mexico for use in improved pasture. Here we present a coarse-grain approach to determine areas where buffel grass can potentially invade in Mexico. Potential species distributions, suitable for an invasion by buffel grass, were obtained through genetic algorithms. We generated the algorithms with databases of herbaria specimens; environmental digital covers of climate, soil texture, and vegetation; and the program called Genetic Algorithm for Rule-Set Prediction. This spatial modeling approach was validated with a case study for the state of Sonora, Mexico, where the occurrence of buffel grass has been proven. The most threatened vegetation types for the specific case of Sonora were desert scrub, mesquite woodlands, and tropical deciduous forest. The model prediction agreed with the field observations recorded in Sonora and allowed us to apply the same procedure to produce a map of the potential sites of buffel grass invasion for Mexico. The areas at risk of invasion mostly occurred in desert scrub, located in the arid and semiarid regions of northern Mexico. This methodology provides an initial baseline for assessment, prevention, and management of alien species that may become invasive under certain environmental conditions. Additionally this modeling approach provides a tool for policy makers to use in making decisions on land-use management practices when alien species are involved.  相似文献   

7.
Effective management of invasive species requires that we understand the mechanisms determining community invasibility. Successful invaders must tolerate abiotic conditions and overcome resistance from native species in invaded habitats. Biotic resistance to invasions may reflect the diversity, abundance, or identity of species in a community. Few studies, however, have examined the relative importance of abiotic and biotic factors determining community invasibility. In a greenhouse experiment, we simulated the abiotic and biotic gradients typically found in vernal pools to better understand their impacts on invasibility. Specifically, we invaded plant communities differing in richness, identity, and abundance of native plants (the "plant neighborhood") and depth of inundation to measure their effects on growth, reproduction, and survival of five exotic plant species. Inundation reduced growth, reproduction, and survival of the five exotic species more than did plant neighborhood. Inundation reduced survival of three species and growth and reproduction of all five species. Neighboring plants reduced growth and reproduction of three species but generally did not affect survival. Brassica rapa, Centaurea solstitialis, and Vicia villosa all suffered high mortality due to inundation but were generally unaffected by neighboring plants. In contrast, Hordeum marinum and Lolium multiflorum, whose survival was unaffected by inundation, were more impacted by neighboring plants. However, the four measures describing plant neighborhood differed in their effects. Neighbor abundance impacted growth and reproduction more than did neighbor richness or identity, with growth and reproduction generally decreasing with increasing density and mass of neighbors. Collectively, these results suggest that abiotic constraints play the dominant role in determining invasibility along vernal pool and similar gradients. By reducing survival, abiotic constraints allow only species with the appropriate morphological and physiological traits to invade. In contrast, biotic resistance reduces invasibility only in more benign environments and is best predicted by the abundance, rather than diversity, of neighbors. These results suggest that stressful environments are not likely to be invaded by most exotic species. However, species, such as H. marinum, that are able to invade these habitats require careful management, especially since these environments often harbor rare species and communities.  相似文献   

8.
Arenas F  Sánchez I  Hawkins SJ  Jenkins SR 《Ecology》2006,87(11):2851-2861
The emergence of the biodiversity-ecosystem functioning debate in the last decade has renewed interest in understanding why some communities are more easily invaded than others and how the impact of invasion on recipient communities and ecosystems varies. To date most of the research on invasibility has focused on taxonomic diversity, i.e., species richness. However, functional diversity of the communities should be more relevant for the resistance of the community to invasions, as the extent of functional differences among the species in an assemblage is a major determinant of ecosystem processes. Although coastal marine habitats are among the most heavily invaded ecosystems, studies on community invasibility and vulnerability in these habitats are scarce. We carried out a manipulative field experiment in tide pools of the rocky intertidal to test the hypothesis that increasing functional richness reduces the susceptibility of macroalgal communities to invasion. We selected a priori four functional groups on the basis of previous knowledge of local species characteristics: encrusting, turf, subcanopy, and canopy species. Synthetic assemblages containing one, two, three, or four different functional groups of seaweeds were created, and invasion by native species was monitored over an eight-month period. Cover and resource availability in the assemblages with only one functional group showed different patterns in the use of space and light, confirming true functional differences among our groups. Experimental results showed that the identity of functional groups was more important than functional richness in determining the ability of macroalgal communities to resist invasion and that resistance to invasion was resource-mediated.  相似文献   

9.
In January 1958, a survey of alpine flora was conducted along a recently constructed access road across the upper volcanic slopes of Mauna Loa, Hawaii (2525-3397 m). Only five native Hawaiian species were encountered on sparsely vegetated historic and prehistoric lava flows adjacent to the roadway. A resurvey of roadside flora in 2008 yielded a more than fourfold increase to 22 species, including nine native species not previously recorded. Eight new alien species have now invaded this alpine environment, although exclusively limited to a few individuals in ruderal habitat along the roadway. Alternative explanations for species invasion and altitudinal change over the past 50 years are evaluated: (1) changes related to continuing primary succession on ameliorating (weathering) young lava substrates; (2) local climate change; and (3) road improvements and increased vehicular access which promote enhanced car-borne dispersal of alien species derived from the expanding pool of potential colonizers naturalized on the island in recent decades. Unlike alpine environments in temperate latitudes, the energy component (warming) in climate change on Mauna Loa does not appear to be the unequivocal driver of plant invasion and range extension. Warming may be offset by other climate change factors including rainfall and evapotranspiration.  相似文献   

10.
Abstract:  We used a species-distribution modeling approach, ground-based climate data sets, and newly available remote-sensing data on vegetation from the MODIS and Quick Scatterometer sensors to investigate the combined effects of human-caused habitat alterations and climate on potential invasions of rainforest by 3 savanna snake species in Cameroon, Central Africa: the night adder (Causus maculatus) , olympic lined snake (Dromophis lineatus) , and African house snake (Lamprophis fuliginosus) . Models with contemporary climate variables and localities from native savanna habitats showed that the current climate in undisturbed rainforest was unsuitable for any of the snake species due to high precipitation. Limited availability of thermally suitable nest sites and mismatches between important life-history events and prey availability are a likely explanation for the predicted exclusion from undisturbed rainforest. Models with only MODIS-derived vegetation variables and savanna localities predicted invasion in disturbed areas within the rainforest zone, which suggests that human removal of forest cover creates suitable microhabitats that facilitate invasions into rainforest. Models with a combination of contemporary climate, MODIS- and Quick Scatterometer-derived vegetation variables, and forest and savanna localities predicted extensive invasion into rainforest caused by rainforest loss. In contrast, a projection of the present-day species-climate envelope on future climate suggested a reduction in invasion potential within the rainforest zone as a consequence of predicted increases in precipitation. These results emphasize that the combined responses of deforestation and climate change will likely be complex in tropical rainforest systems.  相似文献   

11.
Abstract: Fire is frequently used for land management purposes and may be crucial for effective control of invasive non‐native plants. Nevertheless, fire modifies environments and may affect nontarget native biodiversity, which can cause conflicts for conservation managers. Native Australian reptiles avoid habitat invaded by the alien plant rubber vine (Cryptostegia grandiflora) and may be susceptible to the impacts of burning, a situation that provides a model system in which to examine possible conservation trade‐offs between managing invasive plants and maintaining native biodiversity. We used replicated, experimental fire treatments (unburned, dry‐season burned, and wet‐season burned) in 2 habitats (riparian and adjacent open woodland) to examine the short‐ (within 12 months of fire) and longer‐term (within 3 years of fire) changes of reptile assemblages in response to wet‐ and dry‐season burning for weed management in tropical savannas of northern Australia. Within 12 months of fire, abundances of the skink Carlia munda (Scincidae) were higher in the burned sites, but overall reptile composition was structured by habitat type rather than by effects of burning. Within 3 years of a fire, the effects of fire were evident. Reptiles, especially the gecko Heteronotia binoei (Gekkonidae), were least abundant in dry‐season burned sites; litter‐associated species, including Carlia pectoralis (Scincidae), were rarely observed in burned habitat; and there were fewer species in the wet‐season burned sites. Reptile abundance was associated with vegetation structure, which suggests that fire‐induced changes detrimentally altered the availability of resources for some reptiles, particularly leaf‐litter species. Invasive alien plants, such as rubber vine, have severe effects on native biodiversity, and control of such species is a fundamental land management objective. Nevertheless, fire management of invasive alien plants may adversely affect native biodiversity, creating a conservation conundrum. In such scenarios, land managers will need to identify the most desired conservation goal and consider the consequences for native biota.  相似文献   

12.
Although invasive alien species (IAS) are a major threat to biodiversity, human health, and economy, our understanding of the factors controlling their distribution and abundance is limited. Here, we determine how environmental factors, land use, life-history traits of the invaders, residence time, origin, and human usage interact to shape the spatial pattern of invasive alien plant species in South Africa. Relationships between the environmental factors and the extrinsic and intrinsic attributes of species were investigated using RLQ analysis, a multivariate method for relating a species-attribute table to an environmental table by way of a species presence/absence table. We then clustered species according to their position on the RLQ axes, and tested these groups for phylogenetic independence. The first three axes of the RLQ explained 99% of the variation and were strongly related to the species attributes. The clustering showed that, after accounting for environmental factors, the spatial pattern of IAS in South Africa was driven by human uses, life forms, and reproductive traits. The seven clusters of species strongly reflected geographical distribution, but also intrinsic species attributes and patterns of human use. Two of the clusters, centered on the genera Acacia and Opuntia, were phylogenetically non-independent. The remaining clusters comprised species of diverse taxonomic affinities, but sharing traits facilitating invasion in particular habitats. This information is useful for assessing the extent to which the potential spread of recent introductions can be predicted by considering the interaction of their biological attributes, region of origin, and human use.  相似文献   

13.
研究草海湿地空心莲子草(Alternanthera philoxeroides)入侵对异质生境植物群落生活型、物种组成、重要值及物种多样性的影响,结果表明,①异质生境中群落生活型组成比例有差异,水生生境地面芽植物(H)∶隐芽植物(Cr)∶一年生植物(Th)为56∶38∶6;湿生生境为43∶36∶21。②异质生境中物种组成差异明显,水生生境试验样方包含9科13属16种,对照样方(无空心莲子草入侵)包含10科19属23种;湿生生境试验样方包含8科14属14种,对照样方有10科19属22种。空心莲子草入侵不同生境后群落内物种重要值变化及差异均较大,部分乡土物种在试验样方中减少甚至消失,水生生境和湿生生境群落中分别有30.44%、36.36%物种消失。③异质生境中空心莲子草重要值与物种多样性指数、生态优势度指数、均匀度指数均呈二项式函数关系;两种生境的多样性指数和均匀度指数均表现为随空心莲子草重要值先增加后减少,生态优势度指数均为先减少后增加,空心莲子草入侵对乡土植物群落物种多样性产生正向影响和负向影响,在群落中其重要值达25.8(水生生境)、18.9(湿生生境)时,是乡土植物多样性下降的临界点。  相似文献   

14.
In coastal dunes, landscape changes are a rule, rather than an exception. This paper gives an overview of changes in landscape and vegetation with a focus on the past century. The history of dunes is characterised by phases of sand drift, alternated with geomorphological stability. The historical development of dune woodland during these stable phases has been documented for sites all over Europe. Vegetation reconstructions of historical open dune habitats however is very difficult due to limited preservation of fossil remains. People have drastically altered coastal dune landscapes through centuries of exploitation and more recently development of the coast. Historical land use has generally pushed vegetation back into a semi-natural state. During roughly the past century a tendency of increasing fixation and succession is observed on coastal dunes throughout northwest Europe. Six causes of change are discussed. 1) Changes in land use, mainly abandonment of agricultural practices, have led to the development of late successional stages such as scrub and woodland. 2) Crashing rabbit populations due to myxomatosis in the 1950s caused vigorous grass growth and probably stimulated scrub development. 3) A general tendency of landscape fixation is observed due to both natural and anthropogenic factors. 4) Eutrophication, mainly due to atmospheric nitrogen deposition is clearly linked to grass encroachment on acidic but also on some calcareous dunes. 5) The impact of climate change on vegetation is still unclear but probably lengthening of growing season and maybe enhanced CO2 concentrations have led to an acceleration of succession. 6) A general anthropogenisation of the landscape occurs with rapid spread of non-native species as an important consequence. The reconstruction of a natural reference landscape is considered largely unattainable because of irreversible changes and the long tradition of human impact, in many cases since the development of the dunes. Two contradictory elements need reconciliation. First, the general acceleration of succession and scrub and woodland development in particular is partly caused by a decreased anthropogenic interference in the landscape and deserves more appreciation. Second, most biodiversity values are largely linked to open, early succession dune habitats and are threatened by the same tendency. Apart from internal nature management, in which grazing plays an important part, re-mobilisation of stable, senescent dunes is an important challenge for dune management.  相似文献   

15.
Climate changes impose requirements for many species to shift their ranges to remain within environmentally tolerable areas, but near‐continuous regions of intense human land use stretching across continental extents diminish dispersal prospects for many species. We reviewed the impact of habitat loss and fragmentation on species’ abilities to track changing climates and existing plans to facilitate species dispersal in response to climate change through regions of intensive land uses, drawing on examples from North America and elsewhere. We identified an emerging analytical framework that accounts for variation in species' dispersal capacities relative to both the pace of climate change and habitat availability. Habitat loss and fragmentation hinder climate change tracking, particularly for specialists, by impeding both propagule dispersal and population growth. This framework can be used to identify prospective modern‐era climatic refugia, where the pace of climate change has been slower than surrounding areas, that are defined relative to individual species' needs. The framework also underscores the importance of identifying and managing dispersal pathways or corridors through semi‐continental land use barriers that can benefit many species simultaneously. These emerging strategies to facilitate range shifts must account for uncertainties around population adaptation to local environmental conditions. Accounting for uncertainties in climate change and dispersal capabilities among species and expanding biological monitoring programs within an adaptive management paradigm are vital strategies that will improve species' capacities to track rapidly shifting climatic conditions across landscapes dominated by intensive human land use.  相似文献   

16.
Risk Assessment of Riparian Plant Invasions into Protected Areas   总被引:6,自引:0,他引:6  
Abstract:  Protected areas are becoming increasingly isolated. River corridors represent crucial links to the surrounding landscape but are also major conduits for invasion of alien species. We developed a framework to assess the risk that alien plants in watersheds adjacent to a protected area will invade the protected area along rivers. The framework combines species- and landscape-level approaches and has five key components: (1) definition of the geographical area of interest, (2) delineation of the domain into ecologically meaningful zones, (3) identification of the appropriate landscape units, (4) categorization of alien species and mapping of their distribution and abundance, and (5) definition of management options. The framework guides the determination of species distribution and abundance through successive, easily followed steps, providing the means for the assessment of areas of concern. We applied the framework to Kruger National Park (KNP) in South Africa. We recorded 231 invasive alien plant species (of which 79 were major invaders) in the domain. The KNP is facing increasing pressure from alien species in the upper regions of the drainage areas of neighboring watersheds. On the basis of the climatic modeling, we showed that most major riparian invaders have the ability to spread across the KNP should they be transported down the rivers. With this information, KNP managers can identify areas for proactive intervention, monitoring, and resource allocation. Even for a very large protected area such as the KNP, sustainable management of biodiversity will depend heavily on the response of land managers upstream managing alien plants. We suggest that this framework is applicable to plants and other passively dispersed species that invade protected areas situated at the end of a drainage basin.  相似文献   

17.
江苏北部城镇绿化策略研究   总被引:4,自引:0,他引:4  
在对江苏北部气候,植物区系,森林植被研究的基础上,从生态学角度提出该地区城镇绿化策略,包括:立足于落叶阔叶树种,积极引种耐寒发阔叶树种,根据生境特点合理布局树种。  相似文献   

18.
Emery SM  Gross KL 《Ecology》2007,88(4):954-964
While there has been extensive interest in understanding the relationship between diversity and invasibility of communities, most studies have only focused on one component of diversity: species richness. Although the number of species can affect community invasibility, other aspects of diversity, including species identity and community evenness, may be equally important. While several field studies have examined how invasibility varies with diversity by manipulating species identity or evenness, the results are often confounded by resource heterogeneity, site history, or disturbance. We designed a mesocosm experiment to examine explicitly the role of dominant species identity and evenness on the invasibility of grassland plant communities. We found that the identity of the dominant plant species, but not community evenness, significantly impacted invasibility. Using path analysis, we found that community composition (dominant species identity) reduced invasion by reducing early-season light availability and increasing late-season plant community biomass. Nitrogen availability was an important factor for the survival of invaders in the second year of the experiment. We also found significant direct effects of certain dominant species on invasion, although the mechanisms driving these effects remain unclear. The magnitude of dominant species effects on invasibility we observed are comparable to species richness effects observed in other studies, showing that species composition and dominant species can have strong effects on the invasibility of a community.  相似文献   

19.
In Europe, acidic coastal dunes are threatened by the invasion of the exotic moss Campylopus introflexus. While the effect of the moss encroachment on the vegetation is well analysed, knowledge of possible impact on arthropods is lacking. Thus, an experiment was conducted in acidic coastal dunes on the Baltic island of Hiddensee, Germany. Myrmeleotettix maculatus, a common Orthoptera species of open and dry habitats, was sampled by pitfall trapping in eleven plots invaded by C. introflexus and in eleven native, non-invaded plots rich in lichens. Overall, 826 individuals of M. maculatus were captured (266 nymphs, 560 adults). Mean number of adults was significantly higher in native plots. This maybe explained by a higher proportion of grasses (food supply), a higher availability of shelter (from predators, weather), or more favourable microclimate conditions in native plots and a higher mortality rate in invaded plots. However, mean number of both young and old nymphs did not differ significantly between both types. This could imply that invaded areas at least serve as favourable oviposition sites and larval habitats. The observed negative effect of the moss invasion on M. maculatus remains to be studied on other arthropods.  相似文献   

20.
Previous studies have found a higher proportion of alien plant species along the coastal area of the Black Sea. The goals of the present study were to assess the role of two harbours as gateways and reservoirs for alien plant species, to compare the structure and invasion pattern of the alien plants recorded there, and test methods useful for effective monitoring programs. We inventoried 12 sites along the western Black Sea coast from the harbour of Sulina in the north to Cape Kaliakra in the south. Each site was visited at least three times each. A more intensive survey was done in the two harbours targeted by our study: Constanţa and Sulina. The proportion of neophytes was higher in the harbours (representing about one third of the total plant species) and lower in coastal protected areas (with an average proportion of 6.7%). Species accumulation curves and estimators of species richness indicated that while the plant inventory was not complete, invasive alien species (IAS) were adequately inventoried. Harbours act not only as gateways for IAS but also as reservoirs, facilitating their acclimatization and naturalization. The use of species accumulation curves and estimators of species richness are useful tools in designing and evaluating simple monitoring programs based on repeated inventories. Our study has stressed the importance of monitoring not only coastal waters but also green areas in harbours for the early detection of IAS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号